2025 Vol. 52, No. 1
Article Contents

MA Jianfei, LI Xiangquan, ZHANG Chunchao, FU Changchang, XIE Xiaoguo, WANG Xiaogang, LI Xinze, ZHANG Dengfei, BAI Zhanxue, WANG Zhenxing. 2025. Recharge sources, model and development potential of typical tectonic karst groundwater in the eastern Qinghai−Xizang Plateau[J]. Geology in China, 52(1): 347-361. doi: 10.12029/gc20220416004
Citation: MA Jianfei, LI Xiangquan, ZHANG Chunchao, FU Changchang, XIE Xiaoguo, WANG Xiaogang, LI Xinze, ZHANG Dengfei, BAI Zhanxue, WANG Zhenxing. 2025. Recharge sources, model and development potential of typical tectonic karst groundwater in the eastern Qinghai−Xizang Plateau[J]. Geology in China, 52(1): 347-361. doi: 10.12029/gc20220416004

Recharge sources, model and development potential of typical tectonic karst groundwater in the eastern Qinghai−Xizang Plateau

    Fund Project: Supported by the projects of China Geological Survey (No. DD20211374, No. DD20221812, No.DD20230537), Chinese Academy of Geological Sciences (No. SK202205).
More Information
  • Author Bio: MA Jianfei, male, born in 1987, associate researcher, engaged in research on hydrogeology and engineering geology; E-mail: majianfei@mail.cgs.gov.cn
  • This paper is the result of hydrogeological survey engineering.

    Objective

    There are many tectonic karst areas with complex karst hydrogeological structures, diverse recharge sources, and abundant groundwater in the eastern part of the Qinghai−Xizang Plateau. Analyses and research of the recharge sources and details about the controls on groundwater cycling in the tectonic karst on the plateau are important for guiding the development and utilization of karst water resources, protecting the ecology, and preventing and reducing disasters.

    Methods

    Using information from field investigations, flow measurements, hydrochemistry and stable isotope analysis, we analyzed the groundwater recharge sources in the karst areas in the eastern part of the Qinghai−Xizang Plateau, considered the factors that influenced the recharge sources and recharge progress, and made recommendations for the development and utilization of the groundwater.

    Results

    Atmospheric precipitation was the main recharge source of the main karst springs on the eastern Qinghai−Xizang Plateau. There were four main recharge modes, including direct recharge through high−level fissures, continuous recharge from high−level lakes, continuous seepage recharge in catchment depressions, and river seepage.

    Conclusions

    The different recharge modes in the eastern Qinghai−Xizang Plateau developed over sustained time periods because of the coupling of internal factors, such as the history of the karst formation and its evolution, the geological structure, and the lithologic combination, and external factors, such as the meteorology, the landforms, and glacier movements. From our analysis of the characteristics of the water quality and quantity of the karst springs, we developed three categories for the development and utilization of the groundwater resource, namely karst springs with water quality in classes Ⅰ–Ⅲ, the development and utilization of which can be expanded; brackish water, which can be developed and utilized after mixing with other water; and salt water, which can be transformed and used for developing tourism.

  • 加载中
  • [1] Brown G H. 2002. Glacier meltwater hydrochemistry[J]. Applied Geochemistry, 17(7): 855−883. doi: 10.1016/S0883-2927(01)00123-8

    CrossRef Google Scholar

    [2] Castellazzi P, Burgess D, Rivera A, Huang J, Longuevergne L, Demuth M N. 2019. Glacial melt and potential impacts on water resources in the Canadian Rocky Mountains[J]. Water Resources Research, 55(12): 10191−10217.

    Google Scholar

    [3] Cui Zhijiu. 1979. Paleokarst in the Qinghai–Tibet Plateau[J]. Chinese Journal of Nature, (9): 24−25 (in Chinese).

    Google Scholar

    [4] Cui Zhijiu, Gao Quanzhou, Liu Gengnian, Pan Baotian, Chen Huailu. 1996a. Planation surface, paleokarst and uplift of Qinghai–Xizang Plateau[J]. Science in China (Series D), 26(4): 378−386 (in Chinese).

    Google Scholar

    [5] Cui Zhijiu, Gao Quanzhou, Liu Gengnian, Pan Baotian, Chen Huailu. 1996b. Planation level, karst age and initial height of Qinghai Xizang Plateau[J]. Chinese Science Bulletin, 15(41): 1402−1406 (in Chinese).

    Google Scholar

    [6] Cui Zhijiu, Li Dewen, Feng Jinliang, Liu Gengnian, Li Hongjiang. 2001. Overburden karst, weathered crust and karst (double layer) planation[J]. Science in China (Series D), 31(6): 510−519 (in Chinese).

    Google Scholar

    [7] Dausse A, Leonardi V, Jourde H. 2019. Hydraulic characterization and identification of flow–bearingstructures based on multi–scale investigations applied to the Lezkarst aquifer[J]. Journal of Hydrology: Regional Studies, 26: 100627. doi: 10.1016/j.ejrh.2019.100627

    CrossRef Google Scholar

    [8] Deng Zhengrong, Wu Shuliang, Yang Yougang, Min Wen, Lei Shibing. 2012. Application of isotopes method on judging supplied source of confined groundwater in riverbed at the dam site of a hydropower station[J]. Resources Environment & Engineering, 26(5): 505−508 (in Chinese with English abstract).

    Google Scholar

    [9] Fu C C, Li X Q, Ma J F, Liu L X, Gao M, Bai Z X. 2018. A hydrochemistry and multi–isotopic study of groundwater origin and hydrochemical evolution in the middle reaches of the Kuye River basin[J]. Applied Geochemistry, 98: 82−93. doi: 10.1016/j.apgeochem.2018.08.030

    CrossRef Google Scholar

    [10] Gao Quanzhou, Cui Zhijiu, Liu Gengnian, Hong Yun, Wu Yongqiu, Zhang Yechun, Chen Huailu. 2000. The fission track ages of the cavernous recrystalline calcites in tibet plateau and their geomorphologic significance[J]. Marine Geology & Quaternary Geology, 20(3): 61−65 (in Chinese with English abstract

    Google Scholar

    [11] Gao Quanzhou, Tao Zhen, Cui Zhijiu, Liu Gengnian, Hong Yun. 2002. The nature, formation ageand genetic environment of the palaeokarst on the Qinghai–Xizang Plateau[J]. Acta Geographica Sinica, 57(3): 267−274 (in Chinese with English abstract).

    Google Scholar

    [12] Guo Changbao, Wu Ruian, Jiang Liangwen, Zhong Ning, Wang Yang, Wang Dong, Zhang Yongshuang, Yang Zhihua, Meng Wen, Li Xue, Liu Gui. 2021. Typical geohazards and engineering geological problems along the Ya'an–Linzhi section of the Sichuan–Tibet Railway, China[J]. Geoscience, 35(1): 1−17 (in Chinese with English abstract).

    Google Scholar

    [13] Jiang Zhongcheng, Qin Xiaoqun, Cao Jianhua, Jiang Xiaozhen, He Shiyi, Luo Weiqun. 2011. Calculation of atmospheric CO2 sink formed in karst progresses of the karst divided regions in China[J]. Carsologica Sinica, 30(4): 364−367 (in Chinese with English abstract).

    Google Scholar

    [14] Jiang Zhongcheng, Zhang Jing, Huang Chao, Rong Yuebing, Wu Liangjun. 2019. Causes of formation and geo–scientific significance of karst gorge group in Xiangxi geopark[J]. Carsologica Sinica, 38(2): 269−275 (in Chinese with English abstract).

    Google Scholar

    [15] Kang Xiaobing, Yang Sifu, Guan Zhende, Zhang Wenfa, Xu Mo. 2021. Distribution of soluble rock strata and development of karst landforms in the Batang area, west Sichuan plateau[J]. Carsologica Sinica, 40(3): 381−388 (in Chinese with English abstract) .

    Google Scholar

    [16] Li Mingyue, Sun Xuejun, Li Shengnan, Zhang Qianggong. 2020. Advances on inorganic hydrochemistry of glacial meltwater runoff in the Qinghai–Tibet Plateau and its surrounding areas[J]. Journal of Glaciology and Geocryology, 42(2): 562−574 (in Chinese with English abstract).

    Google Scholar

    [17] Li Weijie, Wang Jianli, Wang Jialu. 2018. Characteristics of the stable isotopes in precipitation and the source of water vapor in different terrain in the Southwest Region[J]. Resources and Environment in Yangtze Basin, 27(5): 1132−1142 (in Chinese with English abstract).

    Google Scholar

    [18] Li Xiangquan, Ma Jianfei, Zhang Chunchao, Wang Zhenxing, Fu Changchang, Bai Zhanxue. 2021. Evolution regularity of the plateau tectonic karst and the relevant karst groundwater circulation mode in Mount Genie and Zaya sections along the Sichuan–Xizang Railway[J]. Hydrogeology & Engineering Geology, 48(5): 34−45 (in Chinese with English abstract) .

    Google Scholar

    [19] Luo Wenyi. 2019. Characteristics of water–thermal hazard and hydrogeological route seletion in typical section of Sichuan–Tibet railway [C]//Seminar on Construction Technology of Sichuan–Tibet Railway Project(in Chinese with English abstract).

    Google Scholar

    [20] Ma J F, Li X Q, Liu F, Fu CC, Zhang C C, Bai Z X, Wei S C. 2022. Application of hydrochemical and isotopic data to determine the origin and circulation conditions of karst groundwater in an alpine and gorge region in the Qinghai–Xizang Plateau: A case study of Genie Mountain[J]. Environmental Earth Sciences, 81: 291. doi: 10.1007/s12665-022-10414-9

    CrossRef Google Scholar

    [21] Ma Jianfei, Fu Changchang, Zhang Chunchao, Bai Zhanxue. 2022. Plateau tectonic karst development characteristics and underground conduits identification in the northern part of Kangding[J]. Bulletin of Geological Science and Technology, 41(1): 288−299 (in Chinese with English abstract).

    Google Scholar

    [22] Ma Jianfei, Li Xiangquan, Zhang Chunchao, Fu Changchang, Bai Zhanxue, Wang Zhenxing. 2021. Transformation characteristics of the large–flow river and groundwater in the fault zone in the glacier–covered area of Bomi in Tibet[J]. Hydrogeology & Engineering Geology, 48(5): 23−33 (in Chinese with English abstract).

    Google Scholar

    [23] Molnar P, Tapponnier P. 1975. Cenozoic tectonics of Asia: Effects of a continental collision: Features of recent continental tectonics in Asia can be interpreted as results of the India–Eurasia collision[J]. Science, 189(4201): 419–426.

    Google Scholar

    [24] Pan Guitang, Xiao Qinghui, Zhang Kexin, Yin Fuguang, Ren Fei, Peng Zhimin, Wang Jiaxuan. 2019. Recognition of the oceanic subduction–accretion zones from the orogenic belt in continents and its important scientific significance[J]. Earth Science, 44(5): 1544−1561 (in Chinese with English abstract).

    Google Scholar

    [25] Rivera A, Calderhead A I. 2022. Glacial melt in the Canadian rockies and potential effects on groundwater in the plains region[J]. Water, 14(5): 733. doi: 10.3390/w14050733

    CrossRef Google Scholar

    [26] Wang Dujiang. 2021. Development characteristics of plateau karst and influences on the engineering in a tunnel area of southeast Tibet[J]. Tunnel Construction, 41(6): 996−1006 (in Chinese with English abstract).

    Google Scholar

    [27] Wang Fubao. 1991. Discussion on some problems of karst in Qinghai Tibet Plateau[J]. Mountain Research, 9(2): 65−72 (in Chinese).

    Google Scholar

    [28] Wang Z, Wang L J, Shen J M, Nie Z L, Cao L, Meng L Q. 2024. Groundwater recharge via precipitation in the Badain Jaran Desert, China[J]. Journal of Groundwater Science and Engineering, 12(1): 109−118. doi: 10.26599/JGSE.2024.9280009

    CrossRef Google Scholar

    [29] Xia Jinwu, Zhu Meng. 2020. Study on tectonic characteristics and activity of middle section of Jinshajiang main fault zone[J]. Yangtze River, 51(5): 131−137 (in Chinese with English abstract).

    Google Scholar

    [30] Xu Mo, Mao Bangyan, Zhang Guangze, Kang Xiaobing, Qi Jihong, Li Xiao, Yi Lei, Yang Sifu. 2020. A preliminary study on correlation of atmospheric CO2 concentration and karst development in the eastern margin of Qing–Tibet plateau, China[J]. Journal of Chengdu University of Technology (Science & Technology Edition), 47(6): 724−732 (in Chinese with English abstract) .

    Google Scholar

    [31] Yang Zhihua, Wu Ruian, Guo Changbao, Zhang Yongshuang, Lan Hengxing, Ren Sanshao, Yan Yiqiu. 2022. Geo–hazard effects and typicallandslide characteristics of the Batang fault zone in the western Sichuan[J]. Geology in China, 49(2): 355−368 (in Chinese with English abstract).

    Google Scholar

    [32] Zhang C C, Hou X W, Li X Q, Wang Z X, Gui C L, Zuo X F, Ma J F, Gao M. 2020. Numerical simulation and environmental impact prediction of karst groundwater in Sangu Spring Basin, China[J]. Journal of Groundwater Science and Engineering, (30): 20−32.

    Google Scholar

    [33] Zhang Chunchao, Li Xiangquan, Ma Jianfei, Fu Changchang, Bai Zhanxue. 2021. Formation model of geothermal water in Chaya of Tibet: Perspective from hydrochemistry and stable isotopes[J]. Geoscience, 35(1): 199−208 (in Chinese with English abstract).

    Google Scholar

    [34] Zhang C C, Li X Q, Ma J F, Wang Z X, Hou X W. 2022. Stable isotope and hydrochemical evolution of shallow groundwater in mining area of the Changzhi Basin, northern China[J]. Environmental Earth Science, 81: 294. doi: 10.1007/s12665-022-10416-7

    CrossRef Google Scholar

    [35] Zhang Dian, Shi Changxing. 2002. CO2 partial pressure, karst dissolution rate and karst micro–landforms on the Qinghai–Tibet Plateau[J]. Acta Geologica Sinica, 76(4): 566−570 (in Chinese with English abstract) .

    Google Scholar

    [36] Zhang Ying, Liu Jingtao, Zhou Shiyang, Liu Chunyan, Yang Mingnan, Zhang Yuxi. 2024. Characteristics, controlling factors and effects on human health of groundwater chemical evolution in Wenzhou Plain, lower Oujiang River catchment[J]. Geology in China, 51(3): 1059−1073 (in Chinesewith English abstract).

    Google Scholar

    [37] Zhang Yongshuang, Guo Changbao, Li Xiangquan, Bi Junbo, Ma Jianfei, Liu Feng. 2021a. Key problems on hydro–engineering–environmental geology along the Sichuan–Tibet Railway corridor: Current status and development direction[J]. Hydrogeology & Engineering Geology, 48(5): 1−12 (in Chinese with English abstract).

    Google Scholar

    [38] Zhang Yongshuang, Du Guoliang, Guo Changbao, Li Xiangquan, Ren Sanshao, Wu Ruian. 2021b. Research on typical geomechanical model of high–position landslides on the Sichuan–Tibet traffic corridor[J]. Acta Geologica Sinica, 95(3): 605−617 (in Chinese with English abstract).

    Google Scholar

    [39] Zhang Yueqiao, Li Hailong. 2016. Late Cenozoic tectonic events in east Tibetan Plateau and extrusion–related orogenic system[J]. Geology in China, 43(6): 1829−1852 (in Chinese with English abstract).

    Google Scholar

    [40] Zhao L J, Yang Y, Cao J W, Wang Z, Luan S, Xia R Y. 2022. Applying a modified conduit flow process to understand conduit–matrix exchange of a karst aquifer[J]. China Geology, 5(1): 26−33.

    Google Scholar

    [41] Zhao Liangju, Ruan Yunfeng, Xiao Honglang, Zhou Maoxian, Cheng Guodong. 2014. Application of radioactive trituium isotope in studying water cycle of the Heihe river basin[J]. Quaternary Sciences, 34(5): 959−972 (in Chinese with English abstract).

    Google Scholar

    [42] Zhou Yinzhu, Ma Tao, Yuan Lei, Li Fucheng, Han Shuangbao, Zhou Jinlong, Li Yong. 2024. Hydrochemistry−isotope characteristics and qualityassessment of groundwater in the Beiluo River Basin, Shaanxi Province[J]. Geology in China, 51(2): 663−675 (in Chinese with English abstract).

    Google Scholar

    [43] 崔之久. 1979. 青藏高原的古岩溶[J]. 自然杂志, (9): 24−25.

    Google Scholar

    [44] 崔之久, 高全洲, 刘耕年, 潘保田, 陈怀录. 1996a. 夷平面、古岩溶与青藏高原隆升[J]. 中国科学(D), 26(4): 378−386.

    Google Scholar

    [45] 崔之久, 高全洲, 刘耕年, 潘保田, 陈怀录. 1996b. 青藏高原夷平面与岩溶时代及其起始高度[J]. 科学通报, 15(41): 1402−1406.

    Google Scholar

    [46] 崔之久, 刘耕年, 李德文, 刘耕年, 李洪江. 2001. 覆盖型岩溶, 风化壳与岩溶(双层)夷平面[J]. 中国科学: 地球科学, 31(6): 510−519.

    Google Scholar

    [47] 邓争荣, 吴树良, 杨友刚, 闵文, 雷世兵. 2012. 同位素方法在判定某水电站坝址河床承压水补给源中的应用[J]. 资源环境与工程, 26(5): 505−508. doi: 10.3969/j.issn.1671-1211.2012.05.021

    CrossRef Google Scholar

    [48] 高全洲, 崔之久, 刘耕年, 洪云, 伍永秋, 张叶春, 陈怀录. 2000. 青藏高原洞穴次生方解石的裂变径迹年代及地貌学意义[J]. 海洋地质与第四纪地质, 20(3): 61−65.

    Google Scholar

    [49] 高全洲, 陶贞, 崔之久, 刘耕年, 洪云. 2002. 青藏高原古岩溶的性质, 发育时代和环境特征[J]. 地理学报, 57(3): 267−274. doi: 10.3321/j.issn:0375-5444.2002.03.002

    CrossRef Google Scholar

    [50] 郭长宝, 吴瑞安, 蒋良文, 钟宁, 王炀, 王栋, 张永双, 杨志华, 孟文, 李雪, 刘贵. 2021. 川藏铁路雅安—林芝段典型地质灾害与工程地质问题[J]. 现代地质, 35(1): 1−17.

    Google Scholar

    [51] 蒋忠诚, 覃小群, 曹建华, 蒋小珍, 何师意, 罗为群. 2011. 中国岩溶作用产生的大气CO2碳汇的分区计算[J]. 中国岩溶, 30(4): 364−367. doi: 10.3969/j.issn.1001-4810.2011.04.002

    CrossRef Google Scholar

    [52] 蒋忠诚, 张晶, 黄超, 容悦冰, 吴亮君. 2019. 湘西地质公园岩溶峡谷群成因及其地学意义[J]. 中国岩溶, 38(2): 269−275.

    Google Scholar

    [53] 康小兵, 杨四福, 管振德, 张文发, 许模. 2021. 川西高原巴塘地区可溶岩地层分布与岩溶地貌发育特征[J]. 中国岩溶, 40(3): 381−388.

    Google Scholar

    [54] 李明月, 孙学军, 李胜楠, 张强弓. 2020. 青藏高原及其周边地区冰川融水径流无机水化学特征研究进展[J]. 冰川冻土, 42(2): 562−574.

    Google Scholar

    [55] 李维杰, 王建力, 王家录. 2018. 西南地区不同地形降水稳定同位素特征及其水汽来源[J]. 长江流域资源与环境. 27(5): 1132–1142.

    Google Scholar

    [56] 李向全, 马剑飞, 张春潮, 王振兴, 付昌昌, 白占学. 2021. 川藏铁路格聂山和察雅段构造岩溶发育规律及岩溶地下水循环模式研究[J]. 水文地质工程地质, 48(5): 34−45.

    Google Scholar

    [57] 罗文艺. 2019. 川藏铁路水–热灾害特征及典型段落水文地质选线探析[C]//川藏铁路工程建造技术研讨会.

    Google Scholar

    [58] 马剑飞, 付昌昌, 张春潮, 白占学. 2022. 康定北部高原构造岩溶发育特征与地下水径流带识别[J]. 地质科技通报, 41(1): 288−299.

    Google Scholar

    [59] 马剑飞, 李向全, 张春潮, 付昌昌, 白占学, 王振兴. 2021. 西藏波密冰川覆盖区大型河流与断裂带地下水转化关系[J]. 水文地质工程地质. 48(5): 23–33.

    Google Scholar

    [60] 潘桂棠, 肖庆辉, 张克信, 尹福光, 任飞, 彭智敏, 王嘉轩. 2019. 大陆中洋壳俯冲增生杂岩带特征与识别的重大科学意义[J]. 地球科学, 44(5): 1544−1561.

    Google Scholar

    [61] 王杜江. 2021. 藏东南某隧址区高原型岩溶发育特征及工程影响[J]. 隧道建设, 41(6): 996−1006. doi: 10.3973/j.issn.2096-4498.2021.06.012

    CrossRef Google Scholar

    [62] 王富葆. 1991. 青藏高原喀斯特的若干问题[J]. 山地研究, 9(2): 65−72.

    Google Scholar

    [63] 夏金梧, 朱萌. 2020. 金沙江主断裂带中段构造特征与活动性研究[J]. 人民长江, 51(5): 131−137.

    Google Scholar

    [64] 许模, 毛邦燕, 张广泽, 康小兵, 漆继红, 李潇, 易磊, 杨四福. 2020. 青藏高原东缘梯度带大气CO2含量与岩溶发育相关性初探[J]. 成都理工大学学报: 自然科学版, 47(6): 724−732.

    Google Scholar

    [65] 杨志华, 吴瑞安, 郭长宝, 张永双, 兰恒星, 任三绍, 闫怡秋. 2022. 川西巴塘断裂带地质灾害效应与典型滑坡发育特征[J]. 中国地质, 49(2): 355−368. doi: 10.12029/gc20220201

    CrossRef Google Scholar

    [66] 张春潮, 李向全, 马剑飞, 付昌昌, 白占学. 2021. 基于水化学及稳定同位素的西藏察雅地下热水成因研究[J]. 现代地质, 35(1): 199−208.

    Google Scholar

    [67] 张英, 刘景涛, 周施阳, 刘春燕, 杨明楠, 张玉玺. 2024. 瓯江流域下游温州平原地下水化学演化特征、控制因素及对人体健康的影响[J]. 中国地质, 51(3): 1059−1073 doi: 10.12029/gc20230911002

    CrossRef Google Scholar

    [68] 张永双, 郭长宝, 李向全, 毕俊擘, 马剑飞, 刘峰. 2021a. 川藏铁路廊道关键水工环地质问题: 现状与发展方向[J]. 水文地质工程地质, 48(5): 1−12.

    Google Scholar

    [69] 张永双, 杜国梁, 郭长宝, 李向全, 任三绍, 吴瑞安. 2021b. 川藏交通廊道典型高位滑坡地质力学模式[J]. 地质学报, 95(3): 605−617.

    Google Scholar

    [70] 张岳桥, 李海龙. 2016. 青藏高原东部晚新生代重大构造事件与挤出造山构造体系[J]. 中国地质, 43(6): 1829−1852. doi: 10.12029/gc20160601

    CrossRef Google Scholar

    [71] 章典, 师长兴. 2002. 青藏高原的大气CO2含量、岩溶溶蚀速率及现代岩溶微地貌[J]. 地质学报, 76(4): 566−570. doi: 10.3321/j.issn:0001-5717.2002.04.013

    CrossRef Google Scholar

    [72] 赵良菊, 阮云峰, 肖洪浪, 周茅先, 程国栋. 2014. 氚同位素在黑河流域水循环研究中的应用[J]. 第四纪研究, 34(5): 959−972. doi: 10.3969/j.issn.1001-7410.2014.05.06

    CrossRef Google Scholar

    [73] 周殷竹, 马涛, 袁磊, 李甫成, 韩双宝, 周金龙, 李勇. 2024. 陕西北洛河流域地下水水化学和同位素特征及其水质评价[J]. 中国地质, 51(2): 663−675. doi: 10.12029/gc20220401003

    CrossRef Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(12)

Tables(6)

Article Metrics

Article views(76) PDF downloads(7) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint