2023 Vol. 50, No. 6
Article Contents

GUO Jing, TANG Fawei, GUAN Hui, ZHAO Haihua, ZHAO Xiaoyun, DANZENG Guojie, DU Bingrui. 2023. Structure-thermal coupling model of the high temperature geothermal system in Rujiao on the Xizang Plateau[J]. Geology in China, 50(6): 1621-1631. doi: 10.12029/gc20220323004
Citation: GUO Jing, TANG Fawei, GUAN Hui, ZHAO Haihua, ZHAO Xiaoyun, DANZENG Guojie, DU Bingrui. 2023. Structure-thermal coupling model of the high temperature geothermal system in Rujiao on the Xizang Plateau[J]. Geology in China, 50(6): 1621-1631. doi: 10.12029/gc20220323004

Structure-thermal coupling model of the high temperature geothermal system in Rujiao on the Xizang Plateau

    Fund Project: Supported by the applied basic research project of Sichuan Science and Technology Program (No.2019YJ0269); the project of China Geological Survey (No.DD20190033) and the project of Xizang Natural Resources Department (No.54000021210200001054)
More Information
  • Author Bio: GUO Jing, male, born in 1985, master, senior engineer, engaged in geophysical exploration of metallic minerals and geothermal; E-mail: 313756811@qq.com
  • Corresponding author: TANG Fawei, male, born in 1979, senior engineer, engaged in geochemical exploration of mineral resources; E-mail: 37205958@qq.com 
  • This paper is the result of geothermal survey engineering.

    Objective

    There are two reasons for the formation of surface thermal anomaly: abnormal heat source and abnormal heat transfer mode. The coexistence of "Thick Crust" and "Hot Crust" is the biggest difference between the high temperature geothermal system on the Xizang Plateau and the common convergent plate margin geothermal system.Partial melting (Hotsource) is an abnormal heat source in the "HotCrust", and fracture system (Structure) is a convective heat transfer channel in the "Thick Crust". Clearly depicting the spatial relationship between the two and exploring the structural-thermal coupling model of heat generation may be an important approach to improving the characteristic heat generation theory of the Xizang Plateau under the coexistence of a "Thick crust" and a "Hot crust".

    Methods

    This study takes the Rujiao Boiling Spring in Saga County as an example, and uses magnetotelluric sounding and audio magnetotelluric sounding.

    Results

    To explore the spatial relationship between the fault system and partial melting; we combined with previous studies on geophysics, geochemistry and fluid dynamics, established Rujiao boiling spring structure-thermal couplingthermal model; and set up two production wells with the intersection of the fault system as the target.

    Conclusion

    The Rujiao tectonic-thermal coupled model of heat generation has universal applicability, which is of great significance for improving the formation theory of characteristic heat in the Xizang Plateau and enhancing the success rate of geothermal exploration.

  • 加载中
  • Aggarwal J K, Sheppard D, Mezger K, Pernicka E. 2003. Precise and accurate determination of boron isotope ratios by multiple collector ICP-MS: Origin of boron in the Ngawha geothermal system, New Zealand[J]. Chemical Geology, 199: 331-342. doi: 10.1016/S0009-2541(03)00127-X

    CrossRef Google Scholar

    Bai Jiaqi, Mei Lin, Yang Meiling. 2006. Geothemal resources and crustal thermal strcture of the Qinghai-Tibet Plateau[J]. Journal of Geomechanics, 12(3): 354-362(in Chinese with English abstract).

    Google Scholar

    Beaumont C, Jamieson R A, Nguyen M H, Lee B. 2001. Himalayan tectonics explained by extrusion of a low-viscosity crustal channel couled to focused surface denudation[J]. Nature, 414: 738-742. doi: 10.1038/414738a

    CrossRef Google Scholar

    Beaumont C, Jamieson R A, Nguyen M H, Medvedev S. 2004. Crustal channel flows: 1. Numerical models with applications to the tectonics of the Himalayan- Tibetan orogen[J]. Journal of Geophysical Research, 109: B06406.

    Google Scholar

    Beck R A, Burbank D W, Sercombe W J, Riley G W, Barndt J K, Berry J R, Afzal J, Khan A M, Jurgen H, Metje J, Cheema A, Shafique N A, Lawrence R D, Khan M A. 1995. Stratigraphic evidence for an Early Collision betweenNorthwest India and Asia[J]. Nature, 373: 55-58. doi: 10.1038/373055a0

    CrossRef Google Scholar

    Bibby H M, Caldwell T G, Davey F J, Webb T H. 1995. Geophysical evidence on the structure of the Taupovolcanic zone and its hydrothermal circulation[J]. Journal of Volcanology and Geothermal Research, 68: 29-58. doi: 10.1016/0377-0273(95)00007-H

    CrossRef Google Scholar

    Blisniuk P M, Hacker B R, Glodny J, Ratschbacher L, Bi S, Wu Z, McWilliams M O, Calvert A. 2001. Normal faulting in central Tibetsince at least 13.5 Myrago[J]. Nature, 412(6847): 628-632. doi: 10.1038/35088045

    CrossRef Google Scholar

    Brown L D, Zhao W, Nelson K D, Hauck M, Alsdorf D, Ross A, Cogan M, Clark M, Liu X, Che J. 1996. Bright spots, structure, and magmatism in southern Xizang from INDEPTH seismic reflection profiling[J]. Science, 274: 1688-1690. doi: 10.1126/science.274.5293.1688

    CrossRef Google Scholar

    Chen Kezao, Yang Shaoxiu, Zheng Xiyu. 1981. The salt lakes on the Qinghai-Xizang Plateau[J]. Acta Geographica Sinica, 36: 13-21 (in Chinese with English abstract).

    Google Scholar

    Constable S C, Parker R L, Constable C G. 1987. Occam'sinversion: A practical algorithm for generating smooth models from electromagnetic sounding data[J]. Geophysics, 52(3): 289-300. doi: 10.1190/1.1442303

    CrossRef Google Scholar

    Cox S F. 2005. Coupling between deformation, fluid pressures, and fluid flow in ore-producing hydrothermal systems at depth in the crust[J]. Economic Geology 100th Anniversary Volume: 39-75.

    Google Scholar

    Curewitz D, Karson J A. 1997. Structural settings of hydrothermal outflow: Fracture permeability maintained by fault propagation and interaction[J]. Journal of Volcanology and Geothermal Research, 79(3): 149-168.

    Google Scholar

    Dor Ji, Zeng Yi, Jiao Xingyi, Jiao Yong. 2007. Review and consideration of geothermal power generation in Xizang[J]. Development and Protection of Geothermal Resources in China, 36-39(in Chinese).

    Google Scholar

    Egbert J, Samuel S, James F, Chambefort I, Axelsson G, Gutiérrez-Negrín L C, Regenspurg S, Ziegler M, Ayling B, Richter A, Zemedkun M T. 2021. Geological controls on geothermal resources for power generation[J]. Nature Reviews Earth & Environment, 2: 324-339.

    Google Scholar

    Guo J, Li W, Jiao Y, Liang S. 2019. Tectonic ‒ thermal coupling metallogenic models of Tethys Himalaya Pb ‒ Zn ‒ Sb ‒ Au belt in post-collisional stage[J]. Geotectonics, 53(2): 260-270. doi: 10.1134/S0016852119020043

    CrossRef Google Scholar

    Guo Jing, Xia Shibin. 2022. Spatial Carrier of Geothermal System in Eastern Sichuan Fold ZoneInterconnected Fault System: Taking the geothermal well in Moujia Town, Guang'an, Sichuan as an example[J]. Sedimentary Geology and Tethyan Geology, 42(4): 642-652(in Chinese).

    Google Scholar

    He Zhiliang, Feng Jianyun, Zhang Ying, Li Pengwei. 2017. A tentative discussion on an evaluation system of geothermal unit ranking and classification in China[J]. Earth Science Frontiers, 24(3): 168-179 (in Chinese with English abstract).

    Google Scholar

    Hodges K V. 2000. Tectonics of the Himalaya and southern Xizang from two perspectives[J]. Geological Society of America Bulletin, 112: 324-350. doi: 10.1130/0016-7606(2000)112<324:TOTHAS>2.0.CO;2

    CrossRef Google Scholar

    Hou Zengqian, Mo Xuanxue, Yang Zhiming, Wang Anjian, Pan Guitang, Qu Xiaoming, Nie Fengjun. 2006. Metallogeneses in the collisional orogeny of the Qinghai-Tibet Plateau: Tectonic setting, tempo- spatial distribution and ore deposit types[J]. Geology in China, 33(2): 340-351(in Chinese with English abstract).

    Google Scholar

    Jamieson R A, Beaumont C, Medvedev S, Nguyen M H. 2004. Crustal channel flows: 2. Numerical models with implications for metamorphism in the Himalayan- Tibetan orogen[J]. Journal of Geophysical Research, 109: B06407.

    Google Scholar

    Jamieson R A, Beaumont C, Nguyen M H, Grujic D. 2006. Provenance of the Greater Himalayan Sequence and associated rocks: Predictions of channel flow models[J]. Geological Society of London, Special Publications, 268(1): 165-182. doi: 10.1144/GSL.SP.2006.268.01.07

    CrossRef Google Scholar

    Lee J, Whitehouse M J. 2007. Onset of mid-crustal extensional flow in southern Xizang: Evidence from U/Pb zircon ages[J]. Geology, 35(1): 45-48. doi: 10.1130/G22842A.1

    CrossRef Google Scholar

    Li Zhenqing. 2002. Present Hydrothermal Activities During Collisional Orogenics of the Tibetan Plateau[D]. Beijing: Chinese Academy of Geological Sciences, 1-89(in Chinese with English abstract).

    Google Scholar

    Li Zhenqing, Hou Zengqian, Nie Fengjun, Meng Xiangjin. 2005. Characteristic and distribution of the Partial Melting Layers in the upper crust evidence from active hydrothermal fluid in the South Tibet[J]. Acta Geologica Sinica, 79(1): 68-77(in Chinese with English abstract). doi: 10.3321/j.issn:0001-5717.2005.01.008

    CrossRef Google Scholar

    Liang Wei. 2014. Metallogenesis of Au-Sb-Pb-Zn mineralization in Tethys Himalaya Belt, South Tibet, China[D]. Beijing: China University of Geosciences (Beijing), 1-151 (in Chinese with English abstract).

    Google Scholar

    Liao Zhijie, Wu Fangzhi. 2010. The development of Xizang geothermal power and low-carbon energy has great prospects[J]. China Geothermal Energy - Achievements and Prospects, 74-83 (in Chinese).

    Google Scholar

    Lin Wenjing, Liu Zhiming, Wang Wanling, Wang Guiling. 2013. The assessment of geothermal resources potential of China[J]. Geology in China, 40(1): 312-321(in Chinese with English abstract).

    Google Scholar

    Liu Mingliang. 2018. Boron Geochemistry of the Geothermal Waters From Typical Hydrothermal Systems in Tibet[D]. Wuhan: China University of Geosciences, 1-109(in Chinese with English abstract).

    Google Scholar

    Lü Yuangyuan, Xu Ronghua, Zhao Ping, Xie Liewen, Li He. 2008. Determination of boron isotope ratios in aqueous samples by multiple collector ICP-MS[J]. Geochimica, 37(1): 1-8(in Chinese with English abstract).

    Google Scholar

    Lü Yuanyuan, Zhao Ping, Xu Ronghua, Xie Liewen. 2012. Geochemical study on boron isotopes in the Yangbajing geothermal field, Tibet[J]. Chinese Journal of Geology, 47(1): 251-264(in Chinese with English abstract).

    Google Scholar

    Lü Yuangyuan, Zheng Mianping, Zhao Ping, Xu Ronghua. 2014. Geochemical processes and origin of boron isotopes in geothermal water in the Yunnan- Tibet geothermal lzone[J]. Science China: Earth Sciences, 44(9): 1968-1979(in Chinese with English abstract).

    Google Scholar

    Makovsky Y, Klemperer S L. 1999. Measuring the seismic properties of Xizangan bright spots: Evidence for free aqueous fluids in the Xizanganmiddle crust[J]. Journal of Geophysical Research, 104: 10795-10825 doi: 10.1029/1998JB900074

    CrossRef Google Scholar

    Nelson K D, Zhao W, Brown L D, Kuo J, Che J, Liu X, Klemperer S L, Makovsky Y, Meissner R, Mechie J, Kind R, Wenzel F, Ni J, Nabelek J, Chen L, Tan H, Wei W, Jones A G, Booker J, Unsworth M, Kidd W S F, Hauck M, Alsdorf D, Ross A, Cogan M, Wu C, Sandvol E, Edwards M. 1996. Partially molten middle crust beneath southern Xizang: Synthesis of Project INDEPTH results[J]. Science, 274: 1684-1688. doi: 10.1126/science.274.5293.1684

    CrossRef Google Scholar

    Rodi W L, MacKie R L. 2001. Nonlinear conjugate gradients algorithm for 2-Dmagnetotelluric inversion[J]. Geophysics, 66(1): 174-187. doi: 10.1190/1.1444893

    CrossRef Google Scholar

    Searle M P, Khan M A, Fraser J E, Gough S J, Jan M Q. 1999. The tectonic evolution of the Kohistan-Karakoram collision belt along the Karakoram highway transect, North Pakistan[J]. Tectonics, 18(6): 929-949. doi: 10.1029/1999TC900042

    CrossRef Google Scholar

    Shen Xianjie, Zhang Wenren, Yang Shuzhen, Guan Ye, Jin Xu. 1990. Heat flow evidence for the differentiated crust- mantle thermal structures of the northern and southern terranes of the Qinghai-Xizang Plateau[J]. Bulletin of the Chinese Academy of Geological Sciences, 21: 203-214(in Chinese with English abstract).

    Google Scholar

    Smith J T, Booker J R. 1991. Rapid inversion of two and three-dimensional magnetotelluric data[J]. Journal of Geophysical Research: Solid Earth, 96(B3): 3905-3922. doi: 10.1029/90JB02416

    CrossRef Google Scholar

    Spivack A J, Edmond J M. 1986. Determination of boron isotope ratios by thermal ionization mass spectrometry of the dicesium metaborate cation[J]. Analytical Chemistry, 58: 31-35 doi: 10.1021/ac00292a010

    CrossRef Google Scholar

    Tong W, Zhang J. 1981. Characteristics of geothermal activities in Xizang Plateau and their controlling influence on Plateau's tectonic model[C]//Gordon B. Geological and Ecological Studies of the Qinghai-Xizang Plateau. 841-846.

    Google Scholar

    Tong Wei, Zhang Zhifei, Zhang Mingtao, Liao Zhijie, You Maozheng, Zhu Meixiang, Guo Guoying, Liu Shibin. 1978. The Himalayan geothermal belt[J]. Journal of Peking University, 76-89(in Chinese with English abstract).

    Google Scholar

    Wang Jiaying. 1992. Problem about static correction in magnetotellurics[J]. Geological Science and Technology Information, 11(1): 69-76(in Chinese with English abstract).

    Google Scholar

    Wang Siqi. 2017. Hydrogeochemical Processes and Genesis Machenism of High- temperature Geothermal System in Gudui, Tibet[D]. Beijing: China University of Geosciences (Beijing), 1-107 (in Chinese with English abstract).

    Google Scholar

    Wang Shaoting, Chen Xinmin. 1999. Present status and development of geothermal power generation and geothermal resources in Xizang[J]. Electric Power, 32(10): 79-82(in Chinese with English abstract).

    Google Scholar

    Wang Y, Guo C, Chen X, Jia L, Guo X, Chen R. 2021. Carbon peak and carbon neutrality in China: Goals, implementation path and prospects[J]. China Geology, 4(4): 720-746.

    Google Scholar

    Wang Y, Gu H, Li D, Lyu M, Lu L, Zuo Y, Song R. 2021. Hydrochemical characteristics and genesis analysis of geothermalfluid in the Zhaxikang geothermal field in Cuona County, southern Tibet[J]. Environmental Earth Sciences, 80: 415. doi: 10.1007/s12665-021-09577-8

    CrossRef Google Scholar

    Wei W, Unsworth M, Jones A, Booker J, Tan H D, Nelson D, Chen L, Li S, Solon K, Bedrosian P, Jin S, Deng M, Ledo J, Kay D, Roberts B. 2001. Detection of widespread fluids in the Tibetan crust by magnetotelluric studies[J]. Science, 292: 716-718. doi: 10.1126/science.1010580

    CrossRef Google Scholar

    Wei Wenbo, Jin Shen, Ye Gaofeng, Deng Ming, Jing Jianen, Unsworth M. 2009. Conductivity structure and rheological property of lithosphere in Southern Tibet inferred from super- broadband magmetotulleric sounding[J]. Science China- Earth Sciences, 39 (11): 1591-1606(in Chinese with English abstract).

    Google Scholar

    Williams H, Turner S, Kelley S, Harris N. 2001. Age and composition of dikes in southern Xizang: New constraints on the timing of east-west extension and its relationship to postcollisional volcanism[J]. Geology, 29: 339-342.

    Google Scholar

    Wu Lili, Ma Wenzhan, Tang Yuan. 1984. On the water- chemical properties and formative conditions of high- boron brine in Qinghai- Xizang Plateau[J]. Geographical Research, (3): 1-11(in Chinese with English abstract).

    Google Scholar

    Xu Zhiqin, Yang Jingsui, Li Haibing, Zhang Jianxin, Zeng Lingsen, Jiang Mei. 2006. The Qinghai- Tibet Plateau and continental dynamics: A review on terrain tectonics, collisional orogenesis, and processes and mechanisms for the rise of the plateau[J]. Geology in China, 33(2): 221-238(in Chinese with English abstract).

    Google Scholar

    Yin A, Kapp P A, Murphy M A, Manning C E, Harrison T M, Grove M, Ding L, Deng X, Wu C. 1999. Significant Late Neogene east-west extension in northern Tibet[J]. Geology, 27(9): 787-790. doi: 10.1130/0091-7613(1999)027<0787:SLNEWE>2.3.CO;2

    CrossRef Google Scholar

    Yu Shengsong, Tang Yuan. 1981. The hydrochemical characteristics of the saline lakes on the Qinghai-Xizang Palteau[J]. Oceanologiaet Limnologia Sinica, (6): 498-511(in Chinese with English abstract).

    Google Scholar

    Yuan J F, Guo Q H, Wang Y X. 2014. Geochemical behaviors of boron and its isotopes in aqueous environmentof the Yangbajing and Yangyi geothermal fields, Xizang, China[J]. Journal of Geochemical Exploration, 140: 11-22. doi: 10.1016/j.gexplo.2014.01.006

    CrossRef Google Scholar

    Zeng L, Gao L, Xie K, Zeng L. 2011. Mid-Eocene high Sr/Y granites in the Northern Himalayan gneiss domes: Melting thickened lower continental crust[J]. Earth and Planet Science Letters, 303(3/4): 251-266.

    Google Scholar

    Zhang Chaofeng, Shi Qianglin, Zhang Lingjuan. 2018. Discussion on the relationship between Cenozoic magmatic activityand geotherm in Tibetan Plateau[J]. Geological Survey of China, 5(2): 18-24(in Chinese with English abstract).

    Google Scholar

    Zhang Eryong, Wen Dongguang, Wang Guiling, Yan Weide, Wang Wenshi, Ye Chengming, Li Xufeng, Wang Huang, Tang Xianchun, Weng Wei, Li Kuan, Zhang Chongyuan, Liang Mingxing, Luo Hongbao, Hu Hanyue, Zhang Wei, Zhang Senqi, Jin Xianpeng, Wu Haidong, Zhang Linyou, Feng Qingda, Xie Jingyu, Wang Dan, He Yunchao, Wang Yuewei, Chen Zubin, Cheng Zhengpu, Luo Weifeng, Yang Yi, Zhang Hao, Zha Enlai, Gong Yulie, Yu Zheng, Jiang Changsheng, Zhang Shengsheng, Niu Xue, Zhang Hui, Hu Lisha, Zhu Guilin, Xu Wenhao, Niu Zhaoxuan, Li Yang. 2022. The first power generation test of hot dry rock resources exploration and production demonstration project in the Gonghe Basin, Qinghai Province, China[J]. China Geology, 5: 372-382. doi: 10.31035/cg2022038

    CrossRef Google Scholar

    Zhang Jinjiang, Wang Jiamin, Wang Xiaoxian, Zhang Bo. 2013. A new model for the Himalayan orogeny[J]. Chinese Journal of Geology, 48(2): 362-383(in Chinese with English abstract).

    Google Scholar

    Zhao Ping, Xie Ejun, Dor Ji, Jin Jian, Hu Xiancai, Du Shaoping, Yao Zhonghua. 2002. Geochemical characteristics of geothermal gases and their geological implications in Tibet[J]. Acta Petrologica Sinica, 18(4): 539-550(in Chinese with English abstract).

    Google Scholar

    Zhao Wenjin, INDEPTH Project Team. 2001. Study on the Deep Structure and Structure of Himalayas and the Yarlung Zangbo River Suture Zone[M]. Beijing: Geological Publishing House (in Chinese).

    Google Scholar

    Zhao Z, Li C, Ma X. 2021. How does the elevation changing response to crustal thickening process in the central Xizangan Plateau since 120 Ma?[J]. China Geology, 4(1): 32-43. doi: 10.31035/cg2021013

    CrossRef Google Scholar

    Zheng Mianping, Liu Wengao, Xiang Jun, Jiang Zhongti. 1983. On saline lakes in Tibet, China[J]. Acta Geologica Sinica, (2): 184-194(in Chinese with English abstract).

    Google Scholar

    白嘉启, 梅琳, 杨美玲. 2006. 青藏高原地热资源与地壳热结构[J]. 地质力学学报, 12(3): 354-362.

    Google Scholar

    陈克造, 杨绍修, 郑喜玉. 1981. 青藏高原的盐湖[J]. 地理学报, 36(1): 13-21

    Google Scholar

    多吉, 曾毅, 焦兴义, 焦勇. 2007. 西藏地热发电的回顾与思考[J]. 中国地热资源开发与保护, 36-39.

    Google Scholar

    郭镜, 夏时斌. 2022. 川东褶皱带地热系统的空间载体——相互连通的断裂系统: 以四川广安牟家镇地热井为例[J]. 沉积与特提斯地质, 42(4): 642-652.

    Google Scholar

    何治亮, 冯建赟, 张英, 李朋威, 2017. 试论中国地热单元分级分类评价体系[J]. 地学前缘, 24(3): 168-179.

    Google Scholar

    候增谦, 莫宣学, 杨志明, 王安建, 潘桂堂, 曲晓明, 聂凤军. 2006. 青藏高原碰撞造山带成矿作用: 构造背景、时空分布和主要类型[J]. 中国地质, 33(2): 340-351.

    Google Scholar

    李振清. 2002. 青藏高原碰撞造山过程中的现代热水活动[D]. 北京: 中国地质科学院, 1-89.

    Google Scholar

    李振清, 候增谦, 聂凤军, 孟祥金. 2005. 藏南上地壳低速高导层的性质与分布: 来自热水流体活动的证据[J]. 地质学报, 79(1): 68-77.

    Google Scholar

    梁维. 2014. 特提斯喜马拉雅金锑铅锌成矿带成矿作用研究[D]. 北京: 中国地质大学(北京), 1-151.

    Google Scholar

    廖志杰, 吴方之. 2010. 发展西藏地热电力低碳能源大有可为[J]. 中国地热能: 成就与展望, 74-83.

    Google Scholar

    蔺文静, 刘志明, 王婉玲, 王贵玲. 2013. 中国地热资源及其潜力评估[J]. 中国地质, 40(1): 312-321.

    Google Scholar

    刘明亮. 2018. 西藏典型高温水热系统中硼的地球化学研究[D]. 武汉: 中国地质大学, 1-109.

    Google Scholar

    吕苑苑, 许荣华, 赵平, 谢列文, 李禾. 2008. 利用MC-ICP-MS对水样中硼同位素比值的测定[J]. 地球化学, 37(1): 1-8.

    Google Scholar

    吕苑苑, 赵平, 许荣华, 谢列文. 2012. 西藏羊八井地热田硼同位素地球化学特征初步研究[J]. 地质科学, 47(1): 251-264.

    Google Scholar

    吕苑苑, 郑绵平, 赵平, 许荣华. 2014. 滇藏地热带地热水硼同位素地球化学过程及其物源示踪[J]. 中国科学: 地球科学, 44(9): 1968-1979.

    Google Scholar

    沈显杰, 张文仁, 杨淑贞, 管烨, 金旭. 1990. 青藏高原南北地体壳幔热结构差异的大地热流证据[J]. 中国地质科学院院报, (2): 203-214.

    Google Scholar

    佟伟, 张知非, 章铭陶, 廖志杰, 由懋正, 朱梅湘, 过国颖, 刘时彬. 1978. 喜马拉雅地热带[J]. 北京大学学报, (1): 76-89.

    Google Scholar

    王家映. 1992. 关于大地电磁的静校正问题[J]. 地质科技情报, 11(1): 69-76.

    Google Scholar

    王思琪. 2017. 西藏古堆高温地热系统水文地球化学过程与形成机理[D]. 北京: 中国地质大学(北京), 1-107.

    Google Scholar

    王绍亭, 陈新民. 1999. 西藏地热资源及地热发电的现状与发展[J]. 中国电力, 32(10): 79-82.

    Google Scholar

    魏文博, 金胜, 叶高峰, 邓明, 景建恩, Unsworth M. 2009. 藏南岩石圈导电性结构与流变性-超宽频带大地电磁测深研究结果[J]. 中国科学(D辑), 39(11): 1591-1606.

    Google Scholar

    吴俐俐, 马文展, 唐渊. 1984. 青藏高原高硼卤水的水化学特征及其成因[J]. 地理研究, (4): 1-11.

    Google Scholar

    许志琴, 杨经绥, 李海兵, 张建新, 曾令森, 姜枚. 2006. 青藏高原与大陆动力学——地体拼合、碰撞造山及高原隆升的深部驱动力[J]. 中国地质, 33(2): 221-238.

    Google Scholar

    于昇松, 唐渊. 1981. 青藏高原盐湖的水化学特征[J]. 海洋与湖沼, (6): 498-511.

    Google Scholar

    张朝锋, 史强林, 张玲娟. 2018. 青藏高原新生代岩浆活动与地热关系探讨[J]. 中国地质调查, 5(2): 18-24.

    Google Scholar

    张进江, 王佳敏, 王晓先, 张波. 2013. 喜马拉雅造山带造山模式探讨[J]. 地质科学, 48(2): 362-383.

    Google Scholar

    赵平, 谢鄂军, 多吉, 金建, 胡先才, 杜少平, 姚中华. 2002. 西藏地热气体的地球化学特征及其地质意义[J]. 岩石学报, 18(4): 539-550.

    Google Scholar

    赵文津, INDEPTH项目组. 2001. 喜马拉雅山及雅鲁藏布江缝合带深部结构与构造研究[M]. 北京: 地质出版社.

    Google Scholar

    郑绵平, 刘文高, 向军, 蒋忠惕. 1983. 论西藏的盐湖[J]. 地质学报, (2): 184-194.

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(6)

Article Metrics

Article views(1429) PDF downloads(64) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint