2022 Vol. 49, No. 3
Article Contents

ZHANG Yixuan, BAI Chenyang, LIU Yujia, YANG Hailin, LIVIO Ruffine, LAI Yong, LU Hailong. 2022. Sedimentary characteristics of the northern continental slope of the Danube Canyon in the northwest of the Black Sea and its relation with paleoclimate changes[J]. Geology in China, 49(3): 880-900. doi: 10.12029/gc20220314
Citation: ZHANG Yixuan, BAI Chenyang, LIU Yujia, YANG Hailin, LIVIO Ruffine, LAI Yong, LU Hailong. 2022. Sedimentary characteristics of the northern continental slope of the Danube Canyon in the northwest of the Black Sea and its relation with paleoclimate changes[J]. Geology in China, 49(3): 880-900. doi: 10.12029/gc20220314

Sedimentary characteristics of the northern continental slope of the Danube Canyon in the northwest of the Black Sea and its relation with paleoclimate changes

    Fund Project: Supported by program of Marine Geological Survey (No.DD20190234)
More Information
  • Author Bio: ZHANG Yixuan, female, born in 1996, master, mainly engaged in the study of marine sedimentary geology; E-mail: zhyixuan@pku.edu.cn
  • Corresponding author: LU Hailong, male, born in 1964, professor, mainly engaged in the study of gas hydrate; E-mail: hlu@pku.edu.cn
  • This paper is the result of environmental geological survey engineering.

    Objective

    In the last glacial period, global climate was characterized by rapid, large-scale temperature cycles on a millennial scale. Such climate changes could be recorded in many geological materials such as ice cores, deep-sea sediments, Chinese loess, and cave stalagmites. The Black Sea is located in the transition zone between the North Atlantic and East Asian monsoon regions and has formed representative sedimentary records. This article is aimed at establishing the connections between the regional environmental changes of the Black Sea and the climate changes in the North Atlantic and East Asian monsoon area through the study of the sedimentary sequences of the Black Sea.

    Methods

    In this study, a 22.0 m core sample taken from Core GAS-CS12 in the northern slope of the Danube Canyon in the northwest of the Black Sea was analyzed for particle size, mineral composition, major elements, organic carbon, total nitrogen, and carbon and nitrogen isotopes.

    Results

    It was revealed that the core sediments of this section were deposited in the"Neoeuxine"lacustrine stage in the middle and late period of the last glacial period, and can be divided into 5 sedimentary units, corresponding to H4, H3, and H1 climate change events in the North Atlantic, the Last Glacial Maximum (LGM), and Bolling- Allerod climate warming event.

    Conclusions

    The connections between the sedimentary sequences and regional environmental changes of the Black Sea with the climate changes in the North Atlantic and East Asian monsoon area were established and this paper also confirmed that the millennium-scale climate changes of the last glacial period were highly consistent in the North Atlantic, East Asian monsoon area and their transition zones.

  • 加载中
  • Alley R B. 2007. Wally was right: Predictive ability of the North Atlantic "Conveyor Belt" hypothesis for abrupt climate change[J]. Earth & Planetary Sciences, 35(1): 241-272.

    Google Scholar

    Anders S, Andersen K K, Bigler M, Clausen H B, Dahl-Jensen D, Davies S M, Johnsen S J, Muscheler R, Rasmussen S O, Röthlisberger R, Steffensen J P, Vinther B M. 2006. The Greenland Ice Core Chronology 2005, 15-42 ka. Part 2: Comparison to other records[J]. Quaternary Science Reviews, 25(23/24): 3258-3267.

    Google Scholar

    Atanassova J, Bozilova E. 1992. Palynological investigation of marine sediments from the western sector of the Black Sea[J]. Oceanology, 1: 97-103.

    Google Scholar

    Augley J, Huxham M, Fernandes T F, Lyndon A R, Bury S. 2007. Carbon stable isotopes in estuarine sediments and their utility as migration markers for nursery studies in the Firth of Forth and Forth Estuary Scotland[J]. Estuarine, Coastal and Shelf Science, 72(4): 648-656. doi: 10.1016/j.ecss.2006.11.024

    CrossRef Google Scholar

    Badertscher S, Fleitmann D, Cheng H, Edwards R L, Göktürk O M, Zumbühl A, Leuenberger M, Tüysüz O. 2011. Pleistocene water intrusions from the Mediterranean and Caspian seas into the Black Sea[J]. Nature Geoscience, 4: 236-239. doi: 10.1038/ngeo1106

    CrossRef Google Scholar

    Bahr A, Lamy F, Arz H W, Kuhlmann H, Wefer G. 2005. Late glacial to Holocene climate and sedimentation history in the NW Black Sea[J]. Marine Geology, 214: 309-322. doi: 10.1016/j.margeo.2004.11.013

    CrossRef Google Scholar

    Bahr A, Lamy F, Arzb H, Kuhlmann H, Wefer G. 2005. Late glacial to Holocene climate and sedimentation history in the NW Black Sea[J]. Marine Geology, 214: 309-322. doi: 10.1016/j.margeo.2004.11.013

    CrossRef Google Scholar

    Berger A, Loutre M F. 1991. Insolation values for the climate of the last 10 million of years[J]. Quaternary Science Reviews, 10(4): 297-317. doi: 10.1016/0277-3791(91)90033-Q

    CrossRef Google Scholar

    Bond G, Broecker W, Johnson S, McManus J. 1993. Correlations between climate records from North Atlantic sediments and Greenland ice[J]. Nature, 365(6442): 143-147. doi: 10.1038/365143a0

    CrossRef Google Scholar

    Böttcher M E, Voss M, Schulz-Bull D, Schneider R, Leipe T, Knöller K. 2010. Environmental changes in the Pearl River Estuary (China) as reflected by light stable isotopes and organic contaminants[J]. Journal of Marine Systems, 82: 43-53. doi: 10.1016/j.jmarsys.2010.02.004

    CrossRef Google Scholar

    Boutton T W. 1991. Stable carbon isotope ratios of natural materials: II. Atmospheric, terrestrial, marine, and freshwater environments[J]. Carbon Isotopes Techniques, 173-185.

    Google Scholar

    Boyle E A. 2000. Is ocean thermohaline circulation linked to abrupt stadial/interstadial transitions[J]. Quaternary Science Reviews, 19(1-5): 255-272. doi: 10.1016/S0277-3791(99)00065-7

    CrossRef Google Scholar

    Bronk R C. 2009. Bayesian analysis of radiocarbon dates[J]. Radiocarbon, 51(1): 337-360. doi: 10.1017/S0033822200033865

    CrossRef Google Scholar

    Chen M T, Wang C H, Huang C Y, Wang P, Wang L, Sarnthein M. 1999. A late Quaternary planktonic foraminifer faunal record of rapid climatic changes from the South China Sea[J]. Marine Geology, 156: 85-108. doi: 10.1016/S0025-3227(98)00174-1

    CrossRef Google Scholar

    Chen S, Wang Y, Cheng H, Edwards R L, Wang X F, Kong X G, Liu D B. 2016. Strong coupling of Asian Monsoon and Antarctic climates on suborbital timescales[J]. Scientific Reports, 6: 32995. doi: 10.1038/srep32995

    CrossRef Google Scholar

    Chmura G L, Aharon P. 1995. Stable carbon isotope signatures of sedimentary carbon in coastal wetlands as indicators of salinity regime[J]. Journal of Coastal Research, 11(1): 124-135.

    Google Scholar

    Clark P U, Webb R S, Keigwin L D. 1999. Mechanisms of global climate change at millennial time scales[J]. Geophysical Monograph Series, 112: 394.

    Google Scholar

    Constantinescu A M, Toucanne S, Dennielou B, Jorry S J, Mulder T, Lericolais G. 2015. Evolution of the Danube Deep-Sea Fan since the Last Glacial Maximum: New insights into Black Sea water-level fluctuations[J]. Marine Geology, 367: 50-68. doi: 10.1016/j.margeo.2015.05.007

    CrossRef Google Scholar

    Contreras S, Werne J P, Araneda A, Urrutia R, Conejero C A. 2018. Organic matter geochemical signatures (TOC, TN, C/N ratio, δ13C and δ15N) of surface sediment from lakes distributed along a climatological gradient on the western side of the southern Andes[J]. Science of the Total Environment, 630: 878-888. doi: 10.1016/j.scitotenv.2018.02.225

    CrossRef Google Scholar

    Dansgaard W, Johnsen S J, Clausen H B, Dahl-Jensen D, Gundestrup N S, Hammer C U, Hvidberg C S, Steffensen J P, Sveinbjörnsdottir A E, Jouzel J, Bond G. 1993. Evidence for general instability of past climate from a 250 kyr ice-core record[J]. Nature, 364: 218-220. doi: 10.1038/364218a0

    CrossRef Google Scholar

    Dekov V M, Darakchieva V Y, Billström K, Garbe-Schönberg C D, Kamenov G D, Gallinari M, Dimitrov L, Ragueneau O, Kooijman E. 2019. Element enrichment and provenance of the detrital component in Holocene sediments from the western Black Sea[J]. Oceanologia, 1-25.

    Google Scholar

    Folk R L, Andrews P B, Lewis D W. 1970. Detrital sedimentary rock classification and nomenclature for use in New Zealand[J]. New Zealand journal of geology and geophysics, 13(4): 937-968. doi: 10.1080/00288306.1970.10418211

    CrossRef Google Scholar

    Freslon N, Bayon G, Toucanne S, Bermell S, Bollinger C, Chéron S, Etoubleau J, Germain Y, Khripounoff A, Ponzevera E, Rouget M L. 2014. Rare earth elements and neodymium isotopes in sedimentary organic matter[J]. Geochimica et Cosmochimica Acta, 140: 177-198. doi: 10.1016/j.gca.2014.05.016

    CrossRef Google Scholar

    Gearing G N, Gearing P L, Rudnick D T, Requejo A G, Hutchins M J. 1984. Isotope variability of organic carbon in a phytoplankton based temperate estuary[J]. Geochimica et Cosmochimica Acta, 48(5): 1089-1098. doi: 10.1016/0016-7037(84)90199-6

    CrossRef Google Scholar

    Heinrich H. 1988. Origin and consequences of cyclic ice rafting in the Northeast Atlantic Ocean during the past 130, 000 years[J]. Quaternary Research, 29(2): 142-152. doi: 10.1016/0033-5894(88)90057-9

    CrossRef Google Scholar

    Hu P X, Liu Q S, Heslop D, Roberts A P, Jin C S. 2015. Soil moisture balance and magnetic enhancement in loess-paleosol sequences from the Tibetan Plateau and Chinese Loess Plateau[J]. Earth and Planetary Science Letters, 409: 120-132. doi: 10.1016/j.epsl.2014.10.035

    CrossRef Google Scholar

    IPCC. 2007. Climate Change the Physical Science Basis[C]. AGU Fall Meeting Abstracts: 123-124.

    Google Scholar

    Kasse C, Bohncke S J P, Vandenberghr J, Gábris G. 2010. Fluvial style changes during the last glacial-interglacial transition in the middle Tisza Valley (Hungary)[J]. Proceedings of the Geologists Association, 121(2): 180-194. doi: 10.1016/j.pgeola.2010.02.005

    CrossRef Google Scholar

    Kennedy H, Gacia E, Kennedy D P, Papadimitriou S, Duarte C M. 2004. Organic carbon sources to SE Asian coastal sediments. [J]. Estuarine, Coastal and Shelf Science, 60(1): 59-68. doi: 10.1016/j.ecss.2003.11.019

    CrossRef Google Scholar

    Ku H W, Chen Y G, Chan P S, Liu H C, Lin C C. 2007. Paleo-environmental evolution as revealed by analysis of organic carbon and nitrogen: A case of coastal Taipei Basin in Northern Taiwan[J]. Geochemical Journal, 41: 111-120. doi: 10.2343/geochemj.41.111

    CrossRef Google Scholar

    Lericolais G, Bourget J, Popescu I, Jermannaud P, Mulder T, Jorry S, Panin N, 2013. Late Quaternary deep-sea sedimentation in the western Black Sea: New insights from recent coring and seismic data in the deep basin[J]. Global and Planetary Change, 103: 232-247. doi: 10.1016/j.gloplacha.2012.05.002

    CrossRef Google Scholar

    Li Yan, Yu Hongjun, Yi Liang, Su Qiao, Hu Ke, Xu Xingyong, Wang Jian. 2014. Grain- size characteristics and its sedimentary significance of coastal sediments of the borehole Lz908 in the south Bohai Sea (the Laizhou Bay), China[J]. Marine Sciences, 38(5): 107-133 (in Chinese with English abstract).

    Google Scholar

    Liu Dongsheng. 1997. Quaternary Environment[M]. Beijing: Science Press, 193-231 (in Chinese).

    Google Scholar

    Liu Jianguo, Li Anchun, Xu Zhaokai. 2006. Grain size characteristics of sediments in Bohai Bay during Holocene[J]. Marine Sciences, 30(3): 60-65 (in Chinese with English abstract).

    Google Scholar

    Major C, Ryan W B F, Lericolais G, Hajdas I. 2002. Constraints on Black Sea outflow to the Sea of Marmara during the last glacial-interglacial transition[J]. Marine Geology, 190(1/2): 19-34.

    Google Scholar

    McManus J. 1988. Grain size determination and interpretation[J]. Techniques in sedimentology, 63-85.

    Google Scholar

    Ménot G, Bard E. 2012. A precise search for drastic temperature shifts of the past 40, 000 years in southeastern Europe[J]. Paleoceanography and Paleoclimatology, 27(2): 2210.

    Google Scholar

    Meyers P A, Lallier-vergés E. 1999. Lacustrine sedimentary organic matter Records of Late Quaternary Paleoclimates[J]. Journal of Paleolimnology, 21: 345-372. doi: 10.1023/A:1008073732192

    CrossRef Google Scholar

    Özsoy E, Ünlüata Ü. 1997. Oceanography of the Black Sea: A review of some recent results[J]. Earth-Science Reviews, 42(4): 231-272. doi: 10.1016/S0012-8252(97)81859-4

    CrossRef Google Scholar

    Pang Jiangli, Huang Chunchang. 2000. Correlation between climate change of ice- core on Qianghai- Xizang Plateau and Loess-Palaeosol sequence, marine isotope stage[J]. Plateau Meteorology, 19(4): 504-511 (in Chinese with English abstract).

    Google Scholar

    Panina N, Jipab D. 2002. Danube River sediment input and its interaction with the North-western Black Sea[J]. Estuarine, Coastal and Shelf Science, 54: 551-562. doi: 10.1006/ecss.2000.0664

    CrossRef Google Scholar

    Peterson B J, Howarth R W, Garritt R H. 1985. Multiple stable isotopes used to trace the flow of organic matter in estuarine food webs[J]. Science, 227: 1361-1363. doi: 10.1126/science.227.4692.1361

    CrossRef Google Scholar

    Popescu I, Lericolais G, Panin N, Normand A, Dinu C, Drezen E. 2004. The Danube submarine canyon (Black Sea): Morphology and sedimentary processes[J]. Marine Geology, 206: 249-265. doi: 10.1016/j.margeo.2004.03.003

    CrossRef Google Scholar

    Popescu I, Lericolais G, Panin N, Wong H K, Droz L. 2001. Late Quaternary channel avulsions on the Danube deep-sea fan, Black Sea[J]. Marine Geology, 179(1/2): 25-37.

    Google Scholar

    Raynaud D, Barnola J M, Chappellaz J, Blunier T, Indermühle A, Stauffer B. 2000. The ice record of greenhouse gases: A view in the context of future changes[J]. Quaternary Science Reviews, 19(1-5): 9-17. doi: 10.1016/S0277-3791(99)00082-7

    CrossRef Google Scholar

    Rinterknecht V R, Clark P U, Raisbeck G M, Yiou F, Bitinas A, Brook E J, Marks L, Zelcs V, Lunkka J P, Pavlovskaya I E, Piotrowski J A, Raukas A. 2006. The last deglaciation of the southeastern sector of the Scandinavian Ice Sheet[J]. Science, 311(5766): 1449-1452. doi: 10.1126/science.1120702

    CrossRef Google Scholar

    Robinson A G, Spadini G, Cloetingh S. 1995. Stratigraphic evolution of the Black Sea: Inferences from basin modelling[J]. Marine and Petroleum Geology, 12(8): 821-836. doi: 10.1016/0264-8172(95)98850-5

    CrossRef Google Scholar

    Ross D A, Degens E T. 1974. Recent sediments of the Black Sea[J]. AAPG, 183-199.

    Google Scholar

    Rostek F, Bard E. 2013. Hydrological changes in eastern Europe during the last 40000 yr inferred from biomarkers in Black Sea sediments[J]. Quaternary Research, 80: 502-509. doi: 10.1016/j.yqres.2013.07.003

    CrossRef Google Scholar

    Ryan W B F. 2003. Catastrophic flooding of the Black Sea[J]. Annual Review of Earth and Planetary Sciences, 31(1): 525-554. doi: 10.1146/annurev.earth.31.100901.141249

    CrossRef Google Scholar

    Schubert C J, Calvert S E. 2001. Nitrogen and carbon isotopic composition of marine and terrestrial organic matter in Arctic Ocean sediments: Implications for nutrient utilization and organic matter composition[J]. Deep Sea Research Part I: Oceanographic Research Papers, 48(3): 789-810. doi: 10.1016/S0967-0637(00)00069-8

    CrossRef Google Scholar

    Shcherbakov F A, Babak Y V. 1979. Stratigraphic subdivision of the Neoeuxinian deposits in the Black Sea[J]. Oceanology, 19: 298-300.

    Google Scholar

    Shimkus K M, Komarov A V, Grakova I V. 1978. Stratigraphy of the upper Quaternary deep sea sediments in the Black Sea[J]. Oceanology, 17: 443-446.

    Google Scholar

    Shopov V L, Chochov S, Georgiev V. 1986. Lithostratigraphy of Upper Quaternary sediments from the northwestern Black Sea shelf between the parallels of the Cape Emine and Danube River mouth[J]. Geologica Balcanica, 16(6): 99-112.

    Google Scholar

    Sidorchuk A Y, Panin A V, Borisova O K. 2011. Surface runoff to the Black Sea from the East European Plain during Last Glacial Maximum-Late Glacial time[J]. Geological Society of America, 473: 1-26.

    Google Scholar

    Soulet G, Ménot G, Lericolais G, Bard E. 2011. A revised calendar age for the last reconnection of the Black Sea to the global ocean[J]. Quaternary Science Reviews, 30(9-10): 1019-1026. doi: 10.1016/j.quascirev.2011.03.001

    CrossRef Google Scholar

    Spencer D W, Brewer P G, Sachs P L. 1972. Aspects of the distribution and trace element composition of suspended matter in the Black Sea[J]. Geochimica et Cosmochimica Acta, 36(1): 71-86. doi: 10.1016/0016-7037(72)90121-4

    CrossRef Google Scholar

    Stow D A V, Piper D J W. 1984. Deep-water fine-grained sediments: facies models[J]. Geological Society London Special Publications, 15(1): 611-645. doi: 10.1144/GSL.SP.1984.015.01.38

    CrossRef Google Scholar

    Sun Donghuai, An Yisheng, Liu Dongsheng, Wu Xihao. 1996. Evolution of the summer monsoon climate pattern over the Loess Plateau in the past 150 ka[J]. Earth Sciences: Science in China, 26(5): 417-422 (in Chinese).

    Google Scholar

    Sun Jun, Lu Yue, Yang Huiliang, Chu Hongxian, Qi Jianghao, Liu Changchun, Li Panfeng, Dou Zhenya. 2019. Grain-size distribution patterns of the core sediments from BHS01 of Bohai strait and their environmental implication[J]. Marine Geology Frontiers, 35(8): 11-19 (in Chinese with English abstract).

    Google Scholar

    Sun Y, Clemens S C, Morrill C, Lin X P, Wang X L, An Z S. 2011. Influence of Atlantic meridional overturning circulation on the East Asian winter monsoon[J]. Nature Geoscience, 5(1): 46-49.

    Google Scholar

    Svendsen J I. 2004. Late Quaternary ice sheet history of northern Eurasia[J]. Quaternary Science Reviews, 23: 1229-1271. doi: 10.1016/j.quascirev.2003.12.008

    CrossRef Google Scholar

    Toucanne S, Soulet G, Freslon N, Jacinto R S, Dennielou B, Zaragosi S, Eynaud F, Bourillet J F, Bayon G. 2015. Millenial- scale fluctuations of the European Ice Sheet at the end of the last glacial, and their potential impact on global climate[J]. Quaternary Science Reviews, 123: 113-133. doi: 10.1016/j.quascirev.2015.06.010

    CrossRef Google Scholar

    Tudryn A, Leroy S, Toucanne S, Gibert-Brunet E, Tucholka P, Lavrushin Y A, Dufaure O, Miska S, Bayon G. 2016. The Ponto-Caspian basin as a final trap for southeastern Scandinavian Ice-Sheet meltwater[J]. Quaternary Science Reviews, 148: 29-43. doi: 10.1016/j.quascirev.2016.06.019

    CrossRef Google Scholar

    Velichko A A, Catto N, Drenova A N, Klimanov V A, Kremenetski K V, Nechaev V P. 2002. Climate changes in East Europe and Siberia at the Late glacial-holocene transition[J]. Quaternary International, 91(1): 75-99. doi: 10.1016/S1040-6182(01)00104-5

    CrossRef Google Scholar

    Wang Dejie, Fan Daidu, Li Congxian. 2003. Influence of different pretreatments on size analysis and its implication[J]. Journal of Tongji University, 31(3): 314-318 (in Chinese with English abstract).

    Google Scholar

    Wang Shaowu, Xie Zhihui. 2002. Climate variability at millennial time scales[J]. Earth Science Frontiers, 9(1): 143-153 (in Chinese with English abstract).

    Google Scholar

    Wang Y J, Cheng H, Edwards R L, Kong X G, Shao X H, Chen S T, Wu J Y, Jiang X Y, Wang X F, An Z S. 2008. Millennial- and orbital-scale changes in the East Asian monsoon over the past 224, 000 years[J]. Nature, 451: 1090-1093. doi: 10.1038/nature06692

    CrossRef Google Scholar

    Wang Yongjin, Hai Cheng, Edwards R L, An Z S, Wu J Y, Shen C C, Dorale J A. 2001. A high- resolution absolute- dated Late Pleistocene monsoon record from Hulu Cave, China[J]. Science, 294: 2345-2348. doi: 10.1126/science.1064618

    CrossRef Google Scholar

    Wegwerth A, Kaiser J, Dellwig O, Shumilovskikh L S, Nowaczyk N R, Arz H W. 2016. Northern hemisphere climate control on the environmental dynamics in the glacial Black Sea "Lake"[J]. Quaternary Science Reviews, 135: 41-53. doi: 10.1016/j.quascirev.2016.01.016

    CrossRef Google Scholar

    Wentworth C K, Chester K. 1922. A Scale of Grade and Class Terms for Clastic Sediments[J]. The Journal of Geology, 30(5): 377-392. doi: 10.1086/622910

    CrossRef Google Scholar

    Wohlfahrth B, Lacourse T, Bennike O, Subetto D, P Tarasov, I Demidov, Filimonova L, Sapelko T. 2007. Climatic and environmental changes in northwestern Russia between 15, 000 and 8000 cal yr BP: A review[J]. Quaternary Science Reviews, 26(13-14): 1871-1883. doi: 10.1016/j.quascirev.2007.04.005

    CrossRef Google Scholar

    Yanchilina A G, Ryan W B F, McManus J F, Dimitrov P, Dimitrov D, Slavova K, Filipova-Marinova M. 2017. Compilation of geophysical, geochronological, and geochemical evidence indicates a rapid Mediterranean-derived submergence of the Black Sea's shelf and subsequent substantial salinification in the early Holocene[J]. Marine Geology, 383: 14-34. doi: 10.1016/j.margeo.2016.11.001

    CrossRef Google Scholar

    Yue Baojing, Liu Jinqing, Liu Jian, Liao Jing, Zhang Junqiang. 2019. Grain size distribution and its environmental change of core YRD-1101in the western margin of the modern Bohai Sea since the latest Pleistocene[J]. Geology in China (in Chinese with English abstract).

    Google Scholar

    Zhang Baofang. 2015. Grain Size Distribution and Sedimentary Environment Evolution in Northern South China Sea Slope[D]. Qingdao: Ocean University of China (in Chinese with English abstract).

    Google Scholar

    Zhang Jian, Li Rihui, Wang Zhongbo, Zhang Xunhua, Huang Long, Sun Rongtao. 2016. Grain size characteristics of surface sediments in the east Bohai Sea and the northern Yellow Sea and their implications for environments[J]. Marine Geology and Quaternary Geology, 36(5): 1-12 (in Chinese with English abstract).

    Google Scholar

    Zhang R, Delworth T L. 2005. Simulated tropical response to a substantial weakening of the Atlantic thermohaline circulation[J]. Journal of Climate, 18: 1853-1860. doi: 10.1175/JCLI3460.1

    CrossRef Google Scholar

    李琰, 于洪军, 易亮, 苏乔, 胡克, 徐兴永, 王建. 2014. 渤海南部Lz908孔海陆交互沉积的粒度特征及其对沉积环境的指示[J]. 海洋科学, 38(5): 107-133.

    Google Scholar

    刘东生. 1997. 第四纪环境[M]. 北京: 科学出版社, 193-231.

    Google Scholar

    刘建国, 李安春, 徐兆凯. 2006. 全新世以来渤海湾沉积物的粒度特征[J]. 海洋科学, 30(3): 60-65. doi: 10.3969/j.issn.1000-3096.2006.03.013

    CrossRef Google Scholar

    庞奖励, 黄春长. 2000. 青藏高原冰芯记录与黄土堆积和深海沉积记录之对比[J]. 高原气象, 19(4): 504-511. doi: 10.3321/j.issn:1000-0534.2000.04.012

    CrossRef Google Scholar

    孙东怀, 安芷生, 刘东生, 吴锡浩. 1996. 最近150 ka黄土高原夏季风气候格局的演化[J]. 地球科学: 中国科学, 26(5): 417-422.

    Google Scholar

    孙军, 路月, 杨慧良, 褚宏宪, 祁江豪, 刘长春, 李攀峰, 窦振亚. 2019. 渤海海峡BSH01孔海陆交互相沉积物粒度特征及沉积环境分析[J]. 海洋地质前沿, 35(8): 11-19.

    Google Scholar

    王德杰, 范代读, 李从先. 2003. 不同预处理对沉积物粒度分析结果的影响[J]. 同济大学学报, 31(3): 314-318. doi: 10.3321/j.issn:0253-374X.2003.03.014

    CrossRef Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(11)

Tables(3)

Article Metrics

Article views(2559) PDF downloads(67) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint