2024 Vol. 51, No. 5
Article Contents

KONG Xiangke, LI Yi, WANG Ping, HAN Zhantao, LIU Shenghua, ZHANG Zhaoji, WANG Yanyan. 2024. Effects of characteristic pollutants in leather sludge leachate on soil ammonia nitrogen transformation and microbial community structures[J]. Geology in China, 51(5): 1676-1685. doi: 10.12029/gc20220312001
Citation: KONG Xiangke, LI Yi, WANG Ping, HAN Zhantao, LIU Shenghua, ZHANG Zhaoji, WANG Yanyan. 2024. Effects of characteristic pollutants in leather sludge leachate on soil ammonia nitrogen transformation and microbial community structures[J]. Geology in China, 51(5): 1676-1685. doi: 10.12029/gc20220312001

Effects of characteristic pollutants in leather sludge leachate on soil ammonia nitrogen transformation and microbial community structures

    Fund Project: Supported by Natural Science Foundation of Hebei Province (No.D2020504003) and the Basic Scientific Research Fund of Chinese Academy of Geological Sciences (No.SK202113).
More Information
  • Author Bio: KONG Xiangke, male, born in 1987, associate researcher, engaged in the mechanism and remediation of soil and groundwater pollution; E-mail:kongxiangke@mail.cgs.gov.cn
  • Corresponding author: WANG Yanyan, female, born in 1987, associate researcher, engaged in the mechanism of groundwater pollution; E-mail: wangyanyan@mail.cgs.gov.cn.
  • This paper is the result of soil environmental survey engineering.

    Objective

    The objective is to identify the impact of characteristic pollutants (Cr (III), salt, organic matter) in the leachate of tannery sludge on the conversion of soil NH4+−N conversion and microbial community structure. It provides a theoretical basis for the safe agricultural use of tannery sludge and soil pollution prevention and control.

    Methods

    The transformation of NH4+−N to NO3−N in soil was studied through soil cultivation experiments under different pollution conditions, and the high−throughput sequencing is used to analyze the composition and structure characteristics of microbial community in soil.

    Results

    The characteristic pollution components in the tannery sludge leachate inhibit the nitrification process of NH4+−N in the soil, and the influence factors are sorted as follows: Cr(III)>saltness>organic matter. The exogenous Cr(III) pollution has a significant inhibitory effect on the transformation rate and amount of NH4+−N, whereas the saltness and organic matter only delay the start time of nitrification and reduce the nitrification rate in soil. With the increase of Cr(III) content from 100 mg/kg to 250 mg/kg, the transformation amount of NH4+−N decreases from 94.23% to 19.38% after 90 days of culture. The high Cr(III) and salinity in the leachate have a significant impact on the microbial community structure and distribution in the soil at the initial stage of pollution. With the decrease of the bioavailability of Cr(III) and the enhancement of microbial adaptation in soil aging process, the microbial community structure and composition in Cr(III), salinity, and organic matter contaminated soils become similar, and the abundances of nitrifying bacteria (Nitrosospira, Nitrosomonas and Nitrosospira) also have an obvious increase.

    Conclusions

    The results of RDA analysis show that the main characteristic factors affecting the evolution of microbial community structure in tanning contaminated soil are: Cr(III) (R2=0.53, P<0.01), NH4+−N (R2=0.59, P<0.005) and NO3−N(R2=0.53, P<0.01).

  • 加载中
  • [1] Cao X H, Guo J, Mao J D, Lan Y Q. 2011. Adsorption and mobility of Cr(III)–organic acid complexes in soils[J]. Journal of Hazardous Materials, 192(3): 1533−1538. doi: 10.1016/j.jhazmat.2011.06.076

    CrossRef Google Scholar

    [2] Caporaso J G, Kuczynski J, Stombaugh J, Bittinger K, Bushman F D, Costello E K, Fierer N, Antonio G P, Goodrich J K, Gordon J I, Huttley G A, Kelley S T, Knights D, Koenig J E, Ley R E, Lozupone C A, McDonald D, Muegge B D, Pirrung M, Reeder J, Sevinsky J R, Turnbaugh P J, Walters W A, Widmann J, Yatsunenko T, Zaneveld J, Knight R. 2010. QIIME allows analysis of high–throughput community sequencing data[J]. Nature Methods, 7(5): 335−336. doi: 10.1038/nmeth.f.303

    CrossRef Google Scholar

    [3] Chang Hao. 2014. Study on the Pyrolysis Process and Product Properties of Leather Sludge[D]. Xi'an: Shaanxi University of Science and Technology, 1−52 (in Chinese with English abstract).

    Google Scholar

    [4] Daims H, Lücker S, Wagner M. 2016. A new perspective on microbes formerly known as nitrite–oxidizing bacteria[J]. Trends in Microbiology, 24(9): 699−712. doi: 10.1016/j.tim.2016.05.004

    CrossRef Google Scholar

    [5] Huang Xuefen, Meng Min, Xie Gang, Luo Yucheng, Li Lei, Wang Weisheng. 2017. Study on speciation distribution of Cr and reduction of Cr(Ⅵ) in tannery sludge[J]. Journal of Guangxi University (Natural Science Edition), 42(5): 1930−1936 (in Chinese with English abstract).

    Google Scholar

    [6] Ke X B, Angel R, Lu Y H, Conrad R. 2013. Niche differentiation of ammonia oxidizers and nitrite oxidizers in rice paddy soil[J]. Environmental Microbiology, 15: 2275−2292. doi: 10.1111/1462-2920.12098

    CrossRef Google Scholar

    [7] Kong X K, Li C H, Wang P, Huang G X, Li Z T, Han Z T. 2019. Soil pollution characteristics and microbial responses in a vertical profile with long–term tannery sludge contamination in Hebei, China[J]. International Journal of Environmental Research and Public Health, 16(4): 563.

    Google Scholar

    [8] Kong X K, Wang Y Y, Ma L S, Li H, Han Z T. 2022. Impact of δ–MnO2 on the chemical speciation and fractionation of Cr(III) in contaminated soils [J]. Environmental Science and Pollution Research, 29: 45328−45337.

    Google Scholar

    [9] Lai Qiaohui, Zhang Hao, Liu Zhipeng. 2019. Characteristics of soil microbial community and their impact factors in different constructed wetlands with plant communities[J]. Research of Soil and Water Conservation, 26(5): 89−94,99 (in Chinese with English abstract).

    Google Scholar

    [10] Li Juan, Uwaremwe Constantine, Leng Yan, Zhang Xiaohua, Li Shiweng, Chen Ximing. 2017. Progess on the study of biodegradation of organic pollutants and adsorption of heavy metals with arthrobacter strains[J]. Environmental Science & Technology, 40(10): 89−97 (in Chinese with English abstract).

    Google Scholar

    [11] Li Meng. 2017. Effect of Combined Application of Manure with Nitrogen Fertilizer on the Diversity of Nitrifier in Installed Vegetable Fields[D]. Shenyang: Shenyang Agricultural University, 1–56 (in Chinese with English abstract).

    Google Scholar

    [12] Liu Y C, Zhang Z J, Li Y S, Fei Y H. 2017. Response of soil microbial communities to roxarsone pollution along a concentration gradient[J]. Journal of Environmental Science & Health Part A Toxic/Hazardous Substances & Environmental Engineering, 52(9): 819−827.

    Google Scholar

    [13] Lü Xiaoli, Liu Jingtao, Han Zhantao, Zhu Liang, Yang Mingnan, Li Haijun. 2021. Geochemical characteristics and driving factors of high–ammonium groundwater in the rapid urbanization of the Pearl River Delta[J]. Geology in China, 48(6): 1770−1780 (in Chinese with English abstract).

    Google Scholar

    [14] Ma Hongrui, Wang Xiaorong, Niu Xiaojun, Li Guiju. 2004. Releases of Cr(Ⅲ) and nitrogen from contaminated soil with tannery sludge during organic matter mineralization[J]. Journal of Agro–Environment Science, 23(1): 136−139 (in Chinese with English abstract).

    Google Scholar

    [15] Martines A M, Nogueira M A, Santos C A, Nakatani A S, Andrade C A, Coscione A R, Cantarella H, Sousa J P, Cardoso E J B N. 2010. Ammonia volatilization in soil treated with tannery sludge[J]. Bioresource Technology, 101(12): 4690−4696. doi: 10.1016/j.biortech.2010.01.104

    CrossRef Google Scholar

    [16] Nakatani A S, Martines A M, Nogueira M A, Fagotti D S L, Oliveira A G, Bini D, Sousa J P, Cardoso E J B N. 2011. Changes in the genetic structure of bacteria and microbial activity in an agricultural soil amended with tannery sludge[J]. Soil Biology and Biochemistry, 43(1): 106−114. doi: 10.1016/j.soilbio.2010.09.019

    CrossRef Google Scholar

    [17] Pang Yajie, Li Chunhui, Han Zhantao, Zhang Zhaoji, Kong Xiangke. 2024. Migration simulation and pollution assessment of Cr (III) and ammonia from tannery wastewater in typical vadose zone in North China Plain[J]. Geology in China, 51(4): 1280−1289(in Chinese with English abstract).

    Google Scholar

    [18] Pantazopoulou E, Zouboulis A. 2018. Chemical toxicity and ecotoxicity evaluation of tannery sludge stabilized with ladle furnace slag[J]. Journal of Environmental Management, 216: 257−262. doi: 10.1016/j.jenvman.2017.03.077

    CrossRef Google Scholar

    [19] Polti M A, Aparicio J D, Benimeli C S, Amoroso M J. 2014. Simultaneous bioremediation of Cr(Ⅵ) and lindane in soil by actinobacteria[J]. International Biodeterioration & Biodegradation, 88: 48−55.

    Google Scholar

    [20] Sabey B R, Frederick L R, Bartholomew W V. 1959. The formation of nitrate from ammonium mitrogen in soils: III Influence of temperature and initial population of nitrifying organisms on the maximum rate and delay period[J]. Soil Science Society of America, 23: 462−465. doi: 10.2136/sssaj1959.03615995002300060029x

    CrossRef Google Scholar

    [21] Schloss P D, Westcott S L, Ryabin T, Hall J R, Hartmann M, Hollister E B, Lesniewski R A, Oakley B B, Parks D H, Robinson C J, Sahl J W, Stres B, Thallinger G G, Van H D J, Weber C F. 2009. Introducing mothur: Open–source, platform–independent, community–supported software for describing and comparing microbial communities[J]. Applied & Environmental Microbiology, 75(23): 7537−7541.

    Google Scholar

    [22] Solá M, Lovaisa N, Costa J, Benimeli C, Polti M, Alvarez, A. 2019. Multi–resistant plant growth–promoting actinobacteria and plant root exudates influence Cr(Ⅵ) and lindane dissipation[J]. Chemosphere, 222: 679−687. doi: 10.1016/j.chemosphere.2019.01.197

    CrossRef Google Scholar

    [23] Wang B Z, Zhao J, Guo Z Y, Ma J, Xu H, Jia Z J. 2015. Differential contributions of ammonia oxidizers and nitrite oxidizers to nitrification in four paddy soils[J]. The ISME Journal, 9: 1062−1075. doi: 10.1038/ismej.2014.194

    CrossRef Google Scholar

    [24] Wang Feng. 2006. Study on Function and Character of Nitrifying Bacteria in Sewage Treatment Processes[D]. Shanghai: Tongji University, 1–169 (in Chinese with English abstract).

    Google Scholar

    [25] Wang Ya'nan. 2007. Effects of Different Nitrogen Application Rates on Ammonia–oxidizing Bacteria Community Structure in Paddy Soil[D]. Beijing: China Agricultural University, 1–59 (in Chinese with English abstract).

    Google Scholar

    [26] Xu Ke, Chen Honghan. 2011. Progesson three forms of nitrogen contaminant transport and transform in groundwater[J]. China Population, Resources and Environment, 21(12): 421–424 (in Chinese with English abstract).

    Google Scholar

    [27] Yu Hao, An Yijun, Jin Decai, Jin Tuo, Wang Xingrun. 2021. Effects of chromium pollution on soil bacterial community structure and assembly processes[J]. Environmental Science, 42(3): 1197−1204 (in Chinese with English abstract).

    Google Scholar

    [28] Yu Ying. 2020. Hydroxylamine Promotes Nitrogen Removal and Microbial Mechanism during In–situ Aerobic Remediation of Landfill [D]. Shanghai: Shanghai University, 1–130. (in Chinese with English abstract).

    Google Scholar

    [29] Yuan Qiaoxia, Wu Yajuan, Ai Ping, Zhen Yucun, Zhu Duanwei. 2007. Effects of moisture, temperature and nitrogen supply rate on NO3–N accumulation in greenhouse soil[J]. Transactions of the Chinese Society of Agricultural Engineering, 23(10): 192−198 (in Chinese with English abstract).

    Google Scholar

    [30] Zeng J, Gou M, Tang Y Q, Li G Y, Sun Z Y, Kida K. 2016. Effective bioleaching of chromium in tannery sludgewith an enriched sulfur–oxidizing bacterial community[J]. Bioresource Technology, 218: 859–866.

    Google Scholar

    [31] Zeng Wei, Zhang Liming, Wang Anqi, Zhang Jie, Peng Yongzhen, Duan Junling. 2015. Community structures and population dynamics of nitrifying bacteria in activated sludges of wastewater treatment plants[J]. China Environmental Science, 35(11): 3257−3265 (in Chinese with English abstract).

    Google Scholar

    [32] Zhang Dazheng, Li Haiming, Zhan Xiaoyan, Xia Yuezhen. 2014. Characteristics of groundwater salt pollution in a typical leather–contaminated site[J]. Hydrogeology & Engineering Geology, 41(2): 18−23 (in Chinese with English abstract).

    Google Scholar

    [33] Zhang Jian. 2018. Effects of Continuous Nitrogen Application on Community Structure of Ammonia–oxidizing Flora and Bacteria on Potato–planting Soil[D]. Lanzhou: Gansu Agricultural University, 1–44 (in Chinese with English abstract).

    Google Scholar

    [34] 畅浩. 2014. 制革污泥热解过程及其产物特性的研究[D]. 西安: 陕西科技大学, 1–52.

    Google Scholar

    [35] 黄雪芬, 蒙敏, 谢刚, 罗宇晨, 李磊, 王维生. 2017. 制革污泥中Cr形态分布及Cr(Ⅵ)还原性研究[J]. 广西大学学报(自然科学版), 42(5): 1930−1936.

    Google Scholar

    [36] 赖巧晖, 张浩, 刘治鹏. 2019. 不同植物配置下人工湿地微生物群落特征及其影响因素[J]. 水土保持研究, 26(5): 89−94,99.

    Google Scholar

    [37] 李娟, Uwaremwe Constantine, 冷艳, 张晓华, 李师翁, 陈熙明. 2017. 节杆菌属细菌处理有机物和重金属污染物的研究进展[J]. 环境科学与技术, 40(10): 89−97.

    Google Scholar

    [38] 李猛. 2017. 有机肥配施氮肥条件下设施菜地硝化菌群多样性研究[D]. 沈阳: 沈阳农业大学, 1–56.

    Google Scholar

    [39] 吕晓立, 刘景涛, 韩占涛, 朱亮, 杨明楠, 李海军. 2021. 快速城镇化进程中珠江三角洲高铵地下水赋存环境及驱动因素[J]. 中国地质, 48(6): 1770−1780.

    Google Scholar

    [40] 马宏瑞, 王晓蓉, 牛晓君, 李桂菊. 2004. 制革污泥污染土壤矿化过程中Cr(Ⅲ)和氮的释放[J]. 农业环境科学学报, 23(1): 136−139.

    Google Scholar

    [41] 庞雅婕, 李春辉, 韩占涛, 张兆吉, 孔祥科. 2024. 华北平原制革废水Cr(III)和氨氮在典型包气带中迁移模拟与污染评价[J]. 中国地质, 51(4): 1280−1289.

    Google Scholar

    [42] 王峰. 2006. 城市污水处理过程硝化菌群功能与群落特征研究[D]. 上海: 同济大学, 1–169.

    Google Scholar

    [43] 王亚男. 2007. 不同施氮量对稻田土壤中氨氧化细菌群落结构的影响[D]. 北京: 中国农业大学, 1–59.

    Google Scholar

    [44] 许可, 陈鸿汉. 2011. 地下水中三氮污染物迁移转化规律研究进展[J]. 中国人口·资源与环境, 21(12): 421−424.

    Google Scholar

    [45] 于皓, 安益君, 金德才, 靳拓, 王兴润. 2021. 铬污染对土壤细菌群落结构及其构建机制的影响[J]. 环境科学, 42(3): 1197−1204.

    Google Scholar

    [46] 喻颖. 2020. 填埋场原位好氧修复过程中羟胺促进脱氮效果及微生物作用机理研究[D]. 上海: 上海大学, 1–130.

    Google Scholar

    [47] 袁巧霞, 武雅娟, 艾平, 甄玉存, 朱端卫. 2007. 温室土壤硝态氮积累的温度、水分、施氮量耦合效应[J]. 农业工程学报, 23(10): 192−198. doi: 10.3321/j.issn:1002-6819.2007.10.034

    CrossRef Google Scholar

    [48] 曾薇, 张丽敏, 王安其, 张洁, 彭永臻, 段俊岭. 2015. 污水处理系统中硝化菌的菌群结构和动态变化[J]. 中国环境科学, 35(11): 3257−3265. doi: 10.3969/j.issn.1000-6923.2015.11.008

    CrossRef Google Scholar

    [49] 张达政, 李海明, 詹晓燕, 夏跃珍. 2014. 典型制革污染场地地下水盐污染特征[J]. 水文地质工程地质, 41(2): 18−23.

    Google Scholar

    [50] 张健. 2018. 连续施氮对土壤氨氧化菌及细菌群落结构的影响[D]. 兰州: 甘肃农业大学, 1–44.

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(5)

Tables(1)

Article Metrics

Article views(203) PDF downloads(68) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint