Citation: | LI Hui, QIAN Yong, HAN Zhantao, KONG Xiangke, ZHANG Wei, MA Lisha, ZHANG Xianfu, TIAN Xia. 2023. Natural attenuation monitoring of 1,2,3-trichloropropane and benzene in the groundwater of organic pollution sites, Tianjin chemical plant and its environmental restoration suggestions[J]. Geology in China, 50(5): 1446-1459. doi: 10.12029/gc20220302001 |
This paper is the result of environmental geological survey engineering.
Organic pollutants, such as chlorinated hydrocarbons and BTEX, have an important threat to groundwater environment in China. Natural attenuation monitoring plays an important role in contaminated sites remediation. Researches on natural attenuation monitoring will be conductive to promoting the development of groundwater organic pollution control and environmental remediation technologies.
In order to study the natural attenuation of 1,2,3-trichloropropane (TCP) and benzene in different aquifers groundwater, the 3-year monitoring data of TCP, benzene, oxidation reduction potential (ORP), nitrate (NO3-) and biodiversity in an organic contaminated site has been collected and analyzed. Natural attenuation capacity of the pollution source area of the site was calculated using first order attenuation kinetic equation.
The results show that the natural attenuation of TCP and benzene occurred in the aquifer for different degrees, and ORP values of the groundwater in phreatic and confined aquifer were -225~-57 mV and -182~-3 mV, respectively, which were medium-high reducing environment with basic environmental conditions for anaerobic biodegradation of organic pollutants. Moreover, the effect of microbial degradation was stronger in the pollution source area and phreatic aquifer than that in non-pollution source area and confined aquifer, and the degradation rates of TCP and benzene in the phreatic aquifer of MMW02 monitoring well were 80.00% and 77.88%, respectively. The attenuation rate of TCP and benzene were 0.0018 d-1 and 0.0016 d-1 in phreatic aquifer, and 0.001 d-1 and 0.0015 d-1 in confined aquifer.
According to the different degree of groundwater pollution, the natural attenuation monitoring technology can be used alone or combined with other remediation methods and technologies, which is a low cost and high efficiency method to reduce groundwater organic pollution for this kind of industrial contaminated sites.
Aftabtalab A, Rinklebe J, Shaheen S M, Niazi N K, Moreno-Jimenez E, Schaller J, Knorr K. 2022. Review on the interactions of arsenic, iron (oxy) (hydr)oxides, and dissolved organic matter in soils, sediments, and groundwater in a ternary system[J]. Chemosphere, 286: 131790-131801. doi: 10.1016/j.chemosphere.2021.131790 |
Baldwin B R, Nakatsu C H, Nies L. 2008. Enumeration of aromatic oxygenase genes to evaluate monitored natural attenuation at gasoline-contaminated sites[J]. Water Research, 42(3): 723-731. doi: 10.1016/j.watres.2007.07.052 |
Chen Ranran, Zhu Xin, Lin Yusuo, Yu Ran, Long Tao. 2015. Preliminary inquiry of monitored natural attenuation remediation of chlorinated organic compounds contaminated site[J]. Chemistry Journal, 66(7): 2361-2369. |
Fei Yuhong, Liu Yaci, Li Yasong, Bao Xilin, Zhang Pengwei. 2022. Prospect of groundwater pollution remediation methods and technologies in China[J]. Geology in China, 49(2): 420-434 (in Chinese with English abstract). |
Flynn R M, Rossi P, Hunkeler D. 2004. Investigation of virus attenuation mechanisms in a fluvioglacial sand using column experiments[J]. Microbiology Ecology, 49: 83-95. doi: 10.1016/j.femsec.2003.08.017 |
He Ze, Ning Zhuo, Huang Guanxing, Liu Dandan, Zhang Qianqian, Sun Jichao. 2019. The response characteristics of microbial diversity to shallow groundwater contamination in the piedmont of the Taihang Mountains using molecular biotechnologies: A case study of groundwater of Hutuo River Basin[J]. Geology in China, 46(2): 290-301 (in Chinese with English abstract). |
Jia Hui. 2011. Research on natural attenuation of oil contaminant in the vadose zone[J]. Changchun: Jilin University (in Chinese with English abstract). |
Jia Hui, Wu Xiaofeng, Hu Liming, Liu Peibin. 2011. Research of the natural attenuation capacity of oil pollutants based on in-situ experiment[J]. Environmental Science, 32(12): 3699-3703 (in Chinese with English abstract). |
Jiang Weinan. 2020. Study on Identification of Natural Attenuation of Pollutants in Groundwater in Petrochemical Contaminated Site[D]. Changchun: Jilin University (in Chinese with English abstract). |
Jiao Xun. 2010. Research on MNA Remediation of Petroleum Hydrocarbon Contaminants in Groundwater [D]. Changchun: Jilin University (in Chinese with English abstract). |
Landmeyer J E, Bradley P M. 2003. Effect of hydrologic and geochemical conditions on oxygen-enhanced bioremediation in a gasoline-contaminated aquifer[J]. Bioremediation Journal, 7: 165-177. doi: 10.1080/713607983 |
Liu Mingzhu, Chen Honghan, Hu Liqin. 2005. Numerical modeling of transport of organic pollutants in shallow groundwater in a certain city of northern China[J]. Geology in China, 32(3): 507-511 (in Chinese with English abstract). doi: 10.3969/j.issn.1000-3657.2005.03.022 |
Li Yuanjie, Wang Senjie, Zhang Min, He Ze, Zhang Wei. 2018. Research progress of monitored natural attenuation remediation technology for soil and groundwater pollution[J]. China Environmental Science, 38(3): 1185-1193. |
Li Yang, Luo Jiayi, Lin Feng, Mao Ruifeng, Li Kai. 2022. Analysis of microbial diversity of red vinasse acid in Wuhan area of Guangxi[J]. China Condiment, 47(1): 14-20 (in Chinese with English abstract). |
Lu Ying. 2013. Mechanism of Natural Biodegradation in Petroleum Contaminated Shallow Groundwater System[D]. Changchun: Jilin University (in Chinese with English abstract) |
Lü Hang. 2014. Research on Biodegradation of Petroleum Hydrocarbon Contaminants and Enhanced In-Situ Remediation in Groundwater[D]. Changchun: Jilin University (in Chinese with English abstract) |
Margalef-Marti R, Llovet L, Carrey R, Ribas A, Domene X, Mattana S, Chin-Pampillo J, Mondini C, Alcaniz J M, Soler A, Otero N. 2021. Impact of fertilization with pig slurry on the isotopic composition of nitrate retained in soil and leached to groundwater in agricultural areas[J]. Applied Geochemistry, 125: 104832-104840. doi: 10.1016/j.apgeochem.2020.104832 |
Meckenstock R U, Elsner M, Griebler C. 2015. Biodegradation: Updating the concepts of control for microbial cleanup in contaminated aquifers[J]. Environmental Science and Technology, 49(12): 7073-7081. doi: 10.1021/acs.est.5b00715 |
Newell C J, Rifai H S, Wilson J T, Connor J A, Aziz J A, Suarez M P. 2002. Calculation and use of first- order rate constants for monitored natural attenuation studies[R]. Washington DC: US Environmental Protection Agency. |
Nijenhuis I, Nikolausz M, Köth A, Felföldi T, Weiss H, Drangmeister J, Grossmann J, Kästner M, Richnowl H. 2007. Assessment of the natural attenuation of chlorinated ethenes in an anaerobic contaminated aquifer in the Bitterfeld/Wolfen area using stable isotope techniques, microcosm studies and molecular biomarkers[J]. Chemosphere, 67(2): 300-311. doi: 10.1016/j.chemosphere.2006.09.084 |
Ning Zhuo, Guo Caijuan, Cai Pingping, Zhang Min, Chen Zongyu, He Ze. 2018. Geochemical evaluation of biodegradation capacity in a petroleum contaminated aquifer[J]. China Environmental Science, 38(11): 4068-4074 (in Chinese with English abstract). doi: 10.3969/j.issn.1000-6923.2018.11.010 |
Serrano A, Gallego M, González J L. 2006. Assessment of natural attenuation of volatile aromatic hydrocarbons in agricultural soil contaminated with diesel fuel[J]. Environmental Pollution, 144(1): 203-209. doi: 10.1016/j.envpol.2005.12.031 |
Shi Jiansheng, Wang Zhao, Zhang Zhaoji, Fei Yuhong, Zhang Fenge, Li Yasong, Chen Jingsheng, Qian Yong. 2011. Preliminary analysis on the organic contamination of groundwater in the Notth China Plain[J]. Ecology and Environmental Science, 20(11): 1695-1699(in Chinese with English abstract). |
Silva M L, Gomez D E, Alvarez P J J. 2013. Analytical model for BTEX natural attenuation in the presence of fuel ethanol and its anaerobic metabolite acetate[J]. Journal of Contaminant Hydrology, 146: 1-7. doi: 10.1016/j.jconhyd.2012.12.006 |
Yang S, Ge W Y, Chen H H, Xu W L. 2019. Investigation of soil and groundwater environment in urban area during post-industrial era: A case study of brownfield in Zhenjiang, Jiangsu Province, China[J]. China Geology, 2(4): 501-511. |
Weatherill J J, Atashgahi S, Schneidewind U, Krause S, Ullah S, Cassidy N, Rivettfg M O. 2018. Natural attenuation of chlorinated ethenes in hyporheic zones: A review of key biogeochemical processes and in-situ transformation potential[J]. Water Research, 128: 362-382. doi: 10.1016/j.watres.2017.10.059 |
Wu Yucheng, Zhong Zuoshen, Chen Liang. 2000. Removal of aromatic hydrocarbon pollutants from groundwater: Laboratory aquifer column studies[J]. Journal of Changchun University of Science and Technology, 30(1): 61-64 (in Chinese with English abstract). |
Wu Yucheng, Zhong Zuoshen, Zhang Jianli. 1999. Microbial degradation of benzene and toluene in groundwater under enhanced denitrifying condition[J]. China Environmental Science, 19(6): 505-509 (in Chinese with English abstract). doi: 10.3321/j.issn:1000-6923.1999.06.007 |
Zhang Zhaoji, Fei Yuhong, Zhang Liansheng. 2009. Investigation and evaluation of groundwater pollution in North China Plain[C]//Data Compilation of New Advances in Geological Science and Technology and New Achievements in Geological Prospecting in China. 2009. Beijing: China Geological Education Press (in Chinese). |
Zhao Yongsheng. 2015. Control and Remediation of Groundwater Contamination Sites[M]. Beijing: Science Press, 1-397 (in Chinese). |
Zhao Yongsheng, Wang Bing, Qu Zhiui, Zheng Wei, Jia Xu, Sun Meng. 2010. Natural attenuation of diesel pollution in sand layer of vadose zone[J]. Journal of Jilin University (Earth Science Edition), 40(2): 389-393 (in Chinese with English abstract). |
Zhou Rui, Zhao Yongsheng, Ren Hejun, Dong Jun, Hu Guiquan, Zhao Yan, Hua Fei. 2009. Natural attenuation of BTEX in the underground environment[J]. Environmental Science, 30(9): 2804-2808 (in Chinese with English abstract). |
Zhu Ruili, Zhang Shiyang, Li Hui, Lin Kuangfei, Lü Shuguang. 2015. Natural attenuation simulation of 1,1,1-trichloroethane in shallow groundwater at a contaminated site in Pudong, Shanghai[J]. Journal of East China University of Science and Technology (Natural Science Edition), 41(3): 42-348 (in Chinese with English abstract). |
陈然然, 祝欣, 林玉锁, 余冉, 龙涛. 2015. 氯代有机物污染场地的监控自然衰减修复初探[J]. 化工学报, 66(7): 2361-2369. |
费宇红, 刘雅慈, 李亚松, 包锡麟, 张鹏伟. 2022. 中国地下水污染修复方法和技术应用展望[J]. 中国地质, 49(2): 420-434. |
何泽, 宁卓, 黄冠星, 刘丹丹, 张千千, 孙继朝. 2019. 太行山前平原浅层地下水污染的分子生物学响应特征——以滹沱河流域为例[J]. 中国地质, 46(2): 290-301. |
贾慧. 2011. 非饱和区石油污染的自然衰减研究[D]. 北京: 清华大学. |
贾慧, 武晓峰, 胡黎明, 刘培斌. 2011. 基于现场试验的石油类污染物自然衰减能力研究[J]. 环境科学, 32(12): 3699-3703. |
姜伟男. 2020. 某石油化工污染场地地下水中污染物自然衰减识别研究[D]. 长春: 吉林大学. |
焦珣. 2010. 地下水石油类污染MNA修复研究[D]. 长春: 吉林大学, |
李洋, 罗佳沂, 林凤, 毛瑞丰, 李凯. 2022. 广西武宣地区红糟酸微生物多样性分析[J]. 中国调味品, 47(1): 14-20. |
李元杰, 王森杰, 张敏, 何泽, 张巍. 2018. 土壤和地下水污染的监控自然衰减修复技术研究进展[J]. 中国环境科学, 38(3): 1185-1193. |
刘明柱, 陈鸿汉, 胡丽琴. 2005. 北方某城市浅层地下水中有机污染物迁移转化的数值模拟研究[J]. 中国地质, 32(3): 507-511. |
路莹. 2013. 浅层地下水系统石油类污染物的生物降解机制研究[D]. 长春: 吉林大学. |
吕航. 2014. 地下水石油烃污染物的微生物降解过程及其原位强化修复研究[D]. 长春: 吉林大学. |
宁卓, 郭彩娟, 蔡萍萍, 张敏, 陈宗宇, 何泽. 2018. 某石油污染含水层降解能力地球化学评估[J]. 中国环境科学, 38(11): 4068-4074. |
石建省, 王昭, 张兆吉, 费宇红, 张凤娥, 李亚松, 陈京生, 钱永. 2011. 华北平原地下水有机污染特征初步分析[J]. 生态环境学报, 20(11): 1695-1699. |
吴玉成, 钟佐燊, 陈亮. 2000. 去除地下水芳香烃污染物: 实验室含水层土柱研究[J]. 长春科技大学学报, 30(1): 61-64. |
吴玉成, 钟佐燊, 张建立. 1999. 反硝化条件下微生物降解地下水中的苯和甲苯[J]. 中国环境科学, 19(6): 505-509. |
张兆吉, 费宇红, 张连胜. 2009. 华北平原地下水污染调查评价[C]//2009年度中国地质科技新进展和地质找矿新成果资料汇编. 北京: 中国地质教育出版社. |
赵勇胜, 王冰, 屈智慧, 郑苇, 贾旭, 孙猛. 2010. 柴油污染包气带砂层中的自然衰减作用[J]. 吉林大学学报(地球科学版), 40(2): 389-393. |
赵勇胜. 2015. 地下水污染场地的控制与修复[M]. 北京: 科学出版社, 1-397. |
周睿, 赵勇胜, 任何军, 董军, 胡桂全, 赵妍, 花菲. 2009. BTEX在地下水环境中的自然衰减[J]. 环境科学, 30(9): 2804-2808. |
朱瑞利, 张施阳, 李辉, 林匡飞, 吕树光. 2015. 上海浦东浅层地下水环境三氯乙烷自然衰减规律及过程模拟[J]. 华东理工大学学报(自然科学版), 41(3): 42-348. |
Geological profile of study area
Locations of groundwater monitoring wells in the study area
Distribution of TCP and benzene in the groundwater of study area
Concentration changes of TCP (a) and benzene (b) in phreatic aquifer groundwater
Concentration changes of TCP (a) and benzene (b) in confined groundwater
ORP changes of groundwater in different monitoring wells (a-Phreatic aquifer (PA); b-Confined aquifer (CA))
ORP (units: mV) distribution of different depths of groundwater (a-Phreatic aquifer (PA); b-Confined aquifer (CA))
Concentration change of NO3- in different monitoring wells of groundwater (a-Phreatic aquifer (PA); b-Confined aquifer (CA))
Concentration distribution of NO3- in groundwater (units: mg/L; a-Phreatic aquifer (PA); b-Confined aquifer (CA))
Distribution of microbial diversity in the groundwater (a-Phreatic aquifer (PA); b-Confined aquifer (CA))
Distribution of microbial richness index in the groundwater (a-Phreatic aquifer (PA); b-Confined aquifer (CA))
Dynamic fitting curves of natural attenuation of TCP and benzene in the groundwater of source pollution area