2022 Vol. 49, No. 2
Article Contents

LI Qiqi, XU Shang, CHEN Ke, SONG Teng, MENG Fanyang, HE Sheng, LU Yongchao, SHI Wanzhong, GOU Qiyang, WANG Yuxuan. 2022. Analysis of shale gas accumulation conditions of the Upper Permian in the Lower Yangtze Region[J]. Geology in China, 49(2): 383-397. doi: 10.12029/gc20220203
Citation: LI Qiqi, XU Shang, CHEN Ke, SONG Teng, MENG Fanyang, HE Sheng, LU Yongchao, SHI Wanzhong, GOU Qiyang, WANG Yuxuan. 2022. Analysis of shale gas accumulation conditions of the Upper Permian in the Lower Yangtze Region[J]. Geology in China, 49(2): 383-397. doi: 10.12029/gc20220203

Analysis of shale gas accumulation conditions of the Upper Permian in the Lower Yangtze Region

    Fund Project: Supported by the National Natural Science Foundation of China for Excellent Young Scholars (No.42122017), the Innovative Research Groups of the National Natural Science Foundation of China (No.41821002), the Shandong Provincial Key Research and Development Program (No.2020ZLYS08), the project of China Geological Survey (No.DD20190561) and the independent innovation research program of China University of Petroleum (East China) (No.21CX06001A)
More Information
  • Author Bio: LI Qiqi, male, born in 1992, doctor candidate, engaged in unconventional oil and gas geology; E-mail: liqiqi6@163.com
  • Corresponding author: XU Shang, male, born in 1985, professor, engaged in hydrocarbon accumulation mechanism and unconventional oil and gas geology; E-mail: xushang0222@163.com 
  • This paper is the result of oil and gas exploration engineering.

    Objective

    The dark shale of the Longtan-Dalong Formation is widely developed in the Upper Permian of the Lower Yangtze region, which is the key formation for shale gas exploration in China. At present, the degree of exploration in this area is low, resulting in unclear understanding of shale gas accumulation conditions.

    Methods

    The geochemical characteristics, reservoir properties, and preservation conditions of the Longtan Formation and Dalong Formation shales were studied to evaluate shale gas exploration potential and optimize favorable exploration areas.

    Results

    The organic matter abundance of the Longtan Formation and Dalong Formation is high, TOC content is generally greater than 2.0%, the thermal evolution degree is moderate (between 1.3% and 2.5%), the reservoir space is mainly ink bottle and slit-like mesopores, the brittle mineral content is generally higher than 50%, with good hydrocarbon generation material basis and fracturability. The Longtan Formation shale is thick, with good self-sealing ability, and the preservation conditions are generally better than those of the Dalong Formation. Both of them develop various types of fractures, which are the main channels for shale gas escape. In addition, the late magmatic activity is frequent, which has a strong destructive effect on shale gas, and the preservation conditions are the key to shale gas enrichment.

    Conclusions

    The evaluation of the Upper Permian shale gas in the Lower Yangtze area should be based on sedimentary environment, hydrocarbon generation capacity, and reservoir conditions, taking the shale gas preservation conditions as the key and adopting the principle of finding weak areas in the context of strong tectonic activity. Finally, five favorable areas were divided in the Dalong Formation and Longtan Formation in the Lower Yangtze area.

  • 加载中
  • Ambrose R J, Hartman R C, Diaz Campos M, Akkutlu I Y, Sondergeld C. 2010. New pore-scale considerations for shale gas in place calculations[C]. SPE Unconventional Gas Conference.

    Google Scholar

    B J Curtis. 2002. Fractured shale-gas systems[J]. AAPG Bulletin, 86: 1921-1938.

    Google Scholar

    Boström K. 1983. Genesis of ferromanganese deposits-diagnostic criteria for recent and old deposits[M]//Hydrothermal Processes at Seafloor Spreading Centers. Boston: Springer, 473-489.

    Google Scholar

    Bowker K A. 2007. Barnett shale gas production, Fort Worth Basin: Issues and discussion[J]. AAPG Bulletin, 91(4): 523-533. doi: 10.1306/06190606018

    CrossRef Google Scholar

    Cao Taotao, Song Zhiguang, Luo Houyong, Zhou Yuanyuan, Wang Sibo. 2016. Pore system characteristics of Permian transitional shale reservoir in the Lower Yangtze region, China [J]. Natural Gas Geoscience, 27(7): 1332-1345 (in Chinese with English abstract).

    Google Scholar

    Cao Taotao, Song Zhiguang, Wang Sibo, Xia Jia. 2015. Physical property characteristics and controlling factors of permian shale reservoir in the lower Yangtze platform[J]. Natural Gas Geoscience, 26(2): 341-351 (in Chinese with English abstract).

    Google Scholar

    Chen Jie, Pan Shuren, Zhou Guoxing. 2013. Permian Longtan Formation-Dalong Formation shale gas exploration prospect analysis in Lower Yangtze Area, Jiangsu[J]. Coal Geology of China, 25(10): 22-25 (in Chinese with English abstract).

    Google Scholar

    Chen Ping, Zhang Minqiang, Xu Yongzhe, Liu Jinshui, Du Xuebin, Hu Xiaohui, Lu Yongchao. 2013. The shale reservoir characteristic of Dalong Formation Upper Permian in Chaohu-Jingxian, Lower Yangtze area[J]. Acta Petrologica Sinica, 29(8): 2925-2935 (in Chinese with English abstract).

    Google Scholar

    Chen Shaowei, Liu Jianzhang. 2021. Research progress and prospects of the stages, genesis and fluid evolution of micro-fracture veins in petroliferous basins [J]. Bulletin of Geological Science and Technology, 40(4): 81-92 (in Chinese with English abstract).

    Google Scholar

    Curtis M E, Sondergeld C H, Ambrose R J, Rai C S. 2012. Microstructural investigation of gas shales in two and three dimensions using nanometer-scale resolution imaging[J]. AAPG Bulletin, 96(4): 665-677. doi: 10.1306/08151110188

    CrossRef Google Scholar

    Hill D G, Lombardi T E, Martin J P. 2004. Fractured shale gas potential in New York[J]. Northeastern Geology and Environmental Sciences, 26(1/2): 57-78.

    Google Scholar

    Donaldson E C, Kendall R F, Baker B, Manning F S. 1975. Surface-area measurement of geologic materials[J]. Society of Petroleum Engineers Journal, 15(2): 111-116. doi: 10.2118/4987-PA

    CrossRef Google Scholar

    Du X B, Lu Y C, Chen P, Li X Q, Song X D. 2019. The Lower Yangtze area: A next shale gas block for China? Preliminary potential assessment from some geology and organic geochemistry information[J]. Geological Journal, 55(4): 3157-3178.

    Google Scholar

    Ge H, Zhang Z. 2016. Effect of magmatic hydrothermal on gas reservoir formation in Permian-Lower Triassic source rocks in Huangqiao Area, South China[J]. Geosystem Engineering, 19(6): 275-283. doi: 10.1080/12269328.2016.1191381

    CrossRef Google Scholar

    Ge Haixia, Zhang Zhihuan, 2015. Oil-source analysis of Permian-lower Triassic crude oils from Huangqiao and Jurong Area in Lower Yangtze Region[J]. Science Technology and Engineering, 15(26): 140-151 (in Chinese with English abstract).

    Google Scholar

    Gou Qiyang, Xu Shang, Hao Fang, Lu Yangbo, Shu Zhiguo, Wang Yuxuan. 2020. Research on mud shale fractures based on image logging: A case study of Jiaoshiba area [J]. Bulletin of Geological Science and Technology, 39(6): 193-200 (in Chinese with English abstract).

    Google Scholar

    Guo Xusheng. 2014. Rules of Two-Factor Enrichiment for Marine Shale Gas in Southern China——Understanding from the Longmaxi Formation Shale Gas in Sichuan Basin and Its Surrounding Area[J]. Acta Geologica Sinica, 88(7): 1209-1218 (in Chinese with English abstract).

    Google Scholar

    Han Jing, Chen Bo, Zhao Xingbin, Zheng Chao, Zhang Jiaming. 2017. Development characteristics and influential factors of organic pores in the Permian shale in the Lower Yangtze Region[J]. Natural Gas Industry, 37(10): 17-26 (in Chinese with English abstract).

    Google Scholar

    Huang Baojia, Huang Hao, Jin Qiuyue, Zhou Gang, Zhao Xingbin. 2015. Characterization of pores and methane sorption capacity of Permian shapes in southeast Anhui, Lower Yangtze Region[J]. Natural Gas Geoscience, 26(8): 1516-1524 (in Chinese with English abstract).

    Google Scholar

    Huang Baojia, Shi Rongfu, Zhao Xingbin, Zhou Gang. 2013. Geological conditions of Paleozoic shale gas formation and its exploration potential in the South AnhuiLower Yangtze area[J]. Journal of China Coal Society, 38(5): 877-882 (in Chinese with English abstract).

    Google Scholar

    İnan S, Al Badairy H, İnan T, Al Zahrani A. 2018. Formation and occurrence of organic matter-hosted porosity in shales[J]. International Journal of Coal Geology, 199: 39-51. doi: 10.1016/j.coal.2018.09.021

    CrossRef Google Scholar

    Jewell P W, Stallard R F. 1991. Geochemistry and paleoceanographic setting of central Nevada bedded barites[J]. The Journal of Geology, 99(2): 151-170. doi: 10.1086/629482

    CrossRef Google Scholar

    Ji L M, Zhang T W, Milliken K L, Qu J L, Zhang X L. 2012. Experimental investigation of main controls to methane adsorption in clay-rich rocks[J]. Applied Geochemistry, 27(12): 2533-2545. doi: 10.1016/j.apgeochem.2012.08.027

    CrossRef Google Scholar

    Jia Chengzao, Zheng Min, Zhang Yongfeng. 2012. Unconventional hydrocarbon resources in China and the prospect of exploration and development[J]. Petroleum Exploration and Development, 39(2): 139-146 (in Chinese with English abstract). doi: 10.1016/S1876-3804(12)60026-3

    CrossRef Google Scholar

    Jin Zhijun, Liu Guangxiang, Fang Chengming. 2013. Evaluation of selected areas for petroleum exploration in marine strata of lower Yangtze region[J]. Petroleum Geology & Experiment, 35(5): 473-479 (in Chinese with English abstract).

    Google Scholar

    Kotarba M J, Rice D D. 2001. Composition and origin of coalbed gases in the Lower Silesian basin, southwest Poland[J]. Applied Geochemistry, 16(7): 895-910.

    Google Scholar

    Krooss B M, Friberg L, Gensterblum Y, Hollenstein J, Prinz D, Littke R. 2005. Investigation of the pyrolytic liberation of molecular nitrogen from Palaeozoic sedimentary rocks[J]. International Journal of Earth Sciences, 94(5/6): 1023.

    Google Scholar

    Krooss B, Littke R, Müller B, Frielingsdorf J, Schwochau K, Idiz E. 1995. Generation of nitrogen and methane from sedimentary organic matter: Implications on the dynamics of natural gas accumulations[J]. Chemical Geology, 126(3/4): 291-318.

    Google Scholar

    Li Qiqi, Lan Baofeng, Li Gangquan, Xu Shang, Liu Ting, Gou Qiyang, Wang Yuxuan. 2021. Element deochemical characteristics and their geological significance of Wufeng-Longmaxi Formation shales in north margin of the Central Guizhou Uplift[J]. Earth Science, 46(9): 3172-3188 (in Chinese with English abstract).

    Google Scholar

    Liang Mingliang, Wang Zongxiu, Zheng Guodong, Christopher Greenwell Hugh, Li Huijun, Zhang Linyan, Feng Xingqiang, Zhang Kaixun. 2020. Occurrence and influence of residual gas released by crush methods on pore structure in Longmaxi shale in Yangtze Plate, Southern China[J]. China Geology, 3(4): 545-557. doi: 10.31035/cg2020070

    CrossRef Google Scholar

    Liao Z, Hu W, Cao J, Wang X, Hu Z. 2019. Petrologic and geochemical evidence for the formation of organic-rich siliceous rocks of the Late Permian Dalong Formation, Lower Yangtze region, southern China[J]. Marine and Petroleum Geology, 103: 41-54. doi: 10.1016/j.marpetgeo.2019.02.005

    CrossRef Google Scholar

    Liao Zhiwei, Hu Wenxuan, Cao Jian, Yao Suping, Xu Zhimin, Zhang Yuexia, Wanye, Ding Hai. 2016. A preliminary investigation of the development and hydrocarbon potential ofthe the black shales in the Upper Permian Dalong Formation, Southern Anhui Province in the Lower Yangze Region, China[J]. Geological Journal of China Universities, 22(1): 138-151 (in Chinese with English abstract).

    Google Scholar

    Littke R, Krooss B, Idiz E, Frielingsdorf J. 1995. Molecular nitrogen in natural gas accumulations: Generation from sedimentary organic matter at high temperatures[J]. AAPG Bulletin, 79(3): 410-430.

    Google Scholar

    Liu Jingwei. 2018. The Developmental Features and Shale Gas Potential of Permian Source Rocks in Jiangsu Province[D]. Nanjing: Nanjing University (in Chinese with English abstract).

    Google Scholar

    Liu Xiaoping, Pan Jiping, Dong QingYuan, Liu DongYing, Duan Hongliang, Li Huadong, Dongqian. 2011. Geological conditions of shale gas forming in Paleozoic Subei area[J]. Natural Gas Geoscience, 22(6): 1100-1108 (in Chinese with English abstract).

    Google Scholar

    Loucks R G, Reed R M, Ruppel S C, Hammes U. 2012. Spectrum of pore types and networks in mudrocks and a descriptive classification for matrix-related mudrock pores[J]. AAPG Bulletin, 96(6): 1071-1098. doi: 10.1306/08171111061

    CrossRef Google Scholar

    Luo W, Hou M, Liu X, Huang S, Chao H, Zhang R, Deng X. 2018. Geological and geochemical characteristics of marine-continental transitional shale from the Upper Permian Longtan formation, Northwestern Guizhou, China[J]. Marine and Petroleum Geology, 89: 58-67. doi: 10.1016/j.marpetgeo.2017.06.029

    CrossRef Google Scholar

    Mei Shuiquan. 1988. Application of rock chemistry in the study of Presinian sedimentary environment and the source of uranium mineralization in Hunan Province[J]. Hunan Geology, (3): 25-31, 49 (in Chinese with English abstract).

    Google Scholar

    Montgomery S L, Jarvie D M, Bowker K A, Pollastro R M. 2005. Mississippian Barnett Shale, Fort Worth basin, north-central Texas: Gas-shale play with multi-trillion cubic foot potential[J]. AAPG Bulletin, 89(2): 155-175. doi: 10.1306/09170404042

    CrossRef Google Scholar

    Pan Jiping, Qiao Dewu, Li Shizhen, Zhou Dongsheng, Xu Linfeng, Zhang Mengying, Song Xiuyan. 2011. Shale-gas geological conditions and exploration prospect of the Paleozoic marine strata in lower Yangtze area, China[J]. Geological Bulletin of China, 30(Z1): 337-343 (in Chinese with English abstract).

    Google Scholar

    Pan L, Xiao X, Tian H, Zhou Q, Chen J, Li T, Wei Q. 2015. A preliminary study on the characterization and controlling factors of porosity and pore structure of the Permian shales in Lower Yangtze region, Eastern China[J]. International Journal of Coal Geology, 146: 68-78. doi: 10.1016/j.coal.2015.05.005

    CrossRef Google Scholar

    Pan Lei, Chen Guihua, Xu Qiang, Xiao Xianming. 2013. Pore structure characteristics of Permian organic-rich shale in Lower Yangtze area[J]. Journal of China Coal Society, 38(5): 787-793 (in Chinese with English abstract).

    Google Scholar

    Qiu Xiaosong, Hu Mingyi, Hu Zhonggui, Ye Ying, Cai Quansheng. 2014. Evaluation methods and parameter assignments of shale gas resources: A case study of the Wufeng-Longmaxi Formation in the Middle Yangtze region[J]. Geology in China, 41(6): 2091-2098 (in Chinese with English abstract).

    Google Scholar

    Ross D J, Bustin R M. 2009. The importance of shale composition and pore structure upon gas storage potential of shale gas reservoirs[J]. Marine and petroleum Geology, 26(6): 916-927. doi: 10.1016/j.marpetgeo.2008.06.004

    CrossRef Google Scholar

    Rouquerol J, Avnir D, Fairbridge C, Everett D, Haynes J, Pernicone N, Ramsay J, Sing K, Unger K. 1994. Physical chemistry division commission on colloid and surface chemistry, subcommittee on characterization of porous solids: Recommendations for the characterization of porous solids[J]. Pure and Applied Chemistry, 66(8): 1739-1758. doi: 10.1351/pac199466081739

    CrossRef Google Scholar

    Shi Gang, Huang Zhengqing, Zheng Hongjun, Xu Zhenyu, Zhao Muhua, Shao Wei, Yin Qichun, Zhou Daorong, Fang Chaogang, Teng Long, Wang Jialong. 2018. Drilling discovery of "Three Gas One Oil" in the Permian strata of Lower Yangtze area[J]. Geology in China, 45(2): 416-417 (in Chinese with English abstract).

    Google Scholar

    Sing K S. 1985. Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity (Recommendations 1984)[J]. Pure and Applied Chemistry, 57(4): 603-619. doi: 10.1351/pac198557040603

    CrossRef Google Scholar

    Song Teng, Lin Tuo, Chen Ke, Meng Fanyang, Li Haohan, Wang Peng. 2017. The discovery of shale gas in Upper Permian transitional facies at Jingye-1 well in Lower Yangtze region[J]. Geology in China, 44(3): 606-607 (in Chinese with English abstract).

    Google Scholar

    Song Teng. 2019. Study on geological conditions of Upper Permian shale oil and gas in Lower Yangtze area of southern Jiangsu-Anhui Province[J]. Geological Survey of China, (2): 18-25 (in Chinese with English abstract).

    Google Scholar

    Song Xiuyan. 2012. Study of Shale Characteristic and Containing Gas Potential of The Permain Longtan Formation in Lower Yangtze region, China[D]. Beijing: China University of Geoscience(Beijing) (in Chinese with English abstract).

    Google Scholar

    Sun Tao. 2006. A new map showing the distribution of granites in South China and its explanatory notes[J]. Geological Bulletin of China, 25: 232-235 (in Chinese with English abstract).

    Google Scholar

    Thyberg B, Jahren J. 2011. Quartz Cementation in Mudstones: Sheet-Like Quartz Cement from Clay Mineral Reactions during Burial[J]. Petroleum Geoscience, 17(1): 53-63. doi: 10.1144/1354-079310-028

    CrossRef Google Scholar

    Tian Wei, Wang Qiang, Chen Lin, Miao Fengbin, Bai yunshan. 2019. Exploration potential of shale gas in Lower Permian Liangshan Formation of Lianyuan depression, Central Hunan[J]. Northwestern Geology, 52(3): 162-172 (in Chinese with English abstract).

    Google Scholar

    Tribovillard N, Algeo T J, Lyons T, Riboulleau A. 2006. Trace metals as paleoredox and paleoproductivity proxies: An update[J]. Chemical Geology, 232(1/2): 12-32.

    Google Scholar

    Wang Shiqian, Wang Shuyan, Man Ling, Wang Yuman. 2013. Appraisal method and key parameters for screening shale gas play[J]. Journal of Chengdu University of Technology (Science and Technology Edition), 40: 609-620 (in Chinese with English abstract).

    Google Scholar

    Wignall P B, Twitchett R J. 1996. Oceanic anoxia and the end Permian mass extinction[J]. Science, 272(5265): 1155-1158. doi: 10.1126/science.272.5265.1155

    CrossRef Google Scholar

    Wu Hao, Yao Suping, Jiao Kun, Hu Wenxuan, Yin Hongwei, Jia Dong. 2013. Shale-gas exploration prospect of Longtan Formation in the Lower Yangtze area of China[J]. Journal of China Coal Society, 38(5): 870-876 (in Chinese with English abstract).

    Google Scholar

    Yang C, Xiong Y, Zhang J, Liu Y, Chen C. 2019. Comprehensive understanding of OM-hosted pores in transitional shale: A case study of Permian Longtan shale in South China based on organic petrographic analysis, gas adsorption, and X-ray diffraction measurements[J]. Energy & Fuels, 33(9): 8055-8064.

    Google Scholar

    Yang Feng, Ning Zhengfu, Zhang Shidong, Hu Changpeng, Du Lihong, Liu Huiqing. 2013. Characterization of pore structures in shales through nitrogen adsorption experiment[J]. Natural Gas Industry, 33(4): 135-140 (in Chinese with English abstract).

    Google Scholar

    Ye Jiaren, Zhao Niubin, Yang Baolin, Xu Jianyong. 2020. Productivity and development model of source rock of the Liushagang Formation in the Weixinan Sag [J]. Bulletin of Geological Science and Technology, 39(1): 105-113 (in Chinese with English abstract).

    Google Scholar

    Zhang Junfeng, Zhai Gangyi, Wang Daming, Bao Shujing, Chen Ke, Li Haohan, Song Teng, Wang Peng, Zhou Zhi. 2020. Tectonic evolution of the Huangling dome and its control effect on shale gas preservation in the north margin of the Yangtze Block, South China[J]. China Geology, 3(1): 28-37. doi: 10.31035/cg2020025

    CrossRef Google Scholar

    Zhang Minqiang, Lu Yongchao. 2013. Shale features and gas-source condition in the western Lower Yangtze area[J]. China Offshore Oil and Gas, (2): 9-17(in Chinese with English abstract).

    Google Scholar

    Zhang Ya, Liu Xiaoping, Dong Qingyuan, Ding Weixing, Li Huadong, Liu Shili, Duan Hongliang, Dong Qian. 2013. Formation conditions and favorable exploration zones of shale gas in Upper Permian Longtan Formation of Subei area[J]. Journal of Oil and Gas Technology, 35(3): 36-40 (in Chinese with English abstract).

    Google Scholar

    Zhou Dongsheng, Xu Linfeng, Pan Jiping, Huang Xiaowei. 2012. Prospect of shale gas exploration in the Upper Permian Longtan Formation in the Yangtze Massif[J]. Natural Gas Industry, 32(12): 6-10 (in Chinese with English abstract).

    Google Scholar

    Zhu Yuenian. 1994. Research progress on geochemistry of non-hydrocarbon components in natural gas[J]. Natural Gas Geoscience, (1): 1-29 (in Chinese with English abstract).

    Google Scholar

    Zou C, Zhu R, Chen Z Q, Ogg J G, Wu S, Dong D, Qiu Z, Wang Y, Wang L, Lin S. 2019. Organic-matter-rich shales of China[J]. Earth-Science Reviews, 189: 51-78. doi: 10.1016/j.earscirev.2018.12.002

    CrossRef Google Scholar

    Zou Caineng, Dong Dazhong, Wamng Shejiao, Li Jianzhong, Li Xinjing, Wang Yuman, Li Denghua, Cheng Keming. 2010. Geological characteristics, formation mechanism and resource potential of shale gas in China[J]. Petroleum Exploration and Development, 37(6): 641-653 (in Chinese with English abstract). doi: 10.1016/S1876-3804(11)60001-3

    CrossRef Google Scholar

    曹涛涛, 宋之光, 罗厚勇, 周圆圆, 王思波. 2016. 下扬子地区二叠系海陆过渡相页岩孔隙体系特征[J]. 天然气地球科学, 27(7): 1332-1345.

    Google Scholar

    曹涛涛, 宋之光, 王思波, 夏嘉. 2015. 下扬子地台二叠系页岩储集物性特征及控制因素[J]. 天然气地球科学, 26(2): 341-351.

    Google Scholar

    陈洁, 潘树仁, 周国兴. 2013. 江苏下扬子区二叠系龙潭组—大隆组页岩气勘探前景分析[J]. 中国煤炭地质, 25(10): 22-25. doi: 10.3969/j.issn.1674-1803.2013.10.05

    CrossRef Google Scholar

    陈平, 张敏强, 许永哲, 刘金水, 杜学斌, 胡小辉, 陆永潮. 2013. 下扬子巢湖—泾县地区上二叠统大隆组泥页岩储层特征[J]. 岩石学报, 29(8): 2925-2935.

    Google Scholar

    陈少伟, 刘建章. 2021. 含油气盆地微观裂缝脉体期次、成因与流体演化研究进展及展望[J]. 地质科技通报, 40(4): 81-92.

    Google Scholar

    葛海霞, 张枝焕. 2015. 下扬子黄桥—句容地区二叠系—下三叠统油源分析[J]. 科学技术与工程, 15(26): 140-151.

    Google Scholar

    苟启洋, 徐尚, 郝芳, 陆杨博, 舒志国, 王雨轩. 2020. 基于成像测井的泥页岩裂缝研究: 以焦石坝区块为例[J]. 地质科技通报, 39(6): 193-200.

    Google Scholar

    郭旭升. 2014. 南方海相页岩气"二元富集"规律——四川盆地及周缘龙马溪组页岩气勘探实践认识[J]. 地质学报, 88(7): 1209-1218.

    Google Scholar

    韩京, 陈波, 赵幸滨, 郑超, 张家铭. 2017. 下扬子地区二叠系页岩有机质孔隙发育特征及其影响因素[J]. 天然气工业, 37(10): 17-26.

    Google Scholar

    黄保家, 黄灏, 金秋月, 周刚, 赵幸滨. 2015. 下扬子皖东南地区二叠系页岩储层特性及甲烷吸附能力[J]. 天然气地球科学, 26(8): 1516-1524.

    Google Scholar

    黄保家, 施荣富, 赵幸滨, 周刚. 2013. 下扬子皖南地区古生界页岩气形成条件及勘探潜力评价[J]. 煤炭学报, 38(5): 877-882.

    Google Scholar

    贾承造, 郑民, 张永峰. 2012. 中国非常规油气资源与勘探开发前景[J]. 石油勘探与开发, 39(2): 129-136.

    Google Scholar

    金之钧, 刘光祥, 方成名, 张长江, 彭金宁. 2013. 下扬子区海相油气勘探选区评价研究[J]. 石油实验地质, (5): 473-479.

    Google Scholar

    李琪琪, 蓝宝锋, 李刚权, 徐尚, 刘婷, 苟启洋, 王雨轩. 2021. 黔中隆起北缘五峰—龙马溪组页岩元素地球化学特征及其地质意义[J]. 地球科学, 46(9): 3172-3188.

    Google Scholar

    廖志伟, 胡文瑄, 曹剑, 姚素平, 许志敏, 张月霞, 万野, 丁海. 2016. 下扬子皖南大隆组黑色岩系发育特征及油气资源潜力初探[J]. 高校地质学报, 22(1): 138-151.

    Google Scholar

    刘敬维. 2018. 江苏省二叠系烃源岩发育特征及页岩气潜力[D]. 南京: 南京大学.

    Google Scholar

    刘小平, 潘继平, 董清源, 刘东鹰, 段宏亮, 李华东, 董谦. 2011. 苏北地区古生界页岩气形成地质条件[J]. 天然气地球科学, 22(6): 1100-1108.

    Google Scholar

    梅水泉. 1988. 岩石化学在湖南前震旦系沉积环境及铀来源研究中的应用[J]. 湖南地质(03): 25-31, 49.

    Google Scholar

    孟凡洋, 陈科, 包书景, 林拓, 张瑞, 董周宾. 2017. 鄂西巴东地区(巴页1井) 发现海陆过渡相页岩气[J]. 中国地质, 44(2): 403-404.

    Google Scholar

    潘继平, 乔德武, 李世臻, 周东升, 许林峰, 张梦颖, 宋修艳. 2011. 下扬子地区古生界页岩气地质条件与勘探前景[J]. 地质通报, 30(Z1): 337-343.

    Google Scholar

    潘磊, 陈桂华, 徐强, 肖贤明. 2013. 下扬子地区二叠系富有机质泥页岩孔隙结构特征[J]. 煤炭学报, 38(5): 787-793.

    Google Scholar

    邱小松, 胡明毅, 胡忠贵, 叶颖, 蔡全升. 2014. 页岩气资源评价方法及评价参数赋值——以中扬子地区五峰组—龙马溪组为例[J]. 中国地质, 41(6): 2091-2098.

    Google Scholar

    石刚, 黄正清, 郑红军, 徐振宇, 赵牧华, 邵威, 殷启春, 周道容, 方朝刚, 滕龙. 2018. 下扬子地区二叠系"三气一油" 钻探发现[J]. 中国地质, 45(2): 416-417.

    Google Scholar

    宋腾, 林拓, 陈科, 孟凡洋, 李浩涵, 王鹏. 2017. 下扬子皖南地区上二叠统(JY1井)发现海陆过渡相页岩气[J]. 中国地质, 44(3): 606-607.

    Google Scholar

    宋腾. 2019. 下扬子苏皖南地区上二叠统页岩油气地质条件研究[J]. 中国地质调查(2): 18-25.

    Google Scholar

    宋修艳. 2012. 下扬子南部地区二叠系龙潭组页岩特征及含气潜力研究[D]. 北京: 中国地质大学(北京).

    Google Scholar

    孙涛. 2006. 新编华南花岗岩分布图及其说明[J]. 地质通报, 25(3): 332-335.

    Google Scholar

    田巍, 王强, 陈林, 苗凤彬, 白云山. 2019. 湘中涟源凹陷下二叠统梁山组页岩气勘探前景[J]. 西北地质, 52(3): 162-172.

    Google Scholar

    王世谦, 王书彦, 满玲, 董大忠, 王玉满. 2013. 页岩气选区评价方法与关键参数[J]. 成都理工大学学报: 自然科学版, 40(6): 609-620.

    Google Scholar

    吴浩, 姚素平, 焦堃, 胡文碹, 尹宏伟, 贾东. 2013. 下扬子区上二叠统龙潭组页岩气勘探前景[J]. 煤炭学报, 38(5): 870-876.

    Google Scholar

    杨峰, 宁正福, 张世栋, 胡昌蓬, 杜立红, 刘慧卿. 2013. 基于氮气吸附实验的页岩孔隙结构表征[J]. 天然气工业, 33(4): 135-140.

    Google Scholar

    叶加仁, 赵牛斌, 杨宝林, 徐建永. 2020. 涠西南凹陷流沙港组烃源岩生产力及发育模式[J]. 地质科技通报, 39(1): 105-113.

    Google Scholar

    张敏强, 陆永潮. 2013. 下扬子西部地区泥页岩特征及气源条件评价[J]. 中国海上油气, (2): 9-17.

    Google Scholar

    章亚, 刘小平, 董清源, 丁卫星, 李华东, 刘世丽, 段宏亮, 董谦. 2013. 苏北地区上二叠统龙潭组页岩气形成条件及有利区预测[J]. 石油天然气学报, (3): 36-40.

    Google Scholar

    周东升, 许林峰, 潘继平, 黄晓伟. 2012. 扬子地块上二叠统龙潭组页岩气勘探前景[J]. 天然气工业, 32(12): 6-10.

    Google Scholar

    朱岳年. 1994. 天然气中非烃组分地球化学研究进展[J]. 天然气地球科学, (1): 1-29.

    Google Scholar

    邹才能, 董大忠, 王社教, 李建忠, 李新景, 王玉满, 李登华, 程克明. 2010. 中国页岩气形成机理-地质特征及资源潜力[J]. 石油勘探与开发, 37(6): 641-653.

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(11)

Tables(2)

Article Metrics

Article views(2039) PDF downloads(14) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint