2021 Vol. 48, No. 6
Article Contents

YAO Chunyan, WANG Tiangang, NI Pei, YAO Zhongyou, GUO Weimin, ZHU Yiping, WANG Wei. 2021. Metallogenic types, characteristics and research progress of Nb-Ta deposits[J]. Geology in China, 48(6): 1748-1758. doi: 10.12029/gc20210607
Citation: YAO Chunyan, WANG Tiangang, NI Pei, YAO Zhongyou, GUO Weimin, ZHU Yiping, WANG Wei. 2021. Metallogenic types, characteristics and research progress of Nb-Ta deposits[J]. Geology in China, 48(6): 1748-1758. doi: 10.12029/gc20210607

Metallogenic types, characteristics and research progress of Nb-Ta deposits

    Fund Project: Supported by the project of China Geological Survey(No. DD20201155, No. DD20190441)
More Information
  • Author Bio: YAO Chunyan, female, born in 1980, senior engineer, doctor, engages in mineral resources and geochemical survey and study; E-mail: ycyan@126.com
  • Corresponding author: WANG Tiangan, male, born in 1983, senior engineer, engaged in the study of regional metallogenic law; E-mail: wtiangang@mail.cgs.gov.cn 
  • Niobium and tantalum resources are widely distributed in the world. Their endogenous metallogenic deposits are mainly hosted in pegmatite, rare-metal granite, carbonatite, and alkaline rocks. Their exogenetic deposits are mostly the products of secondary enrichment through exogenous processes such as weathering and deposition from endogenous deposits. The metallogenic epoch of pegmatite-hosted deposits has a large span from 3.08 Ga to 0.19 Ga; alkaline rock-hosted deposits are at 2.25-1.35 Ga and 0.75-0.19 Ga respectively; carbonatite-hosted deposits are mainly in 0.75-0.6 Ga and 0.4-0.35 Ga; and granite-hosted deposits are mainly distributed in the middle and late stages of 0.75-0.19 Ga. At present, carbonatite-hosted niobium deposits and pegmatite-hosted tantalum deposits are the main exploration targets.

  • 加载中
  • Bleiwas D I, Papp J F, Yager T R. 2015. Shift in Global Tantalum Mine Production, 2000-2014: U.S. Geological Survey Fact Sheet 2015-3079[R]. 6.

    Google Scholar

    Bradley D, McCauley A. 2013. A Preliminary Deposit Model for Lithium-Cesium-Tantalum (LCT) Pegmatites[R]. U.S. Geological Survey Open- File Report.

    Google Scholar

    British Geological Survey. 2011. Nature environment research council[R]. Nottingham.

    Google Scholar

    Cai Xiao, Song Yang, Wang Denghong, Li Jiankang, Zhou Wei, Ding Haiyang. 2013. Distribution rules and metallogenic geological characteristics of important foreign niobium-tantalum deposits[J]. Acta Mineralogica Sinica(Supp. ), 193-194(in Chinese).

    Google Scholar

    Cao Fei, Yang Huipan, Zhang Liang, Wang Wei. 2019. Current situation and trend analysis of global tantalum and niobium mineral resources[J]. Conservation and Utilization of Mineral Resources, 39(5): 56-89 (in Chinese with English abstract).

    Google Scholar

    Černý P. 1991. Rare-element granitic pegmatites, part II-Regional to global environments and petrogenesis[J]. Geoscience Canada, 18(2): 68-81.

    Google Scholar

    Černý P, Ercit T S. 2005. The classification of granitic pegmatites revisited[J]. The Canadian Mineralogist, 43: 2005-2026. doi: 10.2113/gscanmin.43.6.2005

    CrossRef Google Scholar

    Costi H T, Dall Agnol R, Borges R M K, Minuzzi O R R. 2002. Tin-bearing sodic episyenites associated with the Proterozoic, A-type Agua Boa granite, Pitinga Mine, Amazonian Craton, Brazil[J]. Gondwana Research, 5(2): 435-451. doi: 10.1016/S1342-937X(05)70734-6

    CrossRef Google Scholar

    Costi H T. 2009. The peralkaline tin-mineralized madeira cryolite albite-rich granite of Pitinga, Amazonian Craton, Brazil: Petrography, mineralogy, and crystallization processes[J]. Canadian Mineralogist, 47: 1301-1327. doi: 10.3749/canmin.47.6.1301

    CrossRef Google Scholar

    Dewaele S, Tack L, Fernandez Alonso M, Boyce A J. 2008. Geology and mineralisation of the Gatumba area, Rwanda: Present state of knowledge[J]. Etudes Rwandaises, 16: 6-24.

    Google Scholar

    Dewaele S, Henjes-Kunst F, Melcher F, Sitnikova M, Burgess R, Gerdes A, Fernandez M A, Clercq F D, Muchez P, Lehmann B. 2011. Late Neoproterozoic overprinting of the cassiterite and columbite-tantalite bearing pegmatites of the Gatumba area, Rwanda (Central Africa)[J]. Journal of African Earth Sciences, 61(1): 10-26. doi: 10.1016/j.jafrearsci.2011.04.004

    CrossRef Google Scholar

    Dewaele S, Hulsbosch N, Cryns Y, Boyce A J. 2015. Geological setting and timing of the world-class Sn, Nb-Ta and Li mineralization of Manono-Kitotolo (Katanga, Democratic Republic of Congo)[J]. Ore Geology Review, 72: 373-390.

    Google Scholar

    Doig R, Barton J M. 1968. Ages of carbonatites and other alkaline rock in Québec[J]. Canada Journal of Earth Science, 7: 22-28.

    Google Scholar

    Dorion J F, Hosseini Z. 2013. Implementation of a seismic system at Niobec Mine[C]//47th U.S. Rock Mechanics/Geomechanics Symposium. San Francisco, California.

    Google Scholar

    Fernandez-Alonso M, Cutten H, De Waele B De, Tack L, Tahon A, Baudet D, Barritt S D. 2012. The Mesoproterozoic Karagwe-Ankole Belt (formerly the NE Kibara Belt): The result of prolonged extensional intracratonic basin development punctuated by two short-lived far-field compressional events[J]. Precambrian Research, 216-219: 63-86. doi: 10.1016/j.precamres.2012.06.007

    CrossRef Google Scholar

    Fetherston J M. 2004. Tantalum in western Australia[J]. Mineral Re-sources Bulletin, 22: 63-89.

    Google Scholar

    Hulsbosch N, Hertogen J, Dewaele S, Andre L, Muchez P. 2014. Alkali metal and rare earth element evolution of rock-forming minerals from the Gatumba area pegmatites (Rwanda): Quantitative assessment of crystal-melt fractionation in the regional zonation of pegmatite groups[J]. Geochimica et Cosmochimica Acta, 132: 349-374. doi: 10.1016/j.gca.2014.02.006

    CrossRef Google Scholar

    Hulsbosch N, Boiron M C, Dewaele S, Muchez P. 2016. Fluid fractionation of tungsten during granite-pegmatite differentiation and the metal source of peribatholitic W quartz veins: Evidence from the Karagwe-Ankole Belt (Rwanda)[J]. Geochimica et Cosmochimica Acta, 175: 299-318. doi: 10.1016/j.gca.2015.11.020

    CrossRef Google Scholar

    Jacobson M I, Calderwood M A, Grguric B A. 2007. Guidebook to the Pegmatites of Western Australia[M]. Carlisle W A: Hes-perian Press.

    Google Scholar

    Kaeter D, Barros R, Menuge J F, Chew D M. 2018. The magmatic-hydrothermal transition in rare-element pegmatites from southeast Ireland: LA-ICP-MS chemical mapping of muscovite and columbite-tantalite[J]. Geochimica et Cosmochimica Acta, 240: 98-130. doi: 10.1016/j.gca.2018.08.024

    CrossRef Google Scholar

    Kendall-Langley L A, Kemp A I S, Grigson J L, Hammerli J. 2020. U-Pb and reconnaissance Lu-Hf isotope analysis of cassiterite and columbite group minerals from Archean Li-Cs-Ta type pegmatites of Western Australia[J]. Lithos, 352-353: 105-231.

    Google Scholar

    Küster D. 2009. Granitoid-hosted Ta mineralization in the Arabian-Nubian Shield-ore deposit types, tectono-metallogenetic setting and petrogenetic framework[J]. Ore Geology Review, 35: 68-86. doi: 10.1016/j.oregeorev.2008.09.008

    CrossRef Google Scholar

    Lehmann B, Halder S, Ruzindana Munana J, Ngizimana J P, Biryabarema M. 2014. The geochemical signature of rare-metal pegmatites in Central Africa: Magmatic rocks in the Gatumba tin-tantalum mining district, Rwanda[J]. Journal of Geochemical Exploration, 144 (Part C): 528-538.

    Google Scholar

    Li Jiankang, Li Peng, Wang Denghong, Li Xiangjie. 2019. A review of niobium and tantalum metallogenic regularity in China[J]. Chinese Sciences Bulletin, 64(15): 1545-1566 (in Chinese with English abstract). doi: 10.1360/N972018-00933

    CrossRef Google Scholar

    Mackay D A R, Simandl G J. 2014. Geology, market and supply chain of niobium and tantalum——A review[J]. Mineralium Deposita, 49: 1025-1047. doi: 10.1007/s00126-014-0551-2

    CrossRef Google Scholar

    Makanga J F, Edou-Minko A. 2003. Etude petrographique et geochimique du complexe annulaire de mabounie (Ga-bon)[J]. African Journal of Science and Technology, 4(1): 67-77.

    Google Scholar

    McCausland P J, Pisarevsky S, Jourdan F, Higgins M. 2009. Laurentia at 571 Ma: Preliminary paleomagnetism and Ar-Ar age of the Ediacaran St Honore alkali intrusion, Quebec[C]//Proceedings, American Geophysical Union-Geological Association of Canada-Mineralogical Association of Canada-Canadian Geophysical Union, Joint Assembly, Toronto, Abstract GA12A-01.

    Google Scholar

    Melcher F, Graupner T, Gäbler H-E, Sitnkova M, Henjes-Kunst F, Oberthus T, Gerdes A, Dewaele S. 2015. Tan-talum-(niobium-tin) mineralization in African pegmatites and rare metal granites: Constraints from Ta-Nb oxide mineralogy, geochemistry and U-Pb geochronology[J]. Ore Geology Review, 64: 667-719. doi: 10.1016/j.oregeorev.2013.09.003

    CrossRef Google Scholar

    Mitchell R H. 2005. Mineralogical and experimental constraints on the origions of niobium mineralization in carbonatites[G]//Linnen R L, Samson I M(eds. ). Rare-element Geochemistry and Mineral Deposits: Geological Association of Canada Short Course Notes.

    Google Scholar

    Nicolas D K. 1962. The economic geology of columbium (Niobium) and of tantalum[J]. Economic Geology, 57(3): 377-404. doi: 10.2113/gsecongeo.57.3.377

    CrossRef Google Scholar

    Partington G A, McNaughton N J, Williams I S. 1995. A review of the geology, mineralization, and geochronology of the Greenbushes pegmatite, Western Australia[J]. Economic Geology, 90: 616-635. doi: 10.2113/gsecongeo.90.3.616

    CrossRef Google Scholar

    Pirajno F, González-álvarez I, Border A, Porter M. 2017. Mount Weld and Gifford Creek Rare Earth Elements Carbon-Atites[R]. Australian Institute of Mining and Metallurgy (AusIMM), Monograph, 32: 163-166.

    Google Scholar

    Pohl W L, Biryabarema M, Lehmann B. 2013. Early Neoproterozoic rare metal (Sn, Ta, W) and gold metallogeny of the Central Africa Region: A review[J]. Applied Earth Science, 122(2): 66-82. doi: 10.1179/1743275813Y.0000000033

    CrossRef Google Scholar

    Saeidi A, Heidarzadeh S, Lalancette S, Rouleau A. 2020. The effects of in situ stress uncertainties on the assessment of open stope stability: Case study at the Niobec Mine, Quebec(Canada)[J]. Geomechanics for Energy and the Environment, 25: 1-13.

    Google Scholar

    Schulz K J, Piatak N M, Papp J F. 2017. Niobium and tantalum, chapter M of critical mineral resources of the United States: economic and environmental geology and prospects for future supply[R]. USGS Professional Paper 1802, M1-M34.

    Google Scholar

    Simandl G J, Burr R O, Trueman D L, Paradis S. 2018. Tantalum and niobium: Deposits, resources, exploration methods and market-a primer for geoscientists[J]. Journal of the Geological Association of Canada, 85-96.

    Google Scholar

    Sweetapple M T, Holmes J, Young J, Grigson M W. 2017. Pilgangoora Lithium-Tantalum Pegmatite Deposit[R]. Australian Institute of Mining and Metallurgy (AusIMM), Monograph 32: 339-342.

    Google Scholar

    Sweetapple M T, Collins P L F. 2002. Genetic framework for the classification and distribution of Archean rare metal peg-matites in the North Pilbara craton, western Australia[J]. Economic Geology, 97: 873-895. doi: 10.2113/gsecongeo.97.4.873

    CrossRef Google Scholar

    Tkachev A V, Rundqvist D V, Vishnevskaya N A. 2019. Global metallogny of tantalum through geological time[J]. Geology of Ore Deposit, 61(6): 512-529. doi: 10.1134/S1075701519060060

    CrossRef Google Scholar

    Tassinari C C G, Macambira M J B. 1999. Geochronological provinces of the Amazonian craton[J]. Episodes, 22: 174-182. doi: 10.18814/epiiugs/1999/v22i3/004

    CrossRef Google Scholar

    Tremblay J, Bedard L P, Matton G. 2017. Columbitization of fluorcalciopyrochlore by hydrothermalism at the Saint- Honore alkaline complex, Quebec(Canada): new insights on halite in carbonatites[J]. Ore Geology Review, 91: 695-707. doi: 10.1016/j.oregeorev.2017.08.027

    CrossRef Google Scholar

    Trumbull R B. 1993. A petrological and Rb/Sr isotopic study of an early Archean fertile granite-pegmatite system: the Sinceni Pluton in Swaziland[J]. Precambrian Research, 61: 89-116. doi: 10.1016/0301-9268(93)90059-B

    CrossRef Google Scholar

    Wang Wei, Hou Kejun, Wang Denghong, Yuan Linping, Liu Lijun, Lu Bingting. 2020. Columbite -Tantalite U-Pb dating of Yanshanina rare metal mineralization in western Sichuan[J]. Geology in China, 47(3): 890-891(in Chinese with English abstract).

    Google Scholar

    Woolley A R, Kjarsgaard B A. 2008. Carbonatite occurrences of the world-Map and database[R]. Geological Survey of Canada Open File, 579-628.

    Google Scholar

    Wu Xuemin, Zhou Minjuan, Luo Xicheng, Zhou Jianting. 2016. The metallogenic conditions and prospection potential of lithium and rare metals in northwestern Jiangxi[J]. East China Geology, 37(4): 275-283(in Chinese with English abstract).

    Google Scholar

    Yang Yuandong, Li Jiye, Zhu Yongping, Liu Junyuan. 2020. Geological characteristics of a pegmatite niobium and tantalum deposit in the east of Manono, Congo[J]. Mineral Exploration, 11(7): 1428-1435(in Chinese with English abstract).

    Google Scholar

    Zeng Yong, Guo Weiming, Yao Chunyan, Zheng Di, Liu Junan, Xu Ming, Shen Mangting, Shen Xuehua. 2020. The Characteristics and Mineralization Potential of South American Craton Mineral Resources[M]. Beijing: Geological Publishing House, 203-205(in Chinese).

    Google Scholar

    曹飞, 杨卉芃, 张亮, 王威. 2019. 全球钽铌矿产资源开发利用现状及趋势[J]. 矿产保护与利用, 39(5): 56-89.

    Google Scholar

    蔡肖, 宋扬, 王登红, 李健康, 周伟, 丁海洋. 2013. 国外重要铌钽矿床分布规律及成矿地质特征[J]. 矿物学报(增刊), 193-194.

    Google Scholar

    李健康, 李鹏, 王登红, 李兴杰. 2019. 中国铌钽矿成矿规律[J]. 科学通报, 64(15): 1545-1566.

    Google Scholar

    王伟, 侯可军, 王登红, 袁蔺平, 刘丽君, 吕秉廷. 2020. 川西燕山期稀有金属铌钽铁矿U-Pb年龄报道[J]. 中国地质, 47(3): 890-891.

    Google Scholar

    吴学敏, 周敏娟, 罗喜成, 周建廷. 2016. 江西西北部锂及稀有金属成矿条件及找矿潜力分析[J]. 华东地质, 37(4): 275-283.

    Google Scholar

    杨远东, 李继业, 祝永平, 刘均沅. 2020. 刚果(金)马诺诺(Manono)东部某伟晶岩型铌钽矿地质特征[J]. 矿产勘查, 11(7): 1428-1435. doi: 10.3969/j.issn.1674-7801.2020.07.015

    CrossRef Google Scholar

    曾勇, 郭维民, 姚春彦, 郑镝, 刘君安, 徐鸣, 沈莽庭, 沈雪华. 2020. 南美克拉通矿产资源特征与成矿潜力[M]. 北京: 地质出版社, 203-205.

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(6)

Tables(1)

Article Metrics

Article views(3947) PDF downloads(189) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint