Citation: | WANG Huan, MA Bing, JIA Lingxiao, YU Yang, HU Jiaxiu, WANG Wei. 2021. The role, supply and demand of critical minerals in the clean energy transition under carbon neutrality targets and their recommendations[J]. Geology in China, 48(6): 1720-1733. doi: 10.12029/gc20210605 |
Driven by the goal of "carbon neutrality", it is a general trend for the global energy system to develop towards cleaner, low-carbon or even carbon-free. In response to the demand for the transition to clean energy, the methods of statistical comparison, classified summary and comprehensive analysis are adopted to analyze and study the role and demand of critical minerals in department such as batteries, electricity networks, low-carbon power generation and hydrogen. Combined with the problems, such as high geographical concentration of current critical mineral output, long cycle of project development, and decline in resource quality, that cannot meet the needs of clean energy transition, it is proposed to ensure the diversified supply of key minerals, promote technological innovation in all links of the value chain, scale up recycling, enhance supply chain resilience and market transparency. It is suggested to mainstream higher environmental, social and governance standards into the main process, and strengthen international collaboration between producers and consumers.
Argonne National Laboratory(ANL). 2020. BatPaC Model Software, https://www.anl.gov/cse/batpac-model-software. |
Ashby M F. 2013. Materials for low-carbon power//Materials and the Environment (2nd ed. ), 349-413, https://doi.org/10.1016/b978-0-12-385971-6.00012-9. |
Ballinger B, Stringer M, Schmeda-Lopez D R, Kefford B, Parkinson B, Greig C, Smart S. 2019. The vulnerability of electric vehicle deployment to critical mineral supply[J]. Applied Energy, 255, 113844, 0306-2619. |
Chen Qishen, Zhang Yanfei, Xing Jiayun, Long Tao, Zheng Guodong, Wang Kun, Cui Bojing, Qin Sheng. 2021. Methods of strategic mineral resources determination in China and abroad[J]. Acta Geosciences, 42(2): 137-144(in Chinese with English abstract). |
Eggert R G. 2011. Minerals go critical[J]. Nature Chemistry, 3(9): 688-691. doi: 10.1038/nchem.1116 |
EC JRC (Joint Research Center). 2011. Critical Metals in Strategic Energy Technologies. |
European Union(EU). 2020. Study on the EU's list of Critical Raw Materials. |
Fishman T, Myers R, Rios O, Graedel T E. 2018. Implications of emerging vehicle technologies on rare earth supply and demand in the US[J]. Resources, 7(1): 1-15. |
Grandell L, Lehtilaea A, Kivinenm M, Koljonen T, Kihlman S, Lauri L. 2016. Role of critical metals in the future markets of clean energy technologies[J]. Renewable Energy, 95: 53-62. doi: 10.1016/j.renene.2016.03.102 |
Guo Hui, Li Yaping, Wang Xueming. 2018. Indium, gallium and selenium have become new favorites of new energy materials. Geological prospecting and comprehensive utilization should be strengthened[J]. Geology in China, 45 (1): 205-206(in Chinese). |
Guo Juan, Yan Weidong, Xu Shuguang, Cui Rongguo, Hu Rongbo, Lin Bolei, Zhou Qizhong, Zhou Zhou, Yang Ling. 2021. Discussion on evaluation criteria and list of critical minerals in China[J]. Acta Geosciences, 42 (2): 151-158(in Chinese with English abstract). |
IEA. 2020. World Energy Outlook 2020. |
IEA. 2021. The Role of Critical Minerals in Clean Energy Transitions. |
IRENA. 2016. End of Life Management Solar PV Panels, https://www.irena.org/publications/2016/Jun/End-of-lifemanagement-Solar-Photovoltaic-Panels |
Li Guangming, Zhang Linkui, Zhang Zhi, Xia Xiangbiao, Liang Wei, Hou Chunqiu. 2021. New exploration progresses, resource potentials and prospecting targets of strategic minerals in the southern Qinghai-Tibet Plateau[J]. Sedimentation and Tethyan Geology, 41 (2): 351-360(in Chinese with English abstract). |
Lin Weibin, Wu Jiayi. 2021. Three Trends for China's Energy Transition under the Carbon Neutrality Vision[J/OL]. Price Theory and Practice: https://doi.org/10.19851/j.cnki.CN11-1010/F. 2021.07.89(in Chinese with English abstract). |
Liu Shuai. 2019. Supply, demand and future trend of lithium resources in 2018[J]. Geology in China, 46 (6): 1580-1582 (in Chinese). |
Ma Bing, Jia Lingxiao, Yu Yang, Wang Huan, Chen Jing, Zhong Shuai, Zhu Jichang. 2021. Geoscience and carbon neutralization: Current status and development direction[J]. Geology in China, 48(2): 347-358(in Chinese with English abstract). |
Materials Research Society(MRS), American Physical Society(APS). 2011. Energy Critical Elements: Securing Materials for Emerging Technologies[R]. College Park: Materials Research Society, American Physical Society. |
National Research Council(NRC). 2008. Committeeoncritical Mineral Impacts on the US Economy: Minerals, Critical Minerals, and the US Economy[M]. Washington: National Academies Press. |
Nordelöf A, Grunditz E, Lundmark S, Tillman A, Alatalo M, Thiringer T. 2019. Life cycle assessment of permanent magnet electric traction motors[J]. Transportation Research Part D: Transport and Environment, 67: 263-274. doi: 10.1016/j.trd.2018.11.004 |
Qiang Haiyang, Gao Bing, Guo Dongyan, Wang Xinyi. 2021. Options for sustainable development of mining industry under the background of carbon neutrality[J]. China Land and Resources Economy, 34 (4): 4-11(in Chinese with English abstract). |
Sprecher B, Xiao Yanping, Walton A, Speight J, Harris R, Kleijn R, Visser G, Kramer G. 2014. Life cycle inventory of the production of rare earths and the subsequent production of NdFeB rare earth permanent magnets[J]. Environmental Science and Technology, 48(7): 3951-3958. doi: 10.1021/es404596q |
Wang Denghong, Wang Ruijiang, Li Jiankang, Zhao Zhi, Yu Yang, Dai Jingjing, Chen Zhenghui, Li Dexian, Qu Wenjun, Deng Maochun, Fu Xiaofang, Sun Yan, Zheng Guodong. 2013. Summary of the research progress of China's three rare mineral resources strategy survey[J]. Geology in China, 40(2): 361-370(in Chinese with English abstract). |
Wang Huan. 2021. EU releases list of 30 key minerals and source countries[J]. Geology in China, 48 (2): 674-675 (in Chinese). |
Wang Peng, Wang Qiaochu, Han Ruru, Tang Binbin, Liu Yu, Cai Wenjia, Chen Weiqiang. 2021. Nexus between low-carbon energy and critical metals: Literature review and implications[J]. Resources Science, 43(4): 669-681(in Chinese with English abstract). |
World Bank. 2020. Climate-Smart Mining: Minerals for Climate Action, https://www.worldbank.org/en/topic/extractiveindustries/brief/climate-smart-mining-minerals-for-climate-action. |
Xu Deyi, Zhu Yongguang. 2020. Review and outlook of key minerals securiy during energy tranformation[J]. Resources and Industry, 22 (4): 1-11(in Chinese with English abstract). |
Zhang Jialin, Fan Jun, Qin Yuan. 2021. Scientific and technological counter measures for increasing reserves of key minerals in China[J]. Nonferrous Metal Engineering, 11(5): 102-109(in Chinese with English abstract). |
Zhai Mingguo, Hu Bo. 2021. Thinking to state security, internet competition and national strategy of mineral resources[J]. Journal of Earth Science and Environment, 43(1): 1-11(in Chinese with English abstract). |
陈其慎, 张艳飞, 邢佳韵, 龙涛, 郑国栋, 王琨, 崔博京, 覃升. 2021. 国内外战略性矿产厘定理论与方法[J]. 地球学报, 42(2): 137-144. |
郭慧, 李亚萍, 王学明. 2018. 铟、镓、硒成为新能源材料新宠应加强地质找矿与综合利用[J]. 中国地质, 45(1): 205-206. |
郭娟, 闫卫东, 徐曙光, 崔荣国, 胡容波, 林博磊, 周起忠, 周舟, 杨玲. 2021. 中国关键矿产评价标准和清单的探讨[J]. 地球学报, 42(2): 151-158. |
李光明, 张林奎, 张志, 夏祥标, 梁维, 侯春秋. 2021. 青藏高原南部的主要战略性矿产: 勘查进展、资源潜力与找矿方向[J]. 沉积与特提斯地质, 41(2): 351-360. |
林卫斌, 吴嘉仪. 2021. 碳中和愿景下中国能源转型的三大趋势[J/OL]. 价格理论与实践, https://doi.org/10.19851/j.cnki.CN11-1010/F. 2021.07.89 |
刘帅. 2019. 2018年锂资源供需及未来趋势[J]. 中国地质, 46(6): 1580-1582. |
马冰, 贾凌霄, 于洋, 王欢, 陈静, 钟帅, 朱吉昌. 2021. 地球科学与碳中和: 现状与发展方向[J]. 中国地质, 48(2): 347-358. |
强海洋, 高兵, 郭冬艳, 王心一. 2021. 碳中和背景下矿业可持续发展路径选择[J]. 中国国土资源经济, 34(4): 4-11. |
汪鹏, 王翘楚, 韩茹茹, 汤林彬, 刘昱, 蔡闻佳, 陈伟强. 2021. 全球关键金属-低碳能源关联研究综述及其启示[J]. 资源科学, 43(4): 669-681. |
王登红, 王瑞江, 李建康, 赵芝, 于扬, 代晶晶, 陈郑辉, 李德先, 屈文俊, 邓茂春, 付小方, 孙艳, 郑国栋. 2013. 中国三稀矿产资源战略调查研究进展综述[J]. 中国地质, 40(2): 361-370. doi: 10.3969/j.issn.1000-3657.2013.02.001 |
王欢. 2021. 欧盟发布30种关键矿产与来源国清单[J]. 中国地质, 48(2): 674-675. |
徐德义, 朱永光. 2020. 能源转型过程中关键矿产资源安全回顾与展望[J]. 资源与产业, 22(4): 1-11. |
张家林, 樊俊, 秦媛. 2021. 我国关键矿产勘查增储的科技应对策略[J]. 有色金属工程, 11(5): 102-109. doi: 10.3969/j.issn.2095-1744.2021.05.016 |
翟明国, 胡波. 2021. 矿产资源国家安全、国际争夺与国家战略之思考[J]. 地球科学与环境学报, 43(1): 1-11. |
External dependence of some critical minerals in China in 2018 (modified from Zhai Mingguo et al., 2021)
Main global supply countries of critical minerals in the EU(2020)
Average GHG emissions intensity for production of selected commodities and life-cycle GHG emissions of a BEV and ICE vehicle(IEA, 2021)
Minerals used in the selected clean energy technologies(IEA, 2021)
Cumulative demand for certain minerals from energy technologies (excluding energy storage) under 4DS, B2DS and REmap by 2050 (World Bank, 2020)
Annual average grid expansion and replacement needs by scenario(IEA, 2021)
Demand for copper and aluminum for electricity grids by scenario(IEA, 2021)
Demand for minerals from clean energy technologies by scenario(IEA, 2021)
Mineral demand for nuclear power(IEA, 2021)
Revenue from coal production and selected energy transition minerals in the SDS(IEA, 2021)
Share of top three producing countries in production of selected minerals and fossil fuels, 2019(IEA, 2021)
Amount of spent lithium-ion batteries from EVs, and the storage, recycled and reused minerals from batteries in the SDS(IEA, 2021)