2023 Vol. 50, No. 6
Article Contents

ZHU Ruijie, ZHOU Xuejun, ZHAN Tao, MA Yongfa, WANG Xu, DONG Junling, LIU Ling, YANG Fengtian, LI Dong, SHI Yujia, SU Yujuan. 2023. Analysis of microbial diversity and community structure in thermal waters from Lindian geothermal field, Heilongjiang Province[J]. Geology in China, 50(6): 1667-1677. doi: 10.12029/gc20210602003
Citation: ZHU Ruijie, ZHOU Xuejun, ZHAN Tao, MA Yongfa, WANG Xu, DONG Junling, LIU Ling, YANG Fengtian, LI Dong, SHI Yujia, SU Yujuan. 2023. Analysis of microbial diversity and community structure in thermal waters from Lindian geothermal field, Heilongjiang Province[J]. Geology in China, 50(6): 1667-1677. doi: 10.12029/gc20210602003

Analysis of microbial diversity and community structure in thermal waters from Lindian geothermal field, Heilongjiang Province

    Fund Project: Supported by the National Natural Science Foundation (Youth) (No.41202167)
More Information
  • Author Bio: ZHU Ruijie, male, born in 1998, master candidate, mainly engaged in geology and geothermal research; E-mail: zhurj20@mails.jlu.edu.cn
  • Corresponding author: SU Yujuan, female, born in 1980, senior engineer, mainly engaged in genesis, development and utilization of geothermal resources; E-mail: suyj15@mails.jlu.edu.cn
  • This paper is the result of geothermal survey engineering.

    Objective

    Researches on microbial community in geothermal systems is key to indicate geochemical environment and evolution of thermal fluids. Previous researches have shown that the thermal water in Lindian geothermal field is highly reducing and is rich in methane. The objective of this paper is to characterize the microbial diversity and community structure of the thermal water.

    Methods

    A total of 9 thermal water samples were collected and tested during exploitation and non-exploitation periods, and the microbial diversity, community structure and functional genes of the samples were analyzed.

    Results

    The dominant bacterial genera in the thermal water is mainly Acinetobacter, which is different from most geothermal systems reported, but are similar to that of oil fields. The bacterial diversity of the thermal waters during the exploitation period and the non-exploitation period is significantly different, i.e., the bacterial diversity in the non-exploitation period is higher than that in the exploitation period, while the archaeal diversity is not affected significantly by exploitation. The dominant archaea are mainly Euryarchaeota methanogens. Functional gene prediction of archaea shows that methane production in Lindian geothermal field is dominated by hydrogenotrophic methanogenesis, and secondarily by disproportionation of methyl groups and reduction of methyl compounds with H2.

    Conclusions

    The microbial diversity and community structure of the thermal waters from Lindian geothermal field is relatively unique, which is related to the high content of organic matters and thermal water exploitation.

  • 加载中
  • Aditiawati P, Yohandini H, Madayanti F, Akhmaloka. 2009. Microbial diversity of acidic hot spring (KawahHujan B) in geothermal field of KamojangArea, West Java-Indonesia[J]. The Open Microbiology Journal, 3: 58-66. doi: 10.2174/1874285800903010058

    CrossRef Google Scholar

    Ai Mingqiang, Li Hui, Liu Xiaobo, Shi Rongjiu, Hang Siqin, Li Nana, Zhang Yin. 2010. Bacterial community structure in production water from oil reservoirs in Daqing Oilfield[J]. Chinese Journal of Applled Ecology, 21(4): 1014-1020(in Chinese with English abstract).

    Google Scholar

    Akinyemi T S, Shao N, Whitman W B. 2020. Methanothrix. Bergey's Manual of Systematics of Archaea and Bacteria[M]. American Cancer Society.

    Google Scholar

    Blank C E, Cady S L, Pace N R. 2002. Microbial composition of near-boiling silica-depositing thermal springs throughout Yellowstone National Park[J]. Applied and Environmental Microbiology, 68(10): 5123-5135. doi: 10.1128/AEM.68.10.5123-5135.2002

    CrossRef Google Scholar

    Boone D R. 2016. Methanobacterium. Bergey's Manual of Systematics of Archaea and Bacteria[M]. American Cancer Society.

    Google Scholar

    Cheng Rihui, Zhu Defeng, Wang Hongyan, Wang Pujun. 2006. Primary geochemical characteristics and geochemical characteristics of the paleogeography in the Linglong Fault Sag, Songliao Basin[J]. Journal of Jilin University, 36(5): 793-798 (in Chinese with English abstract). doi: 10.3969/j.issn.1671-5497.2006.05.033

    CrossRef Google Scholar

    Davidova I A, Gieg L M, Duncan K E, Suflita J M. 2007. Anaerobic phenanthrene mineralization by a carboxylating sulfate-reducing bacterial enrichment[J]. Isme Journal, 1(5): 436-442. doi: 10.1038/ismej.2007.48

    CrossRef Google Scholar

    Ding Anna, Song Guixia, Hui Rongyao, Lu Shuangfang. 2004. Distribution and geochemical significance of acidic oxygen-containing compounds in biogas source rocks in Binbei area, Songliao Basin[J]. Natural Gas Geoscience, 15(1): 51-57 (in Chinese with English abstract). doi: 10.3969/j.issn.1672-1926.2004.01.010

    CrossRef Google Scholar

    Dong Junlin. 2013. Evaluation on Geothermal Resource Potential in Changqinglinchang[D]. Changchun: Jilin University, 1-57(in Chinese with English abstract).

    Google Scholar

    Duan Changhai, Zhang Cuijing, Sun Yihua, Li Meng. 2019. Recent advances on the novel methanogens[J]. Acta Microbiologica Sinica, 51(6): 981-995 (in Chinese with English abstract).

    Google Scholar

    Fan Mengmeng. 2016. Comparative Metagenomic Analysis of Microbial Communities in Geothermal Environments with Different Temperatures and pH Values[D]. Beijing: University of Chinese Academy of Sciences, 1-123 (in Chinese with English abstract).

    Google Scholar

    Ferry J G, Kastead K A. 2007. Methanogenesis[M]. Archaea: Molecular and Cellular Biology, ed CavicchioliR (ASM Press, Washington, DC), 288-314.

    Google Scholar

    Jetten M S M, Stams A J M, Zehnder A J B. 1992. Methanogenesis from acetate: A comparison of the acetate metabolism in Methanothrixsoehngenii and Methanosarcina spp. [J]. FEMS Microbiology Letters, 8(3/4): 181-197.

    Google Scholar

    Jiang Na, Chen Zijuan, Cao Yi, Tian Jianqing, Wang Yanfen, Dong Xiuzhu, Dong Xiuzhu. 2013. Methanogen archaea and its mediated methane production pathway in cryogenic wetlands[J]. Microbiology Bulletin, 40(1): 137-145 (in Chinese with English abstract).

    Google Scholar

    Jiang Zhou. 2016. Environmental Biogeochemistry of Arsenic in Tengchong Geothermal Area[D]. Wuhan: China University of Geosciences, 1-109 (in Chinese with English abstract).

    Google Scholar

    Kristjánsson J K, Hreggvidsson G O. 1995. Ecology and habitats of extremophiles[J]. World Journal of Microbiology & Biotechnology, 11: 17-25.

    Google Scholar

    Lai M C. 2019. Methanoculleus. Bergey's Manual of Systematics of Archaea and Bacteria[M]. American Cancer Society.

    Google Scholar

    Lü Z, Shao N, Akinyemi T, Whitman, W B. 2018. Methanogenesis[J]. Current Biology, 28(13): 727-732. doi: 10.1016/j.cub.2018.05.021

    CrossRef Google Scholar

    Leng Huan, Yang Qin, Huang Gangfeng, Bai Liping. 2020. Recent advances in hydrogenotrophic methanogenesis[J]. Acta Microbiologica Sinica, 60(10): 2136-2160 (in Chinese with English abstract).

    Google Scholar

    Li Xianqi, Zhang Shuichang, Zhu Guangyou, Liang Yinbo. 2005. Classification and research direction of biogenic gas in China[J]. Natural Gas Geology, 16(4): 478-483(in Chinese with English abstract).

    Google Scholar

    McBride B C, Wolfe R S. 1971. Biosynthesis of dimethylarsine by Methanobacterium[J]. Biochemistry, 10(23): 4312-4317. doi: 10.1021/bi00799a024

    CrossRef Google Scholar

    Meng Yuchen. 2018. Diversity of Bacterial Community Structure and Taxonomy of New Species in Oil Reservoir[D]. Guiyang: Guizhou Medical University, 1-56 (in Chinese with English abstract).

    Google Scholar

    Miller T L. 2016. Methanobrevibacter. Bergey's Manual of Systematics of Archaea and Bacteria[M]. American Cancer Society.

    Google Scholar

    Nkamga V D, Drancourt M, Michel D. 2016. Methanomassiliicoccus. Bergey's Manual of Systematics of Archaea and Bacteria [M]. American Cancer Society.

    Google Scholar

    Parks D H, Tyson G W, Hugenholtz P, Beiko R G. 2014. STAMP: Statistical analysis of taxonomic and functional profiles[J]. Bioinformatics, 30(21): 3123-3124. doi: 10.1093/bioinformatics/btu494

    CrossRef Google Scholar

    Russell M J, Martin W. 2004. The rocky roots of the acetyl-CoA pathway[J]. Trends in Biochemical Sciences, 29(7): 358-363. doi: 10.1016/j.tibs.2004.05.007

    CrossRef Google Scholar

    Ren Mifang, Li Lingyan, Chen Lin, Xing Tingting, Liu Yongqin, Dong Xiuzhu. 2000. Analysis of methanogenic bacteria and methanogenic metabolic pathway in three saline-alkali lakes on Qinghai-Tibet Plateau[J]. Acta Microbiologica Sinica, 60(1): 161-171(in Chinese with English abstract).

    Google Scholar

    Reysenbach A L, Shock E. 2002. Merging genomes with geochemistry in hydrothermal ecosystems[J]. Science, 296(5570): 1077-1082. doi: 10.1126/science.1072483

    CrossRef Google Scholar

    Rother M. 2010. Methanogenesis. Handbook of Hydrocarbon and Lipid Microbiology[M]. Springer Berlin Heidelberg.

    Google Scholar

    Shao N, Akinyemi T S, Whitman W B. 2020. Methanosphaer. Bergey's Manual of Systematics of Archaea and Bacteria[M]. American Cancer Society.

    Google Scholar

    She Yuehui, Zhang Xueli, Zhang Fan, Wnag Linghua, Zhao Liping. 2005. Molecular analysis of microbial community in water drive reservoir of Dagangkongdian oilfield[J]. Acta Microbiologica Sinica, 3: 329-334 (in Chinese with English abstract).

    Google Scholar

    She Yuehui. 2010. Study on the Mechanism of Enhancing Oil Recovery by Microbial Resources[D]. Wuhan: Wuhan University, 1-151 (in Chinese with English abstract).

    Google Scholar

    Shen Jihong, Song Weizhi, Lin Xuezheng, Wang Shuai, Dewi Seswita Zilda. 2012. Analysis of archaea diversity in Padang Cermin thermal spring, Indonesia[J]. Progress in Marine Science, 30(4): 534-540(in Chinese with English abstract).

    Google Scholar

    Song Zhaoqi, Chen Jingquan, Zhi Xiaoyang, Haung Zhiyong, Zhang Chuanlun, Li Wenjun. 2008. Crenarchaeal diversity and phylogenetic analysis of two hot springs in Tengchong[J]. Microbiology China, 35 (3): 372-377(in Chinese with English abstract).

    Google Scholar

    Song Zhaoqi, Wang Li, Liu Xiuhua, Liang Feng. 2015. Bacterial diversity of Proteobacteria from four acidic hot springs in Yunnan Province[J]. Journal of Henan Agricultural University, (3): 376-382(in Chinese with English abstract).

    Google Scholar

    Sun Xiaoxi, Jiang Hongchen. 2020. Research progress in the nitrification process of lake microorganisms[J]. Journal of Microbiology, 60(6): 1148-1161(in Chinese with English abstract).

    Google Scholar

    Wagner D. 2020. Methanosarcina. Bergey's Manual of Systematics of Archaea and Bacteria[M]. American Cancer Society.

    Google Scholar

    Wang Jie. 2017. Enrichment Conditions and Resource Potential of Water-Soluble Gas in Northern Songliao Basin[D]. Daqing: Northeast Petroleum University, 1-61 (in Chinese with English abstract).

    Google Scholar

    Wang Wanchun, Tao Mingxin. 2005. Geomicrobial interaction and petroleum resources[J]. Geological Bulletin of China, 24(10/11): 1022-1026 (in Chinese with English abstract).

    Google Scholar

    Zeikus J G, Wolee R S. 1972. Methanobacterium thermoautotrophicus sp. n., an anaerobic, autotrophic, extreme thermophile[J]. Journal of Bacteriology, 109(2): 707-713. doi: 10.1128/jb.109.2.707-713.1972

    CrossRef Google Scholar

    Zhang Daokuo. 2009. Accumulation Conditions and Potential of Water-soluble Gas Resources in Lindian Area of Songliao Basin[D]. Changchun: Jilin University, 1-52 (in Chinese with English abstract).

    Google Scholar

    Zhang Gongcheng, Qu Hongjun, Zhang Fenglian, Chen Shuo, Yang Haichang, Zhao Chuan, Zhao Chong. 2019. New discoveries and implications of global deepwater oil and gas[J]. Acta PetroleiSinica, 40(1): 1-34, 55 (in Chinese with English abstract).

    Google Scholar

    Zhang Jianchao, Xu Yiqin, Lu Yahai. 2015. Microbial mechanism of methane production and oxidation in terrestrial ecosystem[J]. Acta Ecologica Sinica, 35(20): 6592-6603 (in Chinese with English abstract).

    Google Scholar

    Zhang Linye, Liu Qing, Zhang Chunrong. 2005. Study on the Relationship between Hydrocarbon Generation and Hydrocarbon Accumulation in Dongying Sag[M]. Beijing: Geological Publishing House(in Chinese with English abstract).

    Google Scholar

    Zhang L, Sun Z, Geng W, Cao H, Qin Y, Xu C, Zhang X, Li X, Zhang X, Song H. 2019. Advances in the microbial mineralization of seafloor hydrothermal systems[J]. China Geology, 2(2): 227-237. doi: 10.31035/cg2018087

    CrossRef Google Scholar

    Zhang Miao. 2020. Metagenomic Study on the Structure and Function of Microbial Communities in Sediments and Deep Groundwater of the High Arsenic Aquifer in Yinchuan[D]. Harbin: Harbin Institute of Technology, 1-75(in Chinese with English abstract).

    Google Scholar

    Zhang Wei, Hu Xiaoli, Qiu Xuan, Liu Deng, Feng Liang, Ma Liyuan, Hu Jing, Wang Hongmei. 2019. Microbiome characteristics of Zhan 3 reservoir in Shengli Oilfield, Shandong Province[J]. Science China (Earth Sciences), 64(18): 1930-1942(in Chinese with English abstract).

    Google Scholar

    Zhao Jiayi. 2020. Study on Spatial Structure and Hydrothermal Differentiation Process of Deep Heat Storage in Xiongan New Area[D]. Beijing: Chinese Academy of Geological Sciences, 1-151 (in Chinese with English abstract).

    Google Scholar

    Zinder S H, Cardwell S C, Anguish T, Lee M, Koch M. 1984. Methanogenesis in a Thermophilic (58℃) Anaerobic Digestor: Methanothrix sp. as an Important Aceticlastic Methanogen[J]. Appllied Environmental Microbiology, 47(4): 796-807. doi: 10.1128/aem.47.4.796-807.1984

    CrossRef Google Scholar

    艾明强, 李慧, 刘晓波, 史荣久, 韩斯琴, 李娜娜, 张颖. 2010. 大庆油田油藏采出水的细菌群落结构[J]. 应用生态学报, 21(4): 1014-1020.

    Google Scholar

    程日辉, 朱德丰, 王洪艳, 王璞珺. 2006. 松辽盆地林甸断陷白垩纪沙河子期盆地次级构造单元与沉积体系[J]. 吉林大学学报, 36(5): 793-798.

    Google Scholar

    董俊领. 2013. 长青林场地热资源潜力评价[D]. 长春: 吉林大学, 1-57.

    Google Scholar

    段昌海, 张翠景, 孙艺华, 李猛. 2019. 新型产甲烷古菌研究进展[J]. 微生物学报, 51(6): 981-995.

    Google Scholar

    丁安娜, 宋桂侠, 惠荣耀, 卢双舫. 2004. 松辽盆地滨北地区生物气源岩酸性含氧化合物的分布及其地球化学意义[J]. 天然气地球科学, 15(1): 51-57.

    Google Scholar

    樊萌萌. 2016. 不同温度和pH值地热环境下微生物群落的比较宏基因组学分析[D]. 北京: 中国科学院大学, 1-123.

    Google Scholar

    姜舟. 2016. 腾冲地热区砷的环境生物地球化学研究[D]. 武汉: 中国地质大学, 1-109.

    Google Scholar

    蒋娜, 陈紫娟, 曹轶, 田建卿, 王艳芬, 东秀珠. 2013. 低温湿地甲烷古菌及其介导的甲烷产生途径[J]. 微生物学通报, 40(1): 137-145.

    Google Scholar

    冷欢, 杨清, 黄钢锋, 白丽萍. 2020. 氢营养型产甲烷代谢途径研究进展[J]. 微生物学报, 60(10): 2136-2160.

    Google Scholar

    李先奇, 张水昌, 朱光有, 梁英波. 2005. 中国生物成因气的类型划分与研究方向[J]. 天然气地质学, 16(4): 478-483.

    Google Scholar

    孟俞辰. 2018. 油藏细菌群落结构多样性及新种系统分类学研究[D]. 贵阳: 贵州医科大学, 1-56.

    Google Scholar

    任秘坊, 李凌燕, 陈琳, 邢婷婷, 刘勇勤, 东秀珠. 2020. 青藏高原三个盐碱湖的产甲烷菌群和产甲烷代谢途径分析[J]. 微生物学报, 60(1): 11.

    Google Scholar

    佘跃惠, 张学礼, 张凡, 王凌华, 赵立平. 2005. 大港孔店油田水驱油藏微生物群落的分子分析[J]. 微生物学报, 3: 329-334.

    Google Scholar

    佘跃惠. 2010. 油藏微生物资源提高原油采收率机理研究[D]. 武汉: 武汉大学, 1-151.

    Google Scholar

    沈继红, 宋维志, 林学政, 王帅, Dewi Seswita Zilda. 2012. 印度尼西亚Padang Cermin热泉古菌多样性分析[J]. 海洋科学进展, 30(4): 534-540.

    Google Scholar

    宋兆齐, 陈经全, 职晓阳, 黄志勇, 张传伦, 李文均. 2008. 腾冲两热泉泉古菌多样性及系统发育的初步分析[J]. 微生物学通报, 35(3): 372-377.

    Google Scholar

    宋兆齐, 王莉, 刘秀花, 梁峰. 2015. 云南4处酸性热泉中的变形菌门细菌多样性[J]. 河南农业大学学报, 50(3): 376-382.

    Google Scholar

    孙小溪, 蒋宏忱. 2020. 湖泊微生物硝化过程研究进展[J]. 微生物学报, 60(6): 1148-1161.

    Google Scholar

    王杰. 2017. 松辽盆地北部水溶气富集条件及其资源潜力[D]. 大庆: 东北石油大学, 1-61.

    Google Scholar

    王万春, 陶明信. 2005. 地质微生物作用与油气资源[J]. 地质通报, 24(10/11): 1022-1026.

    Google Scholar

    张道阔. 2009. 松辽盆地林甸地区水溶气资源聚集条件及其潜力[D]. 长春: 吉林大学, 1-52.

    Google Scholar

    张功成, 屈红军, 张凤廉, 陈硕, 杨海长, 赵钊, 赵冲. 2019. 全球深水油气重大新发现及启示[J]. 石油学报, 40(1): 1-34, 55. doi: 10.3969/j.issn.1001-8719.2019.01.001

    CrossRef Google Scholar

    张坚超, 徐镱钦, 陆雅海. 2018. 陆地生态系统甲烷产生和氧化过程的微生物机理[J]. 生态学报, 35(20): 6592-6603.

    Google Scholar

    张林晔, 刘庆, 张春荣. 2005. 东营凹陷成烃与成藏关系研究[M]. 北京: 地质出版社.

    Google Scholar

    张淼. 2020. 银川高砷含水层沉积物和深层地下水中微生物群落结构和功能的宏基因组学研究[D]. 哈尔滨: 哈尔滨工业大学, 1-75.

    Google Scholar

    张蔚, 胡小丽, 邱轩, 刘邓, 冯亮, 马丽媛, 胡婧, 王红梅. 2019. 山东胜利油田沾3油藏微生物组特征[J]. 中国科学, 64(18): 1930-1942.

    Google Scholar

    赵佳怡. 2020. 雄安新区深部热储空间结构与水热分异过程研究[D]. 北京: 中国地质科学院, 1-151.

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(5)

Tables(3)

Article Metrics

Article views(1091) PDF downloads(102) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint