Citation: | ZHAO Zhen, QIN Guangxiong, GENG Songhe, CHEN Huijuan, CHAO Jiahao, ZHANG Liang. 2023. Corrosion performance of steel in geothermal water environment in Xining area and suggestions for anti-corrosion measures[J]. Geology in China, 50(6): 1678-1690. doi: 10.12029/gc20210503001 |
This paper is the result of geothermal survey engineering.
Xining area is rich in medium and low temperature geothermal resources, but the high salinity and strong corrosion of geothermal water limit the efficient development of geothermal energy. The proposed safe, economic and effective comprehensive well bucket anticorrosion measures are the basis and key to the effective utilization of high salinity geothermal resources.
In this study, the typical geothermal water in Xining area was collected, and the ionic composition and content of corrosive bacteria were tested. The high-temperature and high-pressure reactor was used to carry out metal plate corrosion tests to evaluate the corrosion performance of geothermal water on different steels under typical wellbore conditions. The corrosion type and the relationship between the corrosion rate and the influencing factors was analyzed. Finally, the anti-corrosion measures for geothermal water reinjection were proposed.
The main corrosion components in geothermal water are Cl-, SO42-, H+ and dissolved oxygen, which cause uniform corrosion, platform corrosion and a small amount of pitting corrosion. The main corrosion products are FeO(OH) and Fe3O4; the corrosion rate along the wellbore gradually increases, and the corrosion risk at bottom hole is the greatest. In addition, the corrosion rate has a greater correlation with the geothermal water properties, P-T condition, flow speed and dissolved oxygen mixed into wellbore.
By fitting carbon steel corrosion experiment data, an empirical equation is established. The predicted value obtained by using the empirical equation is in good agreement with the experimental value. Safe, cost-effective and comprehensive wellbore anti-corrosion measures can be taken from the perspective of anti-corrosion pipes, reinjection geothermal water pretreatment, reinjection process parameters.
Gao Xiangdong, Cheng Guiping, Wang Zhaoyu. 2001. A.T.O cermet coating used in geothermal water pipeline internal protection[J]. Corrosion and Protection, 22(2): 64-65, 86 (in Chinese with English abstract). |
Kaya E, Zarrouk S J, O'Sullivan M J. 2011. Reinjection in geothermal fields: A review of worldwide experience[J]. Renewable and Sustainable Energy Reviews, 15(1): 47-68. doi: 10.1016/j.rser.2010.07.032 |
Knipe E C, Rafferty K D. 1985. Corrosion in low-temperature geothermal applications[J]. American Society of Heating, Refrigerating and Air-Conditioning Engineers, 91(2B-1): 81-91. |
Larson T E, Sollo F R. 1967. Loss in water main carrying capacity[J]. Journal-American Water Works Association, 59(12): 1565-1572. doi: 10.1002/j.1551-8833.1967.tb03486.x |
Li Xiaoyuan, Wen Jiuba, Li Quanan. 2003. Anticorrosion technology of downhole tubing in oil and gas fields[J]. Corrosion Science and Protection Technology, 15(5): 272-276 (in Chinese with English abstract). |
Liu Jie, Song Meiyu, Tian Guanghui. 2012. Current status of the development and utilization of geothermal resources in Tianjin and suggestions for sustainable development and utilization[J]. Geological Survey and Research, 35(1): 67-73 (in Chinese with English abstract). |
Liu Jiurong. 2003. Development status of geothermal recharge[J]. Hydrogeology and Engineering Geology, 30(3): 100-104 (in Chinese with English abstract). doi: 10.3969/j.issn.1000-3665.2003.03.025 |
Liu Mingyan, Zhu Jialing. 2011. Research progress on anti-corrosion and anti-scaling in the utilization of geothermal energy[J]. Progress in Chemical Industry, 30(5): 1120-1123 (in Chinese with English abstract). |
Ma Bing, Jia Lingxiao, Yu Yang, Wang Huan. 2021. The development and utilization of geothermal energy in the world[J]. Geology in China, 48(6): 1734-1747 (in Chinese with English abstract). |
Ma Jianjun, He Ting, Zhang Chuang. 2019. Anticorrosion technology of high temperature geothermal well pipeline[J]. Oil and Gas Field Surface Engineering, 38(S1): 131-134 (in Chinese with English abstract). |
Shao Kun. 2009. Pipeline corrosion and its control in the development and utilization of geothermal water[J]. Pipeline Technology and Equipment, (2): 52-53, 59 (in Chinese with English abstract). |
Wang Tinghao. 2019. Evaluation of geothermal resources and target selection in Shandong Province[J]. Petrochemical Technology, 26(7): 114-115 (in Chinese with English abstract). |
Wei Zhenshu. 2001. Environmental Water Chemistry[M]. Beijing: Textbook Publishing Center of Chemical Industry Press (in Chinese). |
Woollam R C, Hernandez S. 2006. Assessment and comparison of CO2 corrosion prediction models[C]//SPE 100673-MS, SPE International Oilfield Corrosion Symposium, Aberdeen, UK. |
Wu Ye. 2014. Research on Geological Environmental Problems and Key Technologies of Shallow Geothermal Energy Development[D]. Wuhan: China University of Geosciences (Wuhan) (in Chinese with English abstract). |
Xing Yifei, Wang Huiqun, Li Jie, Teng Yanguo, Zhang Baojian, Li Yanyan, Wang Guiling. 2022. Chemical field of geothermal water in Xiong'an New Area and analysis of influencing factors[J]. Geology in China, 49(6): 1711-1722 (in Chinese with English abstract). |
Zhang Fengxiong, Yang Jiakai, Liu Shuying, Yan Weide. 2006. Discussion on the distribution of geothermal resources in Xining area[J]. Science and Technology Information, 21(6): 138-139 (in Chinese with English abstract). |
Zhang Senqi, Xu Weilin, Yan Weide, Wang Jianrong, Li Qijiang, Shi Weidong. 2013. Geothermal Geology of Xining Basin[M]. Beijing: Geological Publishing House (in Chinese). |
Zhang Wei, Wang Guiling, Liu Feng, Xing Linxiao, Li Man. 2019. Characteristics of geothermal resources of sedimentary basins in China[J]. Geology in China, 46(2): 255-268 (in Chinese with English abstract). |
Zhao Jinping, Wang Xinyi, Han Pengfei, Jiao Shuqiang. 2004. Research on the evaluation and protection technology of scaling and corrosion of geothermal water in the eastern plain of Henan Province[J]. Journal of Fuzhou University (Natural Science Edition), 32(1): 118-122 (in Chinese with English abstract). |
Zhao Zhen, Yu Piaoluo, Chen Huijuan, Luo Yinfei, Zhao Dongyang, Bian Jiang. 2015. Genesis analysis and resource evaluation of Xining geothermal field in Qinghai Province[J]. Geology in China, 42(3): 803-810 (in Chinese with English abstract). |
Zhao Zhen, Qin Guangxiong, Luo Yinfei, Chao Jiahao, Geng Songhe, Zhang Liang. 2021. Characteristics of geothermal water and risk of recharge scaling in the Xining Basin[J]. Hydrogeology and Engineering Geology, 48(5): 193-204 (in Chinese with English abstract). |
Zhu Liqun, Wu Kunhu, Li Weiping, Liu Huicong. 2010. Simulating the corrosion and scaling of 304 stainless steel pipes and galvanized steel pipes in geothermal water[J]. Acta Physico-Chimica Sinica, 26(1): 39-46 (in Chinese with English abstract). doi: 10.3866/PKU.WHXB20100142 |
高向东, 成桂萍, 王昭宇. 2001. A.T.O金属陶瓷涂料用于地热水管道内防护[J]. 腐蚀与防护, 22(2): 64-65, 86. |
李晓源, 文九巴, 李全安. 2003. 油气田井下油管的防腐技术[J]. 腐蚀科学与防护技术, 15(5): 272-276. |
刘杰, 宋美钰, 田光辉. 2012. 天津地热资源开发利用现状及可持续开发利用建议[J]. 地质调查与研究, 35(1): 67-73. |
刘久荣. 2003. 地热回灌的发展现状[J]. 水文地质工程地质, 30(3): 100-104. |
刘明言, 朱家玲. 2001. 地热能利用中的防腐防垢研究进展[J]. 化工进展, 30(05): 1120-1123. |
马冰, 贾凌霄, 于洋, 王欢. 2021. 世界地热能开发利用现状与展望[J]. 中国地质, 48(6): 1734-1747. |
马建军, 何亭, 张闯. 2019. 耐高温地热井管线防腐技术[J]. 油气田地面工程, 38(S1): 131-134. |
邵昆. 2009. 地热水开发利用中的管道腐蚀及其控制[J]. 管道技术与设备, (2): 52-53, 59. |
王婷灏. 2019. 山东省地热资源评价及靶区优选[J]. 石化技术, 26(7): 114-115. doi: 10.3969/j.issn.1006-0235.2019.07.062 |
魏振枢. 2001. 环境水化学[M]. 北京: 化学工业出版社教材出版中心. |
吴烨. 2014. 浅层地热能开发的地质环境问题及关键技术研究[D]. 武汉: 中国地质大学(武汉). |
邢一飞, 王慧群, 李捷, 滕彦国, 张保健, 李燕燕, 王贵玲. 2022. 雄安新区地热水的化学场特征及影响因素分析[J]. 中国地质, 49(6): 1711-1722. |
张丰雄, 杨家凯, 刘淑英, 严维德. 2006. 西宁地区地热资源分布规律探讨[J]. 科技资讯, 21(6): 138-139. |
张森琦, 许伟林, 严维德, 王建荣, 李其江, 石维栋. 2013. 西宁盆地地热地质[M]. 北京: 地质出版社. |
张薇, 王贵玲, 刘峰, 邢林啸, 李曼. 2019. 中国沉积盆地型地热资源特征[J]. 中国地质, 46(2): 255-268. |
赵金平, 王心义, 韩鹏飞, 焦述强. 2004. 河南省东部平原地热水结垢与腐蚀评价及防护技术的研究[J]. 福州大学学报(自然科学版), 32(1): 118-122. doi: 10.3969/j.issn.1000-2243.2004.01.028 |
赵振, 于漂罗, 陈惠娟, 罗银飞, 赵东阳, 边疆. 2015. 青海省西宁地热田成因分析及资源评价[J]. 中国地质, 42(3): 803-810. doi: 10.3969/j.issn.1000-3657.2015.03.029 |
赵振, 秦光雄, 罗银飞, 晁嘉豪, 耿松鹤, 张亮. 2021. 西宁盆地地热水特征及回灌结垢风险[J]. 水文地质工程地质, 48(5): 193-204. |
朱立群, 吴坤湖, 李卫平, 刘慧丛. 2010. 模拟地热水中304不锈钢管和镀锌钢管的腐蚀与结垢[J]. 物理化学学报, 26(1): 39-46. doi: 10.3866/PKU.WHXB20100142 |
Hot spring and geothermal wells and sampling distribution map in the study area
Piper map of hydrochemistry in the typical geothermal well of Xining Basin
High temperature and high pressure corrosion stirred reactor (a-Physical drawing, b-Schematic drawing)
The corrosion rates of metal plates in geothermal water are different under different temperature and pressure conditions
The relationship between the corrosion rate of different metal plates and the salinity (a) and pH (b) of geothermal water
The color of the geothermal water sample and the corrosion pattern of the metal hanging sheet after the experiment (Take Yawang Spring and 8401 Geothermal water as example)
Corrosion morphology and corrosion product analysis of carbon steel N80 in geothermal water 8401 (12 MPa, 57℃)
Comparison of corrosion rates in real geothermal water and prepared geothermal water (12 MPa, 57℃, 200 r/min)
The effect of temperature-pressure on corrosion rate
The effect of water velocity on corrosion rate
The effect of O2 partial pressure on corrosion rate
The comparison of corrosion rate between air and CO2
Comparison of corrosion rate between prediction results and experimental data