2021 Vol. 48, No. 5
Article Contents

WANG Kai, ZHANG Jie, BAI Dawei, WU Xingang, YUE Hangyu, ZHANG Baowei, WANG Xiaojiang, ZHANG Kai. 2021. Geothermal-geological model of Xiong'an New Area: Evidence from geophysics[J]. Geology in China, 48(5): 1453-1468. doi: 10.12029/gc20210511
Citation: WANG Kai, ZHANG Jie, BAI Dawei, WU Xingang, YUE Hangyu, ZHANG Baowei, WANG Xiaojiang, ZHANG Kai. 2021. Geothermal-geological model of Xiong'an New Area: Evidence from geophysics[J]. Geology in China, 48(5): 1453-1468. doi: 10.12029/gc20210511

Geothermal-geological model of Xiong'an New Area: Evidence from geophysics

    Fund Project: Supported by the project of China Geological Survey (No. DD20189133) and Chinese Academy of Geological Sciences (No. JYYWF20180302)
More Information
  • Author Bio: WANG Kai, male, born in 1986, engineer, doctorial candidate, engaged in the research of seismic method and interpretation of integrated geophysical data; E-mail: cgswkai@mail.cgs.gov.cn
  • Corresponding author: ZHANG Jie, mail, born in 1977, senior engineer, engaged in the research of electromagnetic detection technology and application of integrated geophysical method; E-mail: cgszjie@mail.cgs.gov.cn 
  • Geothermal resources are abundant in the Xiong'an New Area, including Niutuozhen geothermal field, Rongcheng geothermal field and Gaoyang geothermal field. The geothermal resources in this area were developed and utilized earlier, but there is still no unified view on its deep heat source mechanism. In order to study the deep heat source mechanism, deep reflection seismic and long-period magnetotelluric survey were carried out in Xiong'an New Area and its periphery. The deep reflection seismic data and magnetotelluric data of the same section were processed and jointly interpreted. The geological structure and electrical structure in the study area from the surface to the Moho surface were explored. The lower crustal structure has a good corresponding relationship between the deep reflection seismic profile and the magnetotelluric profile. The area of low resistivity corresponds to the existence of a series of reflection events on the deep reflection seismic profile, and the event axis can continue to the Moho surface. The areas of high resistivity correspond to the absence of obvious continuous reflection events on the deep reflection seismic profile. Especially above the Moho surface, there is an approximate "blank area" of seismic reflection. Combined with regional geothermal data, a deep geothermal geological model of the study area was constructed, and the deep geothermal mechanism in the new area was explained. This model is a "dual" heat generation model, and its heat source consists of two parts, the deep mantle heat source and the heat generated by the decay of radioactive elements in the crust. The decay heat of radioactive elements accounts for nearly 30% of the surface heat flow, and the mantle-derived heat flow accounts for about 70% of the surface heat flow. Below Niutuo Town and above the Moho, the lower crust was uplifted due to the upwelling of hot mantle material, and the undercut of mantle-derived magma formed a local thermal anomaly in the lower crust. This thermal anomaly has low-speed and high-conductivity geophysical characteristics. It is considered to be the deep heat source of the Niutuozhen geothermal field and the Rongcheng geothermal field. With regional faults as the heat channel, the terrestrial heat flow is conducted upward from depth and diffused to the top of the Niutuozhen and Rongcheng bulges, which is a source of carbonate reservoirs. The water layer is heated to form a geothermal reservoir; the overlying Neogene sedimentary stratum is a good thermal cap layer.

  • 加载中
  • An Huiting, Xu Liqing, Li Sanzhong, Yu Shan, Liu Xin, Suo Yanhui, Cao Xianzhi, Zhao Shujuan, Wang Pengcheng, Guo Lingli, Dai Liming. 2015. Meso-Cenozoic stress fields and their transition mechanisms in the Eastern Taihang Mountain Fault Zone[J]. Geotectonica et Metallogenia, 39(4): 571-586 (in Chinese with English abstract).

    Google Scholar

    Cao Xianzhi, Li Sanzhong, Liu Xin, Suo Yanhui, Zhao Shujuan, Xu Liqing, Dai Liming, Wang Pengcheng, Yu Shan. 2013. The intraplate morphotectonic inversion along the Eastern Taihang Mountain Fault Zone, North China and its mechanism[J]. Earth Science Frontiers, 20(4): 88-103 (in Chinese with English abstract).

    Google Scholar

    Chang Jian, Qiu Nansheng, Zhao Xianzheng, Xu Wei, Xu Qiuchen, Jin Fengming, Han Chunyuan, Ma Xuefeng, Dong Xiongying, Liang Xiaojuan. 2016. Present-day geothermal regime of the Jizhong depressionin Bohai Bay basin, East China[J]. Chinese J. Geophys., 59(3): 1003-1016 (in Chinese with English abstract).

    Google Scholar

    Chen Moxiang, Huang Geshan, Zhang Wenren, Zhang Rongyan, Liu Bingyi. 1982. The temperature distribution pattern and the utilization of geothermal water at Niutuozhen basement protrusion of Central Hebei Province[J]. Scientia Geologica Sinica, (3): 239-252 (in Chinese with English abstract).

    Google Scholar

    Chen Moxiang, Wang Jiyang, Wang Ji'an, Deng Xiao, Yang Shuzhen, Xiong Liangping, Zhang Juming. 1990. The characteristics of the geothermal field and its formation mechanism in the North China down-faulted basin[J]. Acta Geologica Sinica, 64(1): 80-91 (in Chinese with English abstract).

    Google Scholar

    Gao Rui, Xiong Xiaosong, Li Qiusheng, Lu Zhanwu. 2009. The Moho depth of Qinghai-Tibet Plateau revealed by seismic detection[J]. Acta Geoscientica Sinica, 30(6): 761-773 (in Chinese with English abstract).

    Google Scholar

    Guo Jingru, Jiang Duoyuan, Tang Wenbang, Zhao Wenjing 1996. Data acquisition of the first super-deep seismic profile in Qinghai Tibetan (Xizang) Plateau and the method of its processing[J]. Acta Geoscientica Sinica, 17(2): 202-213 (in Chinese with English abstract).

    Google Scholar

    He Dengfa, Shan Shuaiqiang, Zhang Yuying, Lu Renqi, Zhang Ruifeng, Cui Yongqian 2018. 3-D geologic architecture of Xiong'an New Area: Constraints from seismic reflection data[J]. Scientia Sinica Terrae, 48(9): 1207-1222 (in Chinese with English abstract). doi: 10.1360/N072017-00345

    CrossRef Google Scholar

    Hu Qiuyun, Gao Jun, Ma Feng, Zhao Zhihong, Liu Guihong, Wang Guiling, Zhang Wei, Zhu Xi, Zhang Baojian, Xing Yifei. 2020. Dynamic prediction of geothermal recoverable resources in the Rongcheng uplift area of the Xiong'an New Area[J]. Acta Geologica Sinica, 94(7): 2013-2025 (in Chinese with English abstract).

    Google Scholar

    Li Haitao, Feng Wei, Wang Kailin, Zhao Kai, Li Gang, Zhang Yuan, Li Muzi, Sun Lu, Chen Yichao, You Bing. 2021. Groundwater resources in Xiong'an New Area and its exploitation potential[J]. Geology in China, 48(4): 1112-1126 (in Chinese with English abstract).

    Google Scholar

    Li Wenhui, Gao Rui, Wang Haiyan, Li Hongqiang. 2012. Research on structure information recognition of deep seismci reflection profiles[J]. Chinese Journal of Geophysics, 55(12): 4138-4146 (in Chinese with English abstract).

    Google Scholar

    Liu J, Davis G A, Lin Z, Wu F. 2005. The Liaonan metamorphic core complex, Southeastern Liaoning Province, North China: A likely contributor to Cretaceous rotation of Eastern Liaoning, Korea and contiguous areas[J]. Tectonophysics, 407(1/2): 65-80.

    Google Scholar

    Liu Mingliang, He Tong, Wu Qifan, Guo Qinghai. 2019. Hydrogeochemistry of geothermal waters from the Xiong'an New Area and its indicating significance[J]. Earth Science, 45(6): 2221-2231 (in Chinese with English abstract).

    Google Scholar

    Lu Zhanwu, Gao Rui, Li Qiusheng, He Rizheng, Kuang Chaoyang, Hou Hesheng, Xiong Xiaosong, Guan Ye, Wang Haiyan, Klemperer L S. 2009. Testing deep seismic reflection profiles across the central uplift of the Qiangtang terrane in the Tibetan Plateau[J]. Chinese Journal of Geophysics, 52(8): 2008-2014 (in Chinese with English abstract).

    Google Scholar

    Lu Zhanwu, Gao Rui, Wang Haiyan, Li Wenhui, Li Hongqiang. 2014. Bright spots in deep seismic reflection profiles[J]. Progress in Geophysics, 29(6): 2518-2525 (in Chinese with English abstract).

    Google Scholar

    Ma Feng, Wang Guiling, Zhang Wei, Zhu Xi, Zhang Hanxiong, Yue Gaofan. 2020. Structure of geothermal reservoirs and resource potential in the Rongcheng geothermal field in Xiong'an New Area[J]. Acta Geologica Sinica, 94(7): 1981-1990 (in Chinese with English abstract).

    Google Scholar

    Marquis G, Hyndman R D. 1992. Geophysical support for aqueous fluids in the deep crust: Seismic and electrical relationships[J]. Geophys J. Int., 110(1): 91-105. doi: 10.1111/j.1365-246X.1992.tb00716.x

    CrossRef Google Scholar

    Ma Zhen, Xia Yubo, Li Haitao, Han Bo, Yu Xuezhong, Zhou Yalong, Wang Yushan, Guo Xu, Li Hongqiang, Pei Yandong. 2021. Analysis of natural resources and environment eco-geological conditions in the Xiong'an New Area[J]. Geology in China, 48(3): 677-696 (in Chinese with English abstract).

    Google Scholar

    Niu Shuyin. 1994, Taihangshan Fuping Zanhuang uplift are Meso-Cenozoic metamorphic core complexes[J]. Geological Science and Technology Information, 13(2): 15-16 (in Chinese).

    Google Scholar

    Pang Zhonghe, Kong Yanlong, Pang Jumei, Hu Shengbiao, Wang Jiyang. 2017. Geothermal resources and development in Xiong'an New Area[J]. Science & Technology Supporting Xiong'an New Area Planning and Construction, 32(11): 1224-1230 (in Chinese with English abstract).

    Google Scholar

    Pang Z, Pang J, Kong Y, Luo L, Duan Z, Yang F, Wang S. 2015. Large Karstic Geothermal Reservoirs in Sedimentary Basins in China: Genesis, Energy Potential and Optimal Exploitation[M]. World Geothermal Congress 2015. Melbourne, Australia.

    Google Scholar

    Qiu Nansheng, Xu Wei, Zuo Yinhui, Chang Jian, Liu Chunli. 2017. Evolution of Meso-Cenozoic thermal structure and thermal-geological structure of the lithosphere in the Bohai Bay Basin, Eastern North China Craton[J]. Earth Science Frontiers, 24(3): 13-26 (in Chinese with English abstract).

    Google Scholar

    Rao Song, Hu Shengbiao, Zhu Chuanqing, Tang Xiaoyin, Li Weiwei, Wang Jiyang. 2013. The characteristics of heat flow and lithospheric thermal structure in Junggar Basin, northwest China[J]. Chinese Journal of Geophysics, 56(8): 2760-2770(in Chinese with English abstract).

    Google Scholar

    Song Honglin 1996. Characteristics of Fangshan metamorphic core complex, Beijing and a discussion about its origin[J]. Geoscience, 10(2): 149-158 (in Chinese with English abstract).

    Google Scholar

    Sui Shaoqiang, Wang Xinwei, Zhou Zongying, Liu Jinxia, Mao Xiang. 2019. Study on the thermal reservoir characteristics of karst geothermal fields in Tianjin City[J]. Geology and Resources, 28(6): 590-594, 569 (in Chinese with English abstract).

    Google Scholar

    Sun Dongsheng, Liu Chiyang, Yang Minghui, Du Jinhu, Zhang Yiming, Zhang Ruifeng. 2004. Evidences for the large-scale detachment structure in middle area of Jizhong depression in Mid-Late Mesozoic period[J]. Geotectonica et Metallogenia, 28(2): 126-133 (in Chinese with English abstract).

    Google Scholar

    Sun Weijia, Fu Liyun, Wei Wei, Lin Yi, Tang Qingya. 2018. The crust-mantle transition structures beneath eastern China[J]. Chinese Journal of Geophysics, 61(3): 845-855 (in Chinese with English abstract).

    Google Scholar

    Suo Yanhui, Li Sanzhong, Cao Xianzhi, Li Xiyao, Liu Xin, Cao Huahua. 2017. Mesozoic-Cenozoic inversion tectonics of East China and its implications for the subduction process of the oceanic plate[J]. Earth Science Frontiers, 24(4): 249-267 (in Chinese with English abstract).

    Google Scholar

    Wang Chunyong, Zhang Xiankang, Wu Qingju, Zhu Zhiping. 1994. Seismic evidence of detachment in North China Basin[J]. Acta Geophysica Sinica, 37(5): 613-619 (in Chinese with English abstract).

    Google Scholar

    Wang Guiling, Gao Jun, Zhang Baojian, Xing Yifei, Zhang Wei, Ma Feng 2020. Study on the thermal storage characteristics of the Wumishan Formation and huge capacity geothermal well parameters in the Gaoyang low uplift area of Xiong'an New Area[J]. Acta Geologica Sinica, 94(7): 1970-1980 (in Chinese with English abstract).

    Google Scholar

    Wang Haiyan, Gao Rui, Lu Zhanwu, Li Qiusheng, Kuang Zhaoyang, Liu Jinkai, Hou Hesheng, Feng Shaoying, Xiong Xiaosong, Li Wenhui, Deng Gong. 2010. Fine structure of the continental lithosphere circle revealed by deep seismic reflection profile[J]. Acta Geologica Sinica, 84(6): 818-839 (in Chinese with English abstract).

    Google Scholar

    Wang Ji'an. 1992. The Geothermal Characteristics and Oil and Gas Resources of Liaohe Fault Depression[C]//Bulletin of the Institute of Geology, Chinese Academy of Sciences(5). Beijing: Science Press, 1-77(in Chinese with English abstract).

    Google Scholar

    Wang Jiyang, Hu Shengbiao, Pang Zhonghe, He Lijuan, Zhao Ping, Zhu Chuanqing, Rao Song, Tang Xiaoyin, Kong Yanlong, Luo Lu, Li Weiwei. 2012. Estimate of geothermal resources potential for hot dry rock in the continental area of China[J]. Science & Technology Review, 30(32): 25-31 (in Chinese with English abstract).

    Google Scholar

    Wang Zhuting, Zhang Chao, Jiang Guangzheng, Hu Jie, Tang Xianchun, Hu Shengbiao. 2019. Present-day geothermal field of Xiong'an New Area and its heat source mechanism[J]. Chinese Journal of Geophysics, 62(11): 4313-4322 (in Chinese with English abstract).

    Google Scholar

    Wei Wenbo, Jin Sheng, Ye Gaofeng, Deng Ming, Tan Handong, Martyn Unsworth, John Booker, Alan G Jones, Li Shenghui. 2006. Features of the faults in center and north Tibetan Plateau: Based on results of INDEPTH(Ⅲ)-MT[J]. Earth Science-Journal of China University of Geosciences, 31(2): 257-265 (in Chinese with English abstract).

    Google Scholar

    Xu Tairan, Lu Zhanwu, Wang Haiyan, Li Hongqiang, Li Wenhui. 2017. Main technology of deep seismic reflection data processing[J]. Progress in Geophysics, 32(2): 762-774 (in Chinese with English abstract).

    Google Scholar

    Xu Wenliang, Wang Qinghai, Wang Dongyan, Pei Fuping, Gao Shan. 2004. Processes and mechanism of Mesozoic lithospheric thinning in eastern North China Craton: Evidence from Mesozoic igneous rocks and deep-seated xenoliths[J]. Earth Science Frontiers, 11(3): 309-317 (in Chinese with English abstract).

    Google Scholar

    Zhan Yan, Zhao Guoze, Wang Jijun, Xiao Qibin, Tang Ji, Rokityansky I I. 2006. Crustal electric conductivity structure for Wudalianchi volcanic cluster in the Heilongjiang Province, China[J]. Acta Petrologica Sinica, 22(6): 1494-1502 (in Chinese with English abstract).

    Google Scholar

    Zhan Yan, Zhao Guoze, Wang Lifeng, Wang Jijun, Xiao Qibin. 2011. Deep structure in Shijiazhuang and the vicinity by magnetotellurics[J]. Seismology and Geology, 33(4): 913-927 (in Chinese with English abstract).

    Google Scholar

    Zhang Dongning, Zeng Rongsheng. 1995. Numerical simulation of decollement tectonic dynamics in Jizhong depression[J]. Acta Seismologica Sinica, 17(4): 414-421 (in Chinese with English abstract).

    Google Scholar

    Zhao Jiayi, Zhang Wei, Ma Feng, Zhu Xi, Zhang Hanxiong, Wang Guiling. 2020. Geochemical characteristics of the geothermal fluid in the Rongcheng geothermal field, Xiong'an New Area[J]. Acta Geologica Sinica, 94(7): 1991-2001 (in Chinese with English abstract).

    Google Scholar

    Zhu Guang, Hu Zhaoqi, Chen Yin, Niu Manlan, Xie Chenglong. 2008. Evolution of Early Cretaceous extensional basins in the eastern North China craton and its implication for the craton destruction[J]. Geological Bulletin of China, 27(10): 1594-1604 (in Chinese with English abstract).

    Google Scholar

    Zhu Rixiang, Xu Yigang, Zhu Guang, Zhang Hongfu, Xia Qunke, Zheng Tianyu. 2012. Destruction of the North China Craton[J]. Science China (Earth Science), 42(8): 1135-1159 (in Chinese with English abstract).

    Google Scholar

    Zhu Rixiang, Zheng Tianyu. 2009. Destruction geodynamics of the North China Craton and its Paleoproterozoic plate tectonics[J]. Chinese Sci. Bull., 54(14): 1950-1961 (in Chinese with English abstract). doi: 10.1360/csb2009-54-14-1950

    CrossRef Google Scholar

    Zhang Xuemin. 2005. Shear Wave Velocity Structures in Crust and Mantle of North China and Study on the Relationship with Geological Evolution since Late Cenozoic[D]. Beijing: China University of Geosciences (Beijing)(in Chinese with English abstract).

    Google Scholar

    安慧婷, 许立青, 李三忠, 余珊, 刘鑫, 索艳慧, 曹现志, 赵淑娟, 王鹏程, 郭玲莉, 戴黎明. 2015. 太行山东麓断裂带中、新生代构造应力场及转换机制[J]. 大地构造与成矿学, 39(4): 571-586.

    Google Scholar

    曹现志, 李三忠, 刘鑫, 索艳慧, 赵淑娟, 许立青, 戴黎明, 王鹏程, 余珊. 2013. 太行山东麓断裂带板内构造地貌反转与机制[J]. 地学前缘, 20(4): 88-103.

    Google Scholar

    常健, 邱楠生, 赵贤正, 许威, 徐秋晨, 金凤鸣, 韩春元, 马学峰, 董雄英, 梁小娟. 2016. 渤海湾盆地冀中坳陷现今地热特征[J]. 地球物理学报, 59(3): 1003-1016.

    Google Scholar

    陈墨香, 黄歌山, 张文仁, 张容燕, 刘炳义. 1982. 冀中牛驼镇凸起地温场的特点及地下热水的开发利用[J]. 地质科学, (3): 239-252.

    Google Scholar

    陈墨香, 汪集旸, 汪缉安, 邓孝, 杨淑贞, 熊亮平, 张菊明1990. 华北断陷盆地热场特征及其形成机制[J]. 地质学报, 64(1): 80-91.

    Google Scholar

    高锐, 熊小松, 李秋生, 卢占武. 2009. 由地震探测揭示的青藏高原莫霍面深度[J]. 地球学报, 30(6): 761-773. doi: 10.3321/j.issn:1006-3021.2009.06.008

    CrossRef Google Scholar

    郭景如, 蒋多元, 唐文榜, 赵文津. 1996. 青藏高原第一条超深反射地震剖面的数据采集及其处理方法[J]. 地球学报, 17(2): 202-213.

    Google Scholar

    何登发, 单帅强, 张煜颖, 鲁人齐, 张锐锋, 崔永谦. 2018. 雄安新区的三维地质结构: 来自反射地震资料的约束[J]. 中国科学: 地球科学, 48(9): 1207-1222.

    Google Scholar

    胡秋韵, 高俊, 马峰, 赵志宏, 刘桂宏, 王贵玲, 张薇, 朱喜, 张保建, 邢一飞. 2020. 雄安新区容城凸起地区地热可采资源量动态预测[J]. 地质学报, 94(7): 2013-2025. doi: 10.3969/j.issn.0001-5717.2020.07.010

    CrossRef Google Scholar

    李海涛, 凤蔚, 王凯霖, 赵凯, 李刚, 张源, 李木子, 孙璐, 陈一超, 尤冰. 2021. 雄安新区地下水资源概况、特征及可开采潜力[J]. 中国地质, 48(4): 1112-1126.

    Google Scholar

    李文辉, 高锐, 王海燕, 李洪强. 2012. 深地震反射剖面构造信息识别研究[J]. 地球物理学报, 55(12): 4138-4146. doi: 10.6038/j.issn.0001-5733.2012.12.026

    CrossRef Google Scholar

    刘明亮, 何曈, 吴启帆, 郭清海. 2019. 雄安新区地热水化学特征及其指示意义[J]. 地球科学, 45(6): 2221-2231

    Google Scholar

    卢占武, 高锐, 李秋生, 贺日政, 匡朝阳, 侯贺晟, 熊小松, 管烨, 王海燕, Klemperer L S. 2009. 横过青藏高原羌塘地体中央隆起区的深反射地震试验剖面[J]. 地球物理学报, 52(8): 2008-2014. doi: 10.3969/j.issn.0001-5733.2009.08.008

    CrossRef Google Scholar

    卢占武, 高锐, 王海燕, 李文辉, 李洪强. 2014. 深地震反射剖面上的"亮点"构造[J]. 地球物理学进展, 29(6): 2518-2525.

    Google Scholar

    马峰, 王贵玲, 张薇, 朱喜, 张汉雄, 岳高凡. 2020. 雄安新区容城地热田热储空间结构及资源潜力[J]. 地质学报, 94(7): 1981-1990. doi: 10.3969/j.issn.0001-5717.2020.07.007

    CrossRef Google Scholar

    马震, 夏雨波, 李海涛, 韩博, 余学中, 周亚龙, 王雨山, 郭旭, 李洪强, 裴艳东. 2021. 雄安新区自然资源与环境-生态地质条件分析[J]. 中国地质, 48(3): 677-696.

    Google Scholar

    牛树银. 1994. 太行山阜平、赞皇隆起是中新生代变质核杂岩[J]. 地质科技情报, 13(2): 15-16.

    Google Scholar

    庞忠和, 孔彦龙, 庞菊梅, 胡圣标, 汪集暘. 2017. 雄安新区地热资源与开发利用研究[J]. 中国科学院院刊, 32(11): 1224-1230.

    Google Scholar

    邱楠生, 许威, 左银辉, 常健, 刘春黎. 2017. 渤海湾盆地中-新生代岩石圈热结构与热-流变学演化[J]. 地学前缘(中国地质大学(北京); 北京大学, 24(3): 013-026.

    Google Scholar

    饶松, 胡圣标, 朱传庆, 唐晓音, 李卫卫, 汪集旸. 2013. 准噶尔盆地大地热流特征与岩石圈热结构[J]. 地球物理学报, 56(8): 2760-2770.

    Google Scholar

    宋鸿林. 1996. 北京房山变质核杂岩的基本特征及其成因探讨[J]. 现代地质, (2): 149-158.

    Google Scholar

    隋少强, 汪新伟, 周总瑛, 刘金侠, 毛翔. 2019. 天津岩溶地热田热储特征研究[J]. 地质与资源, 28(6): 590-594, 569. doi: 10.3969/j.issn.1671-1947.2019.06.011

    CrossRef Google Scholar

    孙冬胜, 刘池阳, 杨明慧, 杜金虎, 张以明, 张锐锋. 2004. 冀中坳陷中区中生代中晚期大型拆离滑覆构造的确定[J]. 大地构造与成矿学, (2): 126-133. doi: 10.3969/j.issn.1001-1552.2004.02.003

    CrossRef Google Scholar

    孙伟家, 符力耘, 魏伟, 林羿, 唐清雅. 2018. 中国东部地区的壳-幔过渡带结构[J]. 地球物理学报, 61(3): 845-855.

    Google Scholar

    索艳慧, 李三忠, 曹现志, 李玺瑶, 刘鑫, 曹花花. 2017. 中国东部中新生代反转构造及其记录的大洋板块俯冲过程[J]. 地学前缘, 24(4): 249-267.

    Google Scholar

    汪缉安. 1992. 辽河断陷地热特征与油气资源[C]//中国科学院地质研究所集刊(5). 北京: 科学出版社, 1-77.

    Google Scholar

    汪集旸, 胡圣标, 庞忠和, 何丽娟, 赵平, 朱传庆, 饶松, 唐晓音, 孔彦龙, 罗璐, 李卫卫. 2012. 中国大陆干热岩地热资源潜力评估[J]. 科技导报, 30(32): 25-31. doi: 10.3981/j.issn.1000-7857.2012.32.002

    CrossRef Google Scholar

    王椿镛, 张先康, 吴庆举, 祝治平. 1994. 华北盆地滑脱构造的地震学证据[J]. 地球物理学报, 37(5): 613-619. doi: 10.3321/j.issn:0001-5733.1994.05.007

    CrossRef Google Scholar

    王贵玲, 高俊, 张保建, 邢一飞, 张薇, 马峰. 2020. 雄安新区高阳低凸起区雾迷山组热储特征与高产能地热井参数研究[J]. 地质学报, 94(7): 1970-1980. doi: 10.3969/j.issn.0001-5717.2020.07.006

    CrossRef Google Scholar

    王海燕, 高锐, 卢占武, 李秋生, 匡朝阳, 刘金凯, 侯贺晟, 酆少英, 熊小松, 李文辉, 邓攻. 2010. 深地震反射剖面揭露大陆岩石圈精细结构[J]. 地质学报, 84(6): 818-839. doi: 10.3969/j.issn.1004-9665.2010.06.002

    CrossRef Google Scholar

    王朱亭, 张超, 姜光政, 胡杰, 唐显春, 胡圣标. 2019. 雄安新区现今地温场特征及成因机制[J]. 地球物理学报, 62(11): 4313-4322. doi: 10.6038/cjg2019M0326

    CrossRef Google Scholar

    魏文博, 金胜, 叶高峰, 邓明, 谭捍东, Martyn, Unsworth, John, Booker, Aian. 2006. 西藏高原中、北部断裂构造特征: INDEPTH(Ⅲ)-MT观测提供的依据[J]. 地球科学, 31(2): 257-265. doi: 10.3321/j.issn:1000-2383.2006.02.017

    CrossRef Google Scholar

    徐泰然, 卢占武, 王海燕, 李洪强, 李文辉. 2017. 深反射地震剖面数据处理的主要技术方法[J]. 地球物理学进展, 32(2): 762-774.

    Google Scholar

    许文良, 王清海, 王冬艳, 裴福萍, 高山. 2004. 华北克拉通东部中生代岩石圈减薄的过程与机制: 中生代火成岩和深源捕虏体证据[J]. 地学前缘, 11(3): 309-317. doi: 10.3321/j.issn:1005-2321.2004.03.029

    CrossRef Google Scholar

    詹艳, 赵国泽, 王继军, 肖骑彬, 汤吉, II R. 2006. 黑龙江五大连池火山群地壳电性结构[J]. 岩石学报, 22(6): 1494-1502.

    Google Scholar

    詹艳, 赵国泽, 王立凤, 王继军, 肖骑彬. 2011. 河北石家庄地区深部结构大地电磁探测[J]. 地震地质, 33(4): 913-927. doi: 10.3969/j.issn.0253-4967.2011.04.015

    CrossRef Google Scholar

    张东宁, 曾融生. 1995. 冀中坳陷滑脱构造动力的数值模拟[J]. 地震学报, 17(4): 414-421.

    Google Scholar

    赵佳怡, 张薇, 马峰, 朱喜, 张汉雄, 王贵玲. 2020. 雄安新区容城地热田地热流体化学特征[J]. 地质学报, 94(7): 1991-2001. doi: 10.3969/j.issn.0001-5717.2020.07.008

    CrossRef Google Scholar

    朱光, 胡召齐, 陈印, 牛漫兰, 谢成龙. 2008. 华北克拉通东部早白垩世伸展盆地的发育过程及其对克拉通破坏的指示[J]. 地质通报, 27(10): 1594-1604. doi: 10.3969/j.issn.1671-2552.2008.10.002

    CrossRef Google Scholar

    朱日祥, 徐义刚, 朱光, 张宏福, 夏群科, 郑天愉. 2012. 华北克拉通破坏[J]. 中国科学: 地球科学, 42(8): 1135-1159.

    Google Scholar

    朱日祥, 郑天愉. 2009. 华北克拉通破坏机制与古元古代板块构造体系[J]. 科学通报, 54(14): 1950-1961.

    Google Scholar

    张学民. 2005. 华北地区壳幔剪切波速度结构及与晚新生代地质演化关系研究[D]. 中国地质大学(北京).

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(10)

Tables(3)

Article Metrics

Article views(4852) PDF downloads(126) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint