2021 Vol. 48, No. 5
Article Contents

XU Naizheng, GONG Jianshi, TAN Mengjiao, YE Yonghong, ZHOU Kaie, ZHU Chunfang, SHU Longcang, MENG Dan. 2021. Hydrogeochemical processes and potential exposure risk of high-arsenic groundwater in Huaihe River Basin, China[J]. Geology in China, 48(5): 1418-1428. doi: 10.12029/gc20210508
Citation: XU Naizheng, GONG Jianshi, TAN Mengjiao, YE Yonghong, ZHOU Kaie, ZHU Chunfang, SHU Longcang, MENG Dan. 2021. Hydrogeochemical processes and potential exposure risk of high-arsenic groundwater in Huaihe River Basin, China[J]. Geology in China, 48(5): 1418-1428. doi: 10.12029/gc20210508

Hydrogeochemical processes and potential exposure risk of high-arsenic groundwater in Huaihe River Basin, China

    Fund Project: Supported by the project of China Geological Survey (No. DD20190354) and Natural Science Foundation of Jiangsu Provinc(No. BK20151093)
More Information
  • Author Bio: XU Naizheng, male, born in 1971, researcher, engaged in the study of environmental science; E-mail: xzzz100@sina.com
  • Corresponding author: GONG Jianshi, male, born in 1981, senior engineer, mainly engaged in hydrogeological investigation and research; E-mail: 593591934@qq.com 
  • Arsenic (As) poses a danger to environmental health, and drinking arsenic-rich groundwater is a key exposure risk for humans. The study on distribution, migration, and enrichment of As in groundwater is an important worldwide environmental and public health problem. Huaihe River Basin is presently defined as a region of high-arsenic groundwater in China. In this study, a typical high arsenic groundwater area in the basin was selected as the natural experimental site to analyze the formation and evolution of high arsenic groundwater through the analysis of groundwater hydrogeochemical data, to trace the source and dissolution of arsenic pollutants, and evaluate the potential pollution risk. The results showed that As and F were the main inorganic chemical substances affecting the water quality in the study area, with concentrations of (5.75±5.42) μg/L and (1.29±0.40) mg/L respectively, the ratio of test samples exceeding the recommended drinking water standards of the World Health Organization by 23% and 31% respectively. According to the hydrochemical diagram and the calculation of mineral saturation indices, the groundwater in the study area underwent evaporation, halite dissolution, and water-rock interaction. The total alkalinity of high-arsenic groundwater ranged mainly between 400 and 700 mg/L, and the hydrogeochemical type was mainly of HCO3-Na. High-arsenic groundwater was largely affected by evaporation and cation exchange. Arsenic in high-arsenic groundwater derived from the dissolution and release of geogentic arsenic in aquifer. The oxidation dissolution and reduction activation of As-bearing minerals may be the main mechanism of the formation of high arsenic groundwater.

  • 加载中
  • Cao Hailong, Xie Xianjun, Wang Yanxin, Pi Kunfu, Li Junxia, Zhan Hongbin, Liu Peng. 2018. Predicting the risk of groundwater arsenic contamination in drinking water wells[J]. Journal of Hydrology, 560: 318-325. doi: 10.1016/j.jhydrol.2018.03.007

    CrossRef Google Scholar

    Cartwright I, Weaver T, Fifield L. 2006. Cl/Br ratios and environmental isotopes as indicators of recharge variability and groundwater flow: An example from the southeast Murray Basin, Australia[J]. Chemical Geology, 231: 38-56. doi: 10.1016/j.chemgeo.2005.12.009

    CrossRef Google Scholar

    Chen Ying, Sun Yingjie, Wang Fangfang, Wang Yanan, Lu Mou, Zhang Dalei. 2013. Research on arsenic contents and its speciation distribution in sediments of northern suburb water source field in Zhengzhou[J]. Journal of Qingdao Technological University, 34 (5): 55-60 (in Chinese with English abstract).

    Google Scholar

    Deng Yamin, Wang Yanxin, Ma Teng. 2009. Isotope and minor element geochemistry of high arsenic groundwater from Hangjinhouqi, the Hetao Plain, Inner Mongolia[J]. Applied Geochemistry, 24: 587-599. doi: 10.1016/j.apgeochem.2008.12.018

    CrossRef Google Scholar

    Duan Yanhua, Gan Yiqun, Wang Yanxin, Liu Chongxuan, Yu Kai, Deng Yamin, Zhao Ke, Dong Chuangju. 2017. Arsenic speciation in aquifer sediment under varying groundwaterregime and redox conditions at Jianghan Plain of Central China[J]. Science of the Total Environment, 607-608: 992-1000. doi: 10.1016/j.scitotenv.2017.07.011

    CrossRef Google Scholar

    Gao Cunrong, Liu Wenbo, Liu Bin, Li Jinfeng, Li Fei. 2010. Modes of occurrence of arsenic in Quaternary sediments of the Hetao Plain[J]. Geology in China 37(3): 760-770(in Chinese with English abstract).

    Google Scholar

    Gao Yanyan, Qian Hui, Huo Henchen, Chen Jie, Wang Haike. 2020. Assessing natural background levels in shallow groundwater in a large semiarid drainage Basin[J]. Journal of Hydrology, 584: 124638. doi: 10.1016/j.jhydrol.2020.124638

    CrossRef Google Scholar

    Garbinski L, Rosen B, Chen J. 2019. Pathways of arsenic uptake and efflux[J]. Environment International, 126: 585-597. doi: 10.1016/j.envint.2019.02.058

    CrossRef Google Scholar

    Gillispie E, Matteson A, Duckworth O, Neumann R, Phen N, Polizzotto M. 2019. Chemical variability of sediment and groundwater in a Pleistocene aquifer of Cambodia: Implications for arsenic pollution potential[J]. Geochimica et Cosmochimica Acta 245: 441-458. doi: 10.1016/j.gca.2018.11.008

    CrossRef Google Scholar

    Gupta P K, Joshi P, Jahangeer. 2017. In-situ observation and transport modelling of arsenic in Gangetic plain, India[J]. Emerging Contaminants 3: 138-143. doi: 10.1016/j.emcon.2018.03.001

    CrossRef Google Scholar

    Han D M, Song X F, Currell M J, Yang J L, Xiao G Q. 2014. Chemical and isotopic constraints on evolution of groundwater salinization in the coastal plain aquifer of Laizhou Bay, China[J]. Journal of Hydrology, 508: 12-27. doi: 10.1016/j.jhydrol.2013.10.040

    CrossRef Google Scholar

    Han Ying, Zhang Hongmin, Zhang Yongfeng, Zhang Xin. 2017. Distribution regularity origin and quality division of high arsenic, fluorine and iodine contents in groundwater in Datong basin[J]. Geological survey of China, 4(1): 57-68 (in Chinese with English abstract).

    Google Scholar

    Hu Yihong, Zhou Lei, Li Xin, Xu Fandi, Wang Lin, Mo Dongzhi, Zhou Liang, Wang Xin. 2015. Arsenic contamination in Shimen Realgar mine Ⅰ: As spatial distribution, chemical fractionations and leaching[J]. Journal of Agro-Environment Sciences, 4(8): 1515-1521 (in Chinese with English abstract).

    Google Scholar

    Li Bin, Zhao Chanjuan, Li Peiyao, Yuan Yan. 2013. BCR speciation analysis of arsenic in contaminated soil in arsenic mining area. Journal of Yunnan University for Nationalities[J]. Natural Science 22(5): 330-333 (in Chinese with English abstract).

    Google Scholar

    Li Guoli, Zhou Kaie, Zhang Qing, Yuan Hongwu. 2018. The application of a joint numerical simulation system of surface water and groundwater in optimized management of Fuyang water resources[J]. East China Geology, 9(3): 234-240 (in Chinese with English abstract).

    Google Scholar

    Li Mengying, Liu Yonggen, Hou Lei, Zheng Yi, Qi Danhui, Zhao Rong, Ren Wei. 2018. Effects and concentration prediction of environmental al factors on the speciation of arsenic in the sediments of Yangzonghai lakeside wetland[J]. Research of Environmental Sciences, 31(9): 1554-1563 (in Chinese with English abstract).

    Google Scholar

    Li Yongfang, Da Wang Da, Liu Yuyan, Zheng Quanmei, Sun Guifan. 2017. A predictive risk model of groundwater arsenic contamination in China applied to the Huai River Basin, with a focus on the region's cluster of elevated cancer mortalities[J]. Applied Geochemistry, 77: 178-183. doi: 10.1016/j.apgeochem.2016.05.003

    CrossRef Google Scholar

    Liu Jiangtao, Cai Wutian, Cao Yueting, Cai Yuemei, Biao Chao, Lu Shuigao, Chen Yuanming. 2018. Hydrochemical characteristics of groundwater and the origin in alluvial-proluvial fan of Qinhe River[J]. Environmental Science 39(12): 5428-5439 (in Chinese with English abstract).

    Google Scholar

    MLR(Ministry of Land and Resources, PRC) and Ministy of water Resources. 2017. GB/T 14848-2017 Quality standard for ground water[S] (in Chinese).

    Google Scholar

    Shahid N M, Niazi K, Dumat C, Naidu R, Khalid S, Rahman M, Bibi I. 2018. A meta-analysis of the distribution, sources and health risks of arsenic-contaminated groundwater in Pakistan[J]. Environmental Pollution, 242(A): 307-319.

    Google Scholar

    Stopelli E, Duyen V T, Mai T T. 2020. Spatial and temporal evolution of groundwater arsenic contamination in the Red River delta, Vietnam: Interplay of mobilisation and retardation processes[J]. Science of the Total Environment, 717: 1-13.

    Google Scholar

    Taheri M, Gharaie M, Mehrzad J, Afshari R, Datta. 2017. Hydrogeochemical and isotopic evaluation of arsenic contaminated waters in an argillic alteration zone[J]. Journal of Geochemical Exploration, 175: 1-10. doi: 10.1016/j.gexplo.2016.12.005

    CrossRef Google Scholar

    Tang Jie, Lin Nianfeng, Bian Jianmin, Liu Wuzhou, Zhang Zhenlin. 1996. Environmental geochemistry of arsenic in the area of arsenic poisoning in Hetao Plain, Inner Mongolia[J]. Hydrogeology Engineering Geology, (1): 49-54 (in Chinese with English abstract).

    Google Scholar

    Wang Jingshan, Zhao Lunshan, Wu Yuebin. 1998. Environmental geochemistry of arsenic in arsenism area of Shanyin and Yingxian, Shanxi Province[J]. Geoscience, 12 (2): 243-248 (in Chinese with English abstract).

    Google Scholar

    WHO (World Health Organization). 2011. Guidelines for Drinking-Water Quality (Fourth edition)[M]. The World Health Organization, Geneva, Switzerland, 1-564.

    Google Scholar

    Xie Xianjun, Wang Yanxin, Su Chunli, Li Chunxia, Li Mengdi. 2012. Influence of irrigation practices on arsenic mobilization: Evidence from isotope composition and Cl/Br ratios in groundwater from Datong Basin, northern China[J]. Journal of Hydrology, 424-425: 37-47. doi: 10.1016/j.jhydrol.2011.12.017

    CrossRef Google Scholar

    Xing Lina, Guo Huamin, Zhan Yanhong. 2013. Groundwater hydrochemical characteristics and processes along flow paths in the North China Plain[J]. Journal of Asian Earth Sciences, 70-71: 250-264. doi: 10.1016/j.jseaes.2013.03.017

    CrossRef Google Scholar

    Yang Qingchun, Li Zijun, Ma Hongyun, Wang Luchen, Martín J D. 2016. Identification of the hydrogeochemical processes and assessment of groundwater quality using classic integrated geochemical methods in the Southeastern part of Ordos basin, China[J]. Environmental Pollution, 218: 879-888. doi: 10.1016/j.envpol.2016.08.017

    CrossRef Google Scholar

    Zhang Fucun, Wen Dongguang, Guo Jianqiang, Zhang Eryong, Hao Aibing, An Yonghui. 2010. Research progress and prospect of geological environment in main endemic areas of China[J]. Geology in China, 37 (3): 551-562 (in Chinese with English abstract).

    Google Scholar

    Zhang Kexin, Pan Guitang, He Wenhong, Xiao Qinghui, Xu Yadong. 2015. New division of tectonic-strata super region in China[J]. Earth Science, 40 (2): 206-233 (in Chinese with English abstract).

    Google Scholar

    Zhang Liankai, Qin Xiaoqun, Tang Jiansheng, Liu Wen, Yang Hui. 2017. Review of arsenic geochemical characteristics and its significance on arsenic pollution studies in karst groundwater, Southwest China[J]. Applied Geochemistry, 77: 80-88. doi: 10.1016/j.apgeochem.2016.05.014

    CrossRef Google Scholar

    Zhu Bingqi, Yang Xiaoping, Rioual Patrick, Qin Xiaoguang, Liu Ziting, Xiong Heigang, Yu Jingjie. 2011. The Hydrogeochemistry of three watersheds (the Erlqis, Zhungarer and Yili) in northern Xinjiang, NW China[J]. Applied Geochemistry 26: 1535-1548. doi: 10.1016/j.apgeochem.2011.06.018

    CrossRef Google Scholar

    陈英, 孙英杰, 王芳芳, 王亚楠, 吕谋, 张大磊. 2013. 郑州北郊水源地沉积物中砷的含量及形态分布研究[J]. 青岛理工大学学报, 34(5): 55-60. doi: 10.3969/j.issn.1673-4602.2013.05.011

    CrossRef Google Scholar

    高存荣, 刘文波, 刘滨, 李金凤, 李飞. 2010. 河套平原第四纪沉积物中砷的赋存形态分析[J]. 中国地质, 37(3): 760-770.

    Google Scholar

    韩颖, 张宏民, 张永峰, 张欣. 2017. 大同盆地地下水高砷、氟、碘分布规律与成因分析及质量区划[J]. 中国地质调查, 4(1): 57-68.

    Google Scholar

    胡毅鸿, 周蕾, 李欣, 徐凡迪, 王霖, 莫冬至, 周亮, 王欣. 2015. 石门雄黄矿区As污染研究Ⅰ- As空间分布、化学形态与酸雨溶出特性[J]. 农业环境科学学报, 34(8): 1515-1521.

    Google Scholar

    李彬, 赵婵娟, 李佩瑶, 袁燕. 2013. 砷矿区受污染土壤中As赋存形态分析[J]. 云南民族大学学报(自然科学版), 22(5): 330-333. doi: 10.3969/j.issn.1672-8513.2013.05.006

    CrossRef Google Scholar

    李国礼, 周锴锷, 张庆, 袁红武. 2018. 地表水与地下水联合数值模拟系统在阜阳市水资源优化管理中的应用[J]. 华东地质, 39(3): 234-240.

    Google Scholar

    李梦莹, 刘云根, 侯磊, 郑毅, 齐丹卉, 赵蓉, 任伟. 2018. 阳宗海湖滨湿地环境因素对沉积物砷赋存形态的影响及浓度水平预测[J]. 环境科学研究, 31(9): 1554-1563.

    Google Scholar

    刘江涛, 蔡五田, 曹月婷, 蔡月梅, 边超, 吕永高, 陈远铭. 2018. 沁河冲洪积扇地下水水化学特征及成因分析[J]. 环境科学, 39(12): 5428-5439.

    Google Scholar

    汤杰, 林年丰, 卞建民, 刘五洲, 张振林. 1996. 内蒙河套平原砷中毒病区砷的环境地球化学研究[J]. 水文地质工程地质, (1): 49-54.

    Google Scholar

    王敬华, 赵伦山, 吴悦斌. 1998. 山西山阴、应县一带砷中毒区砷的环境地球化学研究[J]. 现代地质12(2): 243-248.

    Google Scholar

    张福存, 文冬光, 郭建强, 张二勇, 郝爱兵, 安永会. 2010. 中国主要地方病区地质环境研究进展与展望[J]. 中国地质, 37(3): 551-562.

    Google Scholar

    张克信, 潘桂棠, 何卫红. 肖庆辉, 徐亚东. 2015. 中国构造-地层大区划分新方案[J]. 地球科学——中国地质大学学报, 40(2): 206-233.

    Google Scholar

    中华人民共和国国土资源部和水利部. 2017. GB/T 14848-2017地下水质量标准[S].

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(6)

Tables(3)

Article Metrics

Article views(2953) PDF downloads(122) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint