2024 Vol. 51, No. 6
Article Contents

LI Tianhu, KANG Lei, QIAO Gengbiao, PENG Qiaoliang, LUO Xianrong, WANG Jie. 2024. Zircon U–Pb geochronology, petrogenesis of intermediate–acid volcanic rocks in Dunhuang block and its indiction of subduction of Paleo–Asian Ocean[J]. Geology in China, 51(6): 1972-1990. doi: 10.12029/gc20210325003
Citation: LI Tianhu, KANG Lei, QIAO Gengbiao, PENG Qiaoliang, LUO Xianrong, WANG Jie. 2024. Zircon U–Pb geochronology, petrogenesis of intermediate–acid volcanic rocks in Dunhuang block and its indiction of subduction of Paleo–Asian Ocean[J]. Geology in China, 51(6): 1972-1990. doi: 10.12029/gc20210325003

Zircon U–Pb geochronology, petrogenesis of intermediate–acid volcanic rocks in Dunhuang block and its indiction of subduction of Paleo–Asian Ocean

    Fund Project: Supported by the projects of China Geological Survey (No.DD20230248, No.DD20160009, No.DD20190539).
More Information
  • Author Bio: LI Tianhu, male, born in 1982, senior engineer, engaged in investigation and research on regional geology and mineral resources; E-mail: 229094367@qq.com
  • Corresponding author: KANG Lei, male, born in 1984, associate researcher, engaged in the study of magmatic rocks and geotectonics; E-mail: 270806796@qq.com
  • This paper is the result of geological survey engineering.

    Objective

    Dunhuang block is located at the junction of Tarim Plate, Central Asian Orogenic Belt and Qilianshan Orogenic Belt. Its formation age and tectonic attributes have always been controversial. This paper takes the intermediate–acid volcanic rocks exposed in the northeastern margin of Dunhuang block as the research object, and attempts to provide evidence for solving the above problems.

    Methods

    In this paper, LA–ICP–MS zircon U–Pb dating of three dacite samples and geochemical analysis of intermediate–acid volcanic rocks were carried out to explore the formation age, petrogenesis and tectonic attributes of the volcanic rocks.

    Results

    LA–ICP–MS zircon U–Pb geochronology indicates that three dacite samples form at (533.2±6.1) Ma, (527.7±6.1) Ma and (514.9±3.4) Ma, belonging to Early Cambrian. The andesite exposed in the area has typical characteristics of high–Mg andesite, e.g., SiO2 contents (51.4%−55.98%), high MgO contents (5.81%−12.31%) and Mg# values (59−72), high Cr (166×10−6−1020×10−6) and Ni (41.4×10−6−169×10−6) contents, and low FeOT/MgO (0.79−1.56) ratios. Otherwise, the andesites have high Ti/Zr, Ti/Y ratios and low Rb/Sr ratios, high La/Nb and Ba/Nb and Ba/La ratios. The intermediate–acid volcanic rocks are enriched in large ionic lithophile elements (Rb, Ba, U, K) and light rare earth elements, depleted in high field strength elements (Nb, Ta, Zr, Ti) and heavy rare earth elements, with characteristics of near–flat right–leaning rare earth distribution pattern, low Nb/La (0.36−0.46) and Hf/Th (1.02−1.34) ratios, high Hf/Ta (5.71−8.60) and La/Ta (21.72−29.50) ratios, indicative of the geochemical properties of island arc volcanic rocks.

    Conclusions

    It is considered that the volcanic rocks should be the Early Cambrian volcanic caprock above Dunhuang Group. The volcanic rocks in the area should be formed in the island arc environment, which may be formed by partial melting of metasomatic mantle wedge in the subduction of the Early Cambrian Paleo–Asian Ocean crust melt (fluid), and contaminated by crustal materials during the ascending process. According to the formation age of volcanic rocks and the characteristics of petrogeochemistry, the subduction of the Paleo–Asian Ocean can be traced back to the Early Cambrian.

  • 加载中
  • [1] Annen C, Blundy J D, Sparks R S J. 2006. The genesis of intermediate and cilicic magmas in deep crustal hot zones[J]. Journal of Petrology, 47: 505−539. doi: 10.1093/petrology/egi084

    CrossRef Google Scholar

    [2] Atherton M P, Petford N. 1993. Generation of sodium–rich magmas from newly underplated basaltic crust[J]. Nature, 362(6416): 144−146. doi: 10.1038/362144a0

    CrossRef Google Scholar

    [3] Cabanis B, Lecolle M. 1989. Le diagramme La/10–Y/15–Nb/8: Un outil pour la discrimination des series volcaniques et la mise en evidence des procesus de melange et/ou de contamination crutale[J]. Comptes Rendus l’Acad Sci 309 : 2023–2029.

    Google Scholar

    [4] Cantagrel J M, Cendrero A, Fuster J M, Ibarrola E, Jamond C. 1984. K–Ar chronology of the volcanic eruptions in the Canarian Archipelago: Island of La Gomera[J]. Bulletin of Volcanology, 47(3): 597−609. doi: 10.1007/BF01961229

    CrossRef Google Scholar

    [5] Castillo P R, Janney P E, Solidum R U. 1999. Petrology and geochemistry of Camiguin Island, Southern Philippines: Insights to the source of adakites and other lavas in a complex arc setting[J]. Contributions to Mineralogy and Petrology, 134(1): 33−51. doi: 10.1007/s004100050467

    CrossRef Google Scholar

    [6] Defant M J, Xu J F, Kepezhinskas P, Wang Q, Zhang Q, Xiao L. 2002. Adakites: Some variations on a theme[J]. Acta Petrologica Sinica, 18(2): 129−142.

    Google Scholar

    [7] Elliott T, Plank T, Zindler A, White W, Bourdon B. 1997. Element transport from slab to volcanic front at the Mariana arc[J]. Journal of Geophysical Research, 102(B7): 14991−15019. doi: 10.1029/97JB00788

    CrossRef Google Scholar

    [8] Gao S, Rudnick R L, Yuan H L, Liu X M, Liu Y S, Xu W L, Ling W L, Ayers J, Wang X C, Wang Q H. 2004. Recycling lower continental crust in the North China craton[J]. Nature, 432(7019): 892−897. doi: 10.1038/nature03162

    CrossRef Google Scholar

    [9] Ge R F, Zhu W B, Wu H L, Zheng B H, Zhu X Q, He J W. 2012. The Paleozoic northern margin of the Tarim Craton: Passive or active?[J]. Lithos, 142/143: 1−15. doi: 10.1016/j.lithos.2012.02.010

    CrossRef Google Scholar

    [10] Guffanti M, Clynne M A, Muffler L J P. 1996. Thermal and mass implications of magmatic evolution in the Lassen Volcanic Region, California, and minimum constraints on basalt influx to the lower crust[J]. Journal of Geophysical Research: Solid Earth, 101(B2): 3003−3013. doi: 10.1029/95JB03463

    CrossRef Google Scholar

    [11] Guo F, Nakamuru E, Fan W, Kobayoshi K, Li C. 2007. Generation of Palaeocene adakitic andesites by magma mixing in Yanji area, NE China[J]. Journal of Petrology, 48(4): 661−692. doi: 10.1093/petrology/egl077

    CrossRef Google Scholar

    [12] Hanyu T, Tatsumi Y, Nakai S. 2002. A contribution of slab–melts to the formation of high–Mg andesite magmas: Hf isotopic evidence from SW Japan[J]. Geophysical Research Letters, 29(2): 2051.

    Google Scholar

    [13] Hanyu T, Tatsumi Y, Nakai S, Chang Q, Miyazaki T, Sato K, Tani K, Shibata T, Yoshida T. 2006. Contribution of slab melting and slab dehydration to magmatism in the NE Japan arc for the last 25Myr: Constraints from geochemistry[J]. Geochemistry Geophysics Geosystems, 7(8): Q08002.

    Google Scholar

    [14] Hawkesworth C J, Mcdermott F, Van C P. 1997. U–Th isotopes in arc magmas: Implications for element transfer from the subducted crust[J]. Science, 276(5312): 551−555. doi: 10.1126/science.276.5312.551

    CrossRef Google Scholar

    [15] Hildreth W, Moorbath S. 1988. Crustal contributions to arc magmatism in the Andes of Central Chile[J]. Contributions to Mineralogyand Petrology, 98: 455−489. doi: 10.1007/BF00372365

    CrossRef Google Scholar

    [16] Jackson M D, Cheadle M J, Atherton M P. 2003. Quantitative modeling of granitic melt generation and segregation in the continental crust[J]. Journal of Geophysical Research–Solid Earth, 108: 2332−2353.

    Google Scholar

    [17] Jahn B M, Wu F Y, Chen B. 2000. Granitoids of the Central Asian Orogenic Belt and continental growth in the Phanerozoic[J]. Transactions of the Royal Society of Edinburgh: Earth Sciences, 91(1/2): 181−193.

    Google Scholar

    [18] Jakes P, White A J R. 1971. Composition of island arcs and continental growth[J]. Earth and Planetary Science Letters, 12: 224−230. doi: 10.1016/0012-821X(71)90081-1

    CrossRef Google Scholar

    [19] Jung S, Hoernes S, Mezger K. 2002. Synorogenic melting of mafic lower crust: Constraints from geochronology, petrology and Sr, Nd, Pb and O isotope geochemistry of quartz diorites (Damara orogen, Namibia)[J]. Contributions to Mineralogy and Petrology, 143(5): 551−566. doi: 10.1007/s00410-002-0366-5

    CrossRef Google Scholar

    [20] Khain E V, Bibikova E V, Salnikova E B, Kröner A, Gibsher A S, Didenko A N, Degtyarev K E, Fedotova A A. 2003. The Palaeo–Asianocean in the Neoproterozoic and Early Palaeozoic: New geochronologic data and palaeotectonic reconstructions[J]. Precambrian Research, 122(1/4): 329−358.

    Google Scholar

    [21] Kovalenko V I, Yarmolyuk V V, Kovach V P, Kotov A B, Kozakov I K, Salnikova E B, Larin A M. 2004. Isotope provinces, mechanisms of generation and sources of the continental crust in the Central Asian mobile belt: Geological and isotopic evidence[J]. Journal of Asian Earth Sciences, 23(5): 605−627. doi: 10.1016/S1367-9120(03)00130-5

    CrossRef Google Scholar

    [22] Kröner A, Hegner E, Lehmann B, Heinhorst J, Wingate M T D, Liu D Y, Ermelov P. 2008. Palaeozoic arc magmatism in the Central Asian Orogenic Belt of Kazakhstan: SHRIMP zircon ages and whole rock Nd isotopic systematics[J]. Journal of Asian Earth Sciences, 32(2/4): 118−130.

    Google Scholar

    [23] Lee C T, Lee T C, Wu C T. 2014. Modeling the compositional evolution of recharging, evacuating, and fractionating (REFC) magma chambers: Implications for differentiation of arc magmas[J]. Geochimica et Cosmochimica Acta, 143: 8−22. doi: 10.1016/j.gca.2013.08.009

    CrossRef Google Scholar

    [24] Le Maitre R W. 1989. A Classification of Igneous Rocks and Glossary of Terms[M]. Oxford: Blackwell Science Publication, 1–193.

    Google Scholar

    [25] Li Jinyi, Wang Kezhuo, Sun Guihua, Mo Shenguo, Li Wenqian, Yang Tiannan, Gao Liming. 2006. Paleozoic active margin slices in the southern Turfan–Hami basin: Geological records of subduction of the Paleo–Asian Ocean plate in central Asian regions[J]. Acta Petrologica Sinica, 22(5): 1087−1102 (in Chinese with English abstract).

    Google Scholar

    [26] Li S M, Zhu D C, Wang Q, Zhao Z D, Sui Q L, Liu S A, Liu D, Mo Xuanxue. 2014. Northward subduction of Bangong–Nujiang Tethys: Insight from Late Jurassic intrusive rocks from Bangong Tso in Western Tibet[J]. Lithos, 205: 284−297. doi: 10.1016/j.lithos.2014.07.010

    CrossRef Google Scholar

    [27] Li Wenqian, Wang Ran, Wang He, Xia Bin. 2006. Geochemistry and petrogenesis of the Kalatag intrusion in the ‘Tuha Window’[J]. Geology in China, 33(3): 559−565 (in Chinese with English abstract).

    Google Scholar

    [28] Li Wenyuan. 2018. The primary discussion on the relationship between Paleo–Asian Ocean and Paleo–Tethys Ocean[J]. Acta Petrologica Sinica, 34(8): 2201−2109 (in Chinese with English abstract).

    Google Scholar

    [29] Li Wenyuan, Zhang Zhaowei, Gao Yongbao, Hong Jun, Chen Bo, Zhang Zhibing. 2022. Tectonic transformation of the Kunlun Paleo−Tethyan orogenic belt and related mineralization of critical mineral resources of nickel, cobalt, manganese and lithium[J]. Geology in China, 49(5): 1385−1407 (in Chinese with English abstract).

    Google Scholar

    [30] Li Yanguang, Wang Shuangshuang, Liu Minwu, Meng En, Wei Xiaoyan, Zhao Huibo, Jin Mengqi. 2015. U–Pb dating study of baddeleyite by LA–ICP–MS: Technique and application[J]. Acta Geologica Sinica, 89(12): 2400−2418 (in Chinese with English abstract).

    Google Scholar

    [31] Li Zhichen. 1994. New speculation of the age of the metamorphic rock series of the Dunhuang massif[J]. Regional Geology of China, (2): 131−134 (in Chinese with English abstract).

    Google Scholar

    [32] Liu Dunyi, Jian Ping, Zhang Qi, Zhang Fuqin, Shi Yuruo, Shi Guanghai, Zhang Lüqiao, Tao Hua. 2003. SHRIMP dating of adakites in the Tulinkai ophiolite, Inner Mongolia: Evidence for the Early Paleozoic subduction[J]. Acta Geologica Sinica, 77(3): 317−327 (in Chinese with English abstract).

    Google Scholar

    [33] Liu Jinlong, Sun Fengyue, Wang Yingde, Zhang Liang, Zhang Yuting, Xin Wei, Hu Anxin. 2016. Tectonic setting of Hadahushu mafic intrusion in Urad Zhongqi Area, Inner Mongolia: Implications for Early subduction history of Paleo–Asian Ocean Plate[J]. Earth Science, 41(12): 2019−2030 (in Chinese with English abstract).

    Google Scholar

    [34] Manya S, Maboko M A H, Nakamura E. 2007. The geochemistry of high–Mg andesite and associated adakitic rocks in the Musoma–Mara Greenstone Belt, northern Tanzania: Possible evidence for Neoarchaean ridge subduction?[J]. Precambrian Research, 159(3/4): 241−259.

    Google Scholar

    [35] Martin H, Smithies R H, Rapp R, Moyen J F, Champion D. 2005. An overview of adakite, tonalite–trondhjemite–granodiorite (TTG), and sanukitoid: Relationships and some implications for crustal evolution[J]. Lithos, 79(1/2): 1−24.

    Google Scholar

    [36] Ma Xinghua, Chen Bin, Wang Chao, Yan Xuelong. 2015. Early Paleozoic subduction of the Paleo–Asian Ocean: Zircon U–Pb geochronological, geochemical and Sr–Nd isotopic evidence from the Harlik pluton, Xinjiang[J]. Acta Petrologica Sinica, 31(1): 89−104 (in Chinese with English abstract).

    Google Scholar

    [37] McCarron J J, Smellie J L. 1998. Tectonic implications of fore arc magmatism and generation of high magnesian andesites: Alexander Island, Antractia[J]. Journal of the Geological Society, 155: 269−280. doi: 10.1144/gsjgs.155.2.0269

    CrossRef Google Scholar

    [38] Mei Hualin, Yu Haifeng, Lu Songnian, Li Huimin, Li Quan, Lin Yuanxian, Zuo Yicheng. 1998. Archean tonalite in the Dunhuang, Gansu Province: Age from the U–Pb single zircon and Nd isotope[J]. Progress in Precambrian Research, 21(1): 41−45 (in Chinese with English abstract).

    Google Scholar

    [39] Meng Fancong, Zhang Jianxin, Xiang Zhenqun, Yu Shengyao, Li Jinping. 2011. Evolution and formation of the Dunhuang Group in NE Tarim basin, NW China: Evidence from detrital–zircon geochronology and Hf isotope[J]. Acta Petrologica Sinica, 27(1): 59−76 (in Chinese with English abstract).

    Google Scholar

    [40] Miyashiro A. 1974. Volcanic rock series in island arcs and active continental margins[J]. American Journal of Science, 274: 321−355. doi: 10.2475/ajs.274.4.321

    CrossRef Google Scholar

    [41] Mortazavi M, Sparks R S J. 2004. Origin of rhyolite and rhyodacite lavas and associated mafic inclusions of Cape Akrotiri, Santorini: the role of wet basalt in generating calcalkaline silicic magmas[J]. Contributions to Mineralogy and Petrology, 146: 397−413. doi: 10.1007/s00410-003-0508-4

    CrossRef Google Scholar

    [42] Niu Xiaolu, Liu Fei, Feng Guangying, Yang Jingsui. 2018. Discovery and significance of Early Silurian andesites in Wuwamen area, southern margin of central Tianshan block[J]. Earth Science, 43(4): 1350−1366 (in Chinese with English abstract).

    Google Scholar

    [43] Parman S W, Grove T L. 2004. Harzburgite melting with and without H2O: Experimental data and predictive modelin[J]. Journal of Geophysical Research–Solid Earth, 109: B02201.

    Google Scholar

    [44] Pan Guitang, Xiao Qinghui, Lu Songnian, Deng Jinfu, Feng Yimin, Zhang Kexin, Zhang Zhiyong, Wang Fangguo, Xing Guangfu, Hao Guojie, Feng Yanfang. 2009. Subdivision of tectonic units in China[J]. Geology in China, 36(1): 1−28 (in Chinese with English abstract).

    Google Scholar

    [45] Pearce J A. 1982. Trace Element Characteristics of Lavas from Destractive Plate Boundaries[C]//Thorpe R S. Andesites, Orogenic Andesites and Related Rocks. New York: John Wiley & Sons, 525–548.

    Google Scholar

    [46] Pearce J A. 1983. Role of the Sub−Continental Lithosphere in Magma Genesis at Active Continental Margins[C]//Hawkesworth C J, Norry M J. Continental Basalts and Mantle Xenoliths, Shiva, Nantwich, 230–249.

    Google Scholar

    [47] Petford N, Atherton M. 1996. Na–rich partial melts from newly underplated basaltic crust: The Cordillera Blanca Batholith, Peru[J]. Journal of Petrology, 37(6): 1491−1521. doi: 10.1093/petrology/37.6.1491

    CrossRef Google Scholar

    [48] Plank T, Langmuir C H. 1998. The chemical composition of subducting sediment and its consequences for the crust and mantle[J]. Chemical Geology, 145(3/4): 325−394.

    Google Scholar

    [49] Qiu Jiaxiang, Lin Jingqian. 1991. Petrochemistry[M]. Beijing: Geological Publishing House, 131–132 (in Chinese).

    Google Scholar

    [50] Rapp R P, Watson E B. 1995. Dehydration melting of metabasalt at 8−32 kbar: Implications for continental growth and crust–mantle recycling[J]. Journal of Petrology, 36(4): 891−931. doi: 10.1093/petrology/36.4.891

    CrossRef Google Scholar

    [51] Rapp R P, Shimizu N, Norman M D, Applegate G S. 1999. Reaction between slab–derived melts and peridotite in the mantle wedge: Experimental constraints at 3.8 GPa[J]. Chemical Geology, 160(4): 335−356. doi: 10.1016/S0009-2541(99)00106-0

    CrossRef Google Scholar

    [52] Reubi O, Blundy J. 2009. A dearth of intermediate melts at subduction zone volcanoes and the petrogenesis of arc andesites[J]. Nature, 461(7268): 1269−1273. doi: 10.1038/nature08510

    CrossRef Google Scholar

    [53] Richards J P. 2011. Magmatic to hydrothermal metal fluxes in convergent and collided margins[J]. Ore Geology Reviews, 40: 1−26. doi: 10.1016/j.oregeorev.2011.05.006

    CrossRef Google Scholar

    [54] Rittmann A. 1973. Stable Mineral Assemblages of Igneous Rock[M]. Berlin: Heideberg Springer, 1–262.

    Google Scholar

    [55] Rudnick R L, Gao S. 2003. Composition of the continental crust[J]. Treatise on Geochemistry, 3: 1−64.

    Google Scholar

    [56] Schiano P, Clocchiatti R, Shimizu N, Maury R C, Jochum K P, Hofmann A W. 1995. Hydrous, silica–rich melts in the sub–arc mantle and their relationship with erupted arc lavas[J]. Nature, 377(6550): 595−600. doi: 10.1038/377595a0

    CrossRef Google Scholar

    [57] Sengör A M C, Natal’in B A, Burtman V S. 1993. Evolution of the Altaid tectonic collageand Palaeozoic crustal growth in Eurasia[J]. Nature, 364: 299−307. doi: 10.1038/364299a0

    CrossRef Google Scholar

    [58] Shen Liang, Zhao Shengjin, Yu Haiyang, Liu Zhihui, Zhou Yingshuai, Zhang Meng, Piao Lili. 2020. Zircon age and geochemical characteristics of Hadataolegai Formation volcanic rocks in Da Hinggan Mountains and its continental marginal arc setting[J]. Geology in China, 47(4): 1041−1055 (in Chinese with English abstract).

    Google Scholar

    [59] Shimoda G, Tatsumi Y, Nohda S, Ishizaka K, Jahn B M. 1998. Setouchi high–Mg andesites revisited: Geochemical evidence for melting of subducting sediments[J]. Earth and Planetary Science Letters, 160(3/4): 479−492.

    Google Scholar

    [60] Shi Mengyan, Hou Quanlin, Wu Chunming, Wang Hao, Chen Hongxu. 2017. An analysis of the characteristics of the rock–structure association of the Dunhuang orogenic belt and their implications for tectonic setting[J]. Geological Bulletin of China, 36(2/3): 238−250 (in Chinese with English abstract).

    Google Scholar

    [61] Shi Yuruo, Liu Dunyi, Zhang Qi, Jian Ping, Zhang Fuqin, Miao Laicheng, Shi Guanghai, Zhang Lüqiao, Tao Hua. 2004. SHRIMP dating of diorites and granites in southern Suzuoqi, Inner Mongolia[J]. Acta Geologica Sinica, 78(6): 789−799 (in Chinese with English abstract).

    Google Scholar

    [62] Shirey S B, Hanson G N. 1984. Mantle–derived Archean monzodiorites and trachyandesites[J]. Nature, 310(10): 222−224.

    Google Scholar

    [63] Sisson T, Grove T. 1993. Experimental investigations of the role of H2O in calc–alkaline differentiation and subduction zone magmatism[J]. Contributions to Mineralogy and Petrology, 113: 143−166. doi: 10.1007/BF00283225

    CrossRef Google Scholar

    [64] Streck M J, Leeman W P, Chesley J. 2007. High–magnesian andesite from Mount Shasta: A product of magma mixing and contamination, not a primitive mantle melt[J]. Geology, 35(4): 351−354. doi: 10.1130/G23286A.1

    CrossRef Google Scholar

    [65] Sun S S, McDonough W F. 1989. Chemical and isotopic systematics of oceanic basalts: Implications for mantle composition and processes[J]. Geological Society, London, Special Publications, 42(1): 313–345.

    Google Scholar

    [66] Tatsumi Y. 2001. Geochemical modeling of partial melting of subducting sediments and subsequent melt–mantle interaction: Generation of high–Mg andesites in the Setouchi volcanic belt, southwest Japan[J]. Geology, 29(4): 323−326. doi: 10.1130/0091-7613(2001)029<0323:GMOPMO>2.0.CO;2

    CrossRef Google Scholar

    [67] Tatsumi Y. 2005. The subduction factory: How it operates in the evolving Earth[J]. GSA Today, 15(7): 4−10. doi: 10.1130/1052-5173(2005)015[4:TSFHIO]2.0.CO;2

    CrossRef Google Scholar

    [68] Tian Wenquan, Wang Pujun, Li Songling, Sun Xiaomeng, Wen Nuan, Liu Xin. 2005. Petrography and geochemistry of the Middle Ordovician volcanic rocks of Daliugou Formation in Hami Wupu area of eastern Tianshan, Xinjiang[J]. Journal of Jilin University (Earth Science Edition), 35(3): 296−301 (in Chinese with English abstract

    Google Scholar

    [69] Tischendorf G, Paelchen W. 1985. Classification of granitoids[J]. Zeilschrift Fure Geologische Wissenschaften, 13(5): 615−627.

    Google Scholar

    [70] Wang Q, Wyman D, Xu J F, Wan Y S, Li C F, Zi F, Jiang Z Q, Qiu H N, Chu Z Y, Zhao Z H. 2008a. Triassic Nb–enriched basalts, magnesian andesites, and adakites of the Qiangtang terrane (Central Tibet): Evidence for metasomatism by slab–derived melts in the mantle wedge[J]. Contributions to Mineralogy and Petrology, 155(4): 473−490. doi: 10.1007/s00410-007-0253-1

    CrossRef Google Scholar

    [71] Wang Q, Wyman D, Xu J F, Dong Y, Vasconcelos P, Pearson N, Wan Y, Dong H, Li C, Yu Y. 2008b. Eocene melting of subducting continental crust and early uplifting of central Tibet: Evidence from central–western Qiangtang high–K calc–alkaline andesites, dacites and rhyolites[J]. Earth and Planetary Science Letters, 272(1/2): 158−171.

    Google Scholar

    [72] Wang Z M, Han C M, Su B X, Sakyi P A, Sanjeewa P K M, Ao S J, Wang L J. 2013. The metasedimentary rocks from the eastern margin of the Tarim Craton: Petrology, geochemistry, zircon U–Pb dating, Hf isotopes and tectonic implications[J]. Lithos, 179: 120−136. doi: 10.1016/j.lithos.2013.08.010

    CrossRef Google Scholar

    [73] Windley B F, Badarch G, Cunningham W D, Kröner A, Buchan A C, Tomurtogoo O, Salnikova E B. 2001. Subduction–accretion history of the Central Asian Orogenic Belt: Constraints from Mongolia[J]. Gondwana Research, 4(4): 825−826. doi: 10.1016/S1342-937X(05)70610-9

    CrossRef Google Scholar

    [74] Windley B F, Alexeiev D, Xiao W J, Kröner A, Badarch G. 2007. Tectonic models for accretion of the Central Asian Orogenic Belt[J]. Journal of the Geological Society, 164(1): 31−47. doi: 10.1144/0016-76492006-022

    CrossRef Google Scholar

    [75] Wood B J, Turner S P. 2009. Origin of primitive high–Mg andesite: Constraints from natural examples and experiments[J]. Earth and Planetary Science Letters, 283(1/4): 59−66.

    Google Scholar

    [76] Woodhead J D, Hergt J M, Davidson J P, Eggins S M. 2001. Hafnium isotope evidence for ‘Conservative’ element mobility during subduction zone processes[J]. Earth and Planetary Science Letters, 192(3): 331−346. doi: 10.1016/S0012-821X(01)00453-8

    CrossRef Google Scholar

    [77] Wu Yuanbao, Zheng Yongfei. 2004. Genesis of zircon and its constraints on interpretation of U–Pb age[J]. Chinese Science Bulletin, 49(16): 1589−1604 (in Chinese). doi: 10.1360/csb2004-49-16-1589

    CrossRef Google Scholar

    [78] Xia Linqi, Zhang Guowei, Xia Zuchun, Xu Xueyi, Dong Yunpeng, Li Xiangmin. 2002. Constraints on the timing of opening and closing of the Tianshan Paleozoic oceanic basin: Evidence from Simian and Carboniferous volcanic rocks[J]. Geological Bulletin of China, 21(2): 55−62 (in Chinese with English abstract).

    Google Scholar

    [79] Xiao W J, Huang B C, Han C M, Sun S, Li J L. 2010. A review of the western part of the Altaids: A key to understanding the architecture of accretionary orogens[J]. Gondwana Research, 18(2/3): 253−273.

    Google Scholar

    [80] Xiao W J, Windley B F, Allen M B, Han C M. 2013. Paleozoic multiple accretionary and collisional tectonics of the Chinese Tianshan orogenic collage[J]. Gondwana Research, 23(4): 1316−1341. doi: 10.1016/j.gr.2012.01.012

    CrossRef Google Scholar

    [81] Xiao W J, Santosh M. 2014. The western Central Asian Orogenic Belt: A window to accretionary orogenesis and continental growth[J]. Gondwana Research, 25(4): 1429−1444. doi: 10.1016/j.gr.2014.01.008

    CrossRef Google Scholar

    [82] Xiao Wenjiao, Song Dongfang, Windley B F, Li Jiliang, Han Chunming, Wan Bo, Zhang Jien, Ao Songjian, Zhang Zhiyong. 2019. Research progresses of the accretionary processes and metallogenesis of the Central Asian Orogenic Belt[J]. Science China Earth Sciences, 49(10): 1512−1545 (in Chinese with English abstract).

    Google Scholar

    [83] Xu J F, Wang Q, Yu X Y. 2000. Geochemistry of high–Mg andesites and adakitic andesite from the Sanchazi block of the Mian–Lue ophiolitic melange in the Qinling Mountains, central China: Evidence of partial melting of the subducted Paleo–Tethyan crust[J]. Geochemical Journal, 34(5): 359−377. doi: 10.2343/geochemj.34.359

    CrossRef Google Scholar

    [84] Xu W, Hergt J M, Gao S, Pei F, Wang W, Yang D. 2008. Interaction of adakitic melt–peridotite: Implications for the high–Mg# signature of Mesozoic adakitic rocks in the eastern North China Craton[J]. Earth and Planetary Science Letters, 265(1/2): 123−137.

    Google Scholar

    [85] Yang J H, Wu F Y, Wilde S A. 2007. Tracing magma mixing in granite genesis: In situ U–Pb dating and Hf–isotope analysis of zircons[J]. Contributions to Mineralogy and Petrology, 153(2): 177−190.

    Google Scholar

    [86] Yogodzinski G M, Kay R W, Volynets O N, Koloskov A V, Kay S M. 1995. Magnesian andesite in the western Aleutian Komandorsky Region: Implications for slab melting and processes in the mantle wedge[J]. Geological Society of America Bulletin, 107(5): 505−519. doi: 10.1130/0016-7606(1995)107<0505:MAITWA>2.3.CO;2

    CrossRef Google Scholar

    [87] Zhang J X, Gong J H, Yu S Y. 2012. c. 1.85 Ga HP granulite–facies metamorphism in the Dunhuang block of the Tarim Craton, NW China: Evidence from U–Pb zircon dating of mafic granulites[J]. Journal of the Geological Society, London,169(5): 511−514.

    Google Scholar

    [88] Zhang J X, Yu S Y, Gong J H, Li H K, Hou K J. 2013. The latest Neoarchean–Paleoproteozic evolution of the Dunhuang block, eastern Tarim craton, northwestern China: Evidence from zircon U–Pb dating and Hf isotopic analyses[J]. Precambrian Research, 226(1): 21−42.

    Google Scholar

    [89] Zhang Xinglong, Zheng Yujie, Ni Liang. 2004. Characteristics of Middle Devonian Kangertage Formation volcanics from Kaerlike of East Tianshan[J]. Xinjiang Geology, 22(3): 296−299 (in Chinese with English abstract).

    Google Scholar

    [90] Zhang Zhenfa, Li Chaoying, Niu Yingzhi. 1997. Role, significance, characteristics and range of Alashan–Dunhuang land block[J]. Geology of Inner Mangolia, (2): 1−14 (in Chinese with English abstract).

    Google Scholar

    [91] Zhao Rushi, Zhou Zhenhuan, Mao Jinhai, Zhao Zongxuan. 1994. Plate–tectonic units and tectonic evolution in Gansu[J]. Regional Geology of China, (1): 28−36 (in Chinese with English abstract).

    Google Scholar

    [92] Zhao Yan, Diwu Chunrong, Zhu Tao, Wang Hongliang, Sun Yong. 2015. Discovery of the Late Devonian plagiogranite in Sanweishan area, Dunhuang, Gansu Province and its geological implications[J]. Acta Petrologica Sinica, 31(7): 1855−1869 (in Chinese with English abstract).

    Google Scholar

    [93] Zheng R G, Wu T R, Zhang W, Xu C, Meng Q P, Zhang Z Y. 2014. Late Paleozoic subduction system in the northern margin of the Alxa block, Altaids: Geochronological and geochemical evidence from ophiolites[J]. Gondwana Research, 25(2): 842−858. doi: 10.1016/j.gr.2013.05.011

    CrossRef Google Scholar

    [94] Zong K Q, Liu Y S, Zhang Z M, He Z Y, Hu Z C, Guo J L, Chen K. 2013. The generation and evolution of Archean continental crust in the Dunhuang block, northeastern Tarim Craton, Northwestern China[J]. Precambrian Research, 235: 251−263. doi: 10.1016/j.precamres.2013.07.002

    CrossRef Google Scholar

    [95] Zhou Guoqing, Zhao Jianxin, Li Xianhua. 2000. Characteristics of the Yueyashan ophiolite from western Nei Mongol and its tectonic setting: Geochemistry and Sm–Nd isotopic constrains[J]. Geochimica, 29(2): 108−119 (in Chinese with English abstract).

    Google Scholar

    [96] Zuo Guochao, Liu Yike, Liu Chunyan. 2003. Framework and evolution of the tectonic structure in Beishan area across Gansu Province, Xinjiang Autonomous Region and Inner Mongolia Autonomous Region[J]. Acta Geologica Gansu, 12(1): 1−15 (in Chinese with English abstract).

    Google Scholar

    [97] 李锦轶, 王克卓, 孙桂华, 莫申国, 李文铅, 杨天南, 高立明. 2006. 东天山吐哈盆地南缘古生代活动陆缘残片: 中亚地区古亚洲洋板块俯冲的地质记录[J]. 岩石学报, 22(5): 1087−1102. doi: 10.3321/j.issn:1000-0569.2006.05.004

    CrossRef Google Scholar

    [98] 李文铅, 王冉, 王核, 夏斌. 2006. “吐哈天窗”卡拉塔格岩体的地球化学和岩石成因[J]. 中国地质, 33(3): 559−565. doi: 10.3969/j.issn.1000-3657.2006.03.012

    CrossRef Google Scholar

    [99] 李文渊. 2018. 古亚洲洋与古特提斯洋关系初探[J]. 岩石学报, 34(8): 2201−2209.

    Google Scholar

    [100] 李文渊, 张照伟, 高永宝, 洪俊, 陈博, 张志炳. 2022. 昆仑古特提斯构造转换与镍钴锰锂关键矿产成矿作用研究[J]. 中国地质, 49(5): 1385−1407. doi: 10.12029/gc20220503

    CrossRef Google Scholar

    [101] 李艳广, 汪双双, 刘民武, 孟恩, 魏小燕, 赵慧博, 靳梦琪. 2015. 斜锆石LA–ICP–MS U–Pb定年方法及应用[J]. 地质学报, 89(12): 2400−2418. doi: 10.3969/j.issn.0001-5717.2015.12.015

    CrossRef Google Scholar

    [102] 李志琛. 1994. 敦煌地块变质岩系时代新认识[J]. 中国区域地质, (2): 131−134.

    Google Scholar

    [103] 刘敦一, 简平, 张旗, 张福勤, 石玉若, 施光海, 张履桥, 陶华. 2003. 内蒙古图林凯蛇绿岩中埃达克岩SHRIMP测年: 早古生代洋壳消减的证据[J]. 地质学报, 77(3): 317–327, 435–437.

    Google Scholar

    [104] 刘金龙, 孙丰月, 王英德, 李良, 张宇婷, 辛未, 胡安新. 2016. 内蒙古乌拉特中旗哈达呼舒基性岩体形成的构造背景与古亚洲洋的早期俯冲历史[J]. 地球科学, 41(12): 2019−2030.

    Google Scholar

    [105] 马星华, 陈斌, 王超, 鄢雪龙. 2015. 早古生代古亚洲洋俯冲作用: 来自新疆哈尔里克侵入岩的锆石U–Pb年代学、岩石地球化学和Sr–Nd同位素证据[J]. 岩石学报, 31(1): 89−104.

    Google Scholar

    [106] 梅华林, 于海峰, 陆松年, 李惠民, 李铨, 林源贤, 左义成. 1998. 甘肃敦煌太古宙英云闪长岩: 单颗粒锆石U–Pb年龄和Nd同位素[J]. 前寒武纪研究进展, 21(1): 41−45.

    Google Scholar

    [107] 孟繁聪, 张建新, 相振群, 于胜尧, 李金平. 2011. 塔里木盆地东北缘敦煌群的形成和演化: 锆石U–Pb年代学和Lu–Hf同位素证据[J]. 岩石学报, 27(1): 59−76.

    Google Scholar

    [108] 牛晓露, 刘飞, 冯光英, 杨经绥. 2018. 中天山南缘乌瓦门早志留世安第斯型安山岩的发现及意义[J]. 地球科学, 43(4): 1350−1366.

    Google Scholar

    [109] 潘桂棠, 肖庆辉, 陆松年, 邓晋福, 冯益民, 张克信, 张智勇, 王方国, 邢光福, 郝国杰, 冯艳芳. 2009. 中国大地构造单元划分[J]. 中国地质, 36(1): 1−28. doi: 10.3969/j.issn.1000-3657.2009.01.001

    CrossRef Google Scholar

    [110] 邱家骧, 林景仟. 1991. 岩石化学[M]. 北京: 地质出版社, 131–132.

    Google Scholar

    [111] 申亮, 赵胜金, 于海洋, 柳志辉, 周颖帅, 张猛, 朴丽丽. 2020. 大兴安岭哈达陶勒盖组火山岩年龄、地球化学特征及其陆缘弧构造背景[J]. 中国地质, 47(4): 1041−1055.

    Google Scholar

    [112] 石梦岩, 侯泉林, 吴春明, 王浩, 陈泓旭. 2017. 敦煌造山带岩石–构造组合特征及其构造环境[J]. 地质通报, 36(2/3): 238−250.

    Google Scholar

    [113] 石玉若, 刘敦一, 张旗, 简平, 张福勤, 苗来成, 施光海, 张履桥, 陶华. 2004. 内蒙古苏左旗地区闪长–花岗岩类SHRIMP年代学[J]. 地质学报, 78(6): 789−799.

    Google Scholar

    [114] 田纹全, 王璞珺, 李嵩龄, 孙晓猛, 温暖, 刘新. 2005. 新疆东天山哈密五堡地区中奥陶世大柳沟组火山岩岩石学和地球化学特征[J]. 吉林大学学报(地球科学版), 35(3): 296−301.

    Google Scholar

    [115] 吴元保, 郑永飞. 2004. 锆石成因矿物学研究及其对U–Pb年龄解释的制约[J]. 科学通报, 49(16): 1589−1604. doi: 10.3321/j.issn:0023-074X.2004.16.002

    CrossRef Google Scholar

    [116] 夏林圻, 张国伟, 夏祖春, 徐学义, 董云鹏, 李向民. 2002. 天山古生代洋盆开启、闭合时限的岩石学约束——来自震旦纪、石炭纪火山岩的证据[J]. 地质通报, 21(2): 55−62. doi: 10.3969/j.issn.1671-2552.2002.02.002

    CrossRef Google Scholar

    [117] 肖文交, 宋东方, Windley B F, 李继亮, 韩春明, 万博, 张继恩, 敖松坚, 张志勇. 2019. 中亚增生造山过程与成矿作用研究进展[J]. 中国科学: 地球科学, 49(10): 1512−1545.

    Google Scholar

    [118] 张兴龙, 郑玉洁, 倪梁. 2004. 东天山喀尔力克康古尔塔格组火山岩特征[J]. 新疆地质, 22(3): 296−299. doi: 10.3969/j.issn.1000-8845.2004.03.016

    CrossRef Google Scholar

    [119] 张振法, 李超英, 牛颖智. 1997. 阿拉善—敦煌陆块的性质、范围及其构造作用和意义[J]. 内蒙古地质, (2): 1−14.

    Google Scholar

    [120] 赵茹石, 周振环, 毛金海, 赵宗宣. 1994. 甘肃省板块构造单元划分及其构造演化[J]. 中国区域地质, (1): 28−36.

    Google Scholar

    [121] 赵燕, 第五春荣, 朱涛, 王洪亮, 孙勇. 2015. 敦煌三危山地区晚泥盆世斜长花岗岩的发现及其地质意义[J]. 岩石学报, 31(7): 1855−1869.

    Google Scholar

    [122] 周国庆, 赵建新, 李献华. 2000. 内蒙古月牙山蛇绿岩特征及形成的构造背景: 地球化学和Sr–Nd同位素制约[J]. 地球化学, 29(2): 108−119. doi: 10.3321/j.issn:0379-1726.2000.02.002

    CrossRef Google Scholar

    [123] 左国朝, 刘义科, 刘春燕. 2003. 甘新蒙北山地区构造格局及演化[J]. 甘肃地质学报, 12(1): 1−15.

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(9)

Tables(2)

Article Metrics

Article views(171) PDF downloads(15) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint