2024 Vol. 51, No. 6
Article Contents

ZHAO Yuhang, ZHU Chuanqing, ZHANG Baoshou, XU Tong, CHEN Tiange. 2024. Influence of Carboniferous–Permian magmatic activities on thermal evolution of hydrocarbon source rocks in Tarim Basin[J]. Geology in China, 51(6): 1991-2001. doi: 10.12029/gc20201104003
Citation: ZHAO Yuhang, ZHU Chuanqing, ZHANG Baoshou, XU Tong, CHEN Tiange. 2024. Influence of Carboniferous–Permian magmatic activities on thermal evolution of hydrocarbon source rocks in Tarim Basin[J]. Geology in China, 51(6): 1991-2001. doi: 10.12029/gc20201104003

Influence of Carboniferous–Permian magmatic activities on thermal evolution of hydrocarbon source rocks in Tarim Basin

    Fund Project: Supported by National Science and Technology Major Special Projects (No.2017ZX05008–004).
More Information
  • Author Bio: ZHAO Yuhang, male, born in 1995, master, majors in geological engineering; E-mail: 347155143@qq.com
  • Corresponding author: ZHU Chuanqing, male, born in 1981, doctor, professor, engaged in geothermic geology; E-mail: zhucq@cup.edu.cn
  • This paper is the result of oil and gas exploration engineering.

    Objective

    The formation temperature history is a pivotal determinant in the maturity evolution of organic matter and the hydrocarbon generation and expulsion process within hydrocarbon source rocks. This history is shaped not only by the evolution of basin heat flow and the sedimentary and burial processes but also significantly influenced by anomalous heat events, such as magmatic activity, which must be considered. Investigating these factors is crucial for a comprehensive understanding of the organic matter maturation process.

    Methods

    This study leverages the exploration and development insights from the Tarim Oilfield to examine the impact of magmatic intrusions on formation temperature and the thermal evolution of hydrocarbon source rocks. We employ numerical simulation and drilling data to discuss these influences and calculate the spatial and temporal extent and intensity of the intrusions.

    Results

    Based on measured vitrinite reflectance data (Ro) from several wells in the Carboniferous–Permian strata of the central and western Tarim Basin, reveal abnormally high values associated with igneous rocks. These high values are indicative of magmatic activity during the late Carboniferous–Permian period. Thermal history modeling of the wells indicates that magmatic activity heated the Paleozoic hydrocarbon source rocks, accelerating the thermal evolution and maturity of the organic matter, leading to a swift transition into the high−over−maturation stage.

    Conclusions

    Anomalous magmatic thermal events play a beneficial role in enhancing the hydrocarbon generation intensity of hydrocarbon source rocks, achieving the highest relative hydrocarbon production rates, and facilitating the rapid maturation of organic matter.

  • 加载中
  • [1] Barry K, Tuvia W, Ling C, Ken F, Simon B. 2019. Low−temperature thermochronology of francolite: Insights into timing of Dead Sea Transform motion[J]. Terra Nova, 31(3): 205−219. doi: 10.1111/ter.12387

    CrossRef Google Scholar

    [2] Burnham A K, Sweeney J J. 1989. A chemical kinetic model of vitrinite maturation and reflectance[J]. Geochimica et Cosmochimica Acta, 53(10): 2649−2657. doi: 10.1016/0016-7037(89)90136-1

    CrossRef Google Scholar

    [3] Chang J, Qiu N S, Song X Y, Li H L. 2016. Multiple cooling episodes in the Central Tarim (Northwest China) revealed by apatite fission track analysis and vitrinite reflectance data[J]. International Journal of Earth Sciences, 105(4): 1257−1272. doi: 10.1007/s00531-015-1242-7

    CrossRef Google Scholar

    [4] Chang Jian, Qiu Nansheng. 2017. Apatite low−temperature thermochronometry and applications to Tarim Basin in the Northwestern China[J]. Earth Science Frontiers, 24(3): 79−93 (in Chinese with English abstract).

    Google Scholar

    [5] Chen Liying, Wu Haibo, Xing Libo. 2005. Complex igneous rock lithologic logging recognition and numerical process of logging data[J]. Journal of Oil and Gas Technology, 27(6): 877−879 (in Chinese with English abstract).

    Google Scholar

    [6] Chen Mimi, Tian Wei, Zhang Zili, Pan Wenqing, Song Yu. 2010. Geochronology of the Permian basic–intermediate–acidic magma suite from Tarim, Northwest China and its geological implications[J]. Acta Petrologica Sinica, 26(2): 559−572 (in Chinese with English abstract).

    Google Scholar

    [7] Feng Changge, Liu Shaowen, Wang Liangshu, Li Cheng. 2010. Present–day geotemperature field characteristics in the Centeal Uplift Area of the Tarim Basin and implications for hydrocarbon generation and preservation[J]. Earth Science—Journal of China University of Geosciences, 35(4): 645−656 (in Chinese with English abstract). doi: 10.3799/dqkx.2010.079

    CrossRef Google Scholar

    [8] He Dengfa, Jia Chengzao, Li Desheng, Zhang Chaojun, Meng Qingren, Shi Xin. 2005. Formation and evolution of polycyclic superimposed Tarim Basin[J]. Oil & Gas Geology, 26(1): 64−77 (in Chinese with English abstract).

    Google Scholar

    [9] He Lijuan, Xu Hehua, Liu Qiongying. 2017. Tectono–thermal modeling of the foreland basins: A case study of the Longmenshan foreland basin[J]. Earth Science Frontiers, 24(3): 127−136 (in Chinese with English abstract).

    Google Scholar

    [10] Hu Shengbiao, He Lijuan, Zhu Chuanqing, Wang Jiyang. 2008. Method system of thermal reconstruction for marine basins[J]. Oil & Gas Geology, 29(5): 607−613 (in Chinese with English abstract).

    Google Scholar

    [11] Huang S J, Huang K K, Lv J, Lan Y F. 2014. The relationship between dolomite textures and their formation temperature: A case study from the Permian–Triassic of the Sichuan Basin and the Lower Paleozoic of the Tarim Basin[J]. Petroleum Science, 11(1): 39−51. doi: 10.1007/s12182-014-0316-7

    CrossRef Google Scholar

    [12] Ji Tianyu, Yang Wei, Wu Xueqiong, Pu Renhai, Li Dejiang, Liu Mancang, Miao Weidong, Su Nan, Ye Ying. 2022. Evaluation of Cambrian caprock in the platform-basin area of Tarim Basin and optimization of favorable area for oil and gas caprock[J]. Geology in China, 49(2): 369−382 (in Chinese with English abstract).

    Google Scholar

    [13] Jia Chengzao, Li Benliang, Zhang Xingyang, Li Chuanxin. 2007. Formation and evolution of China Sea facies basins[J]. Chinese Science Bulletin, 52(S1): 1−8 (in Chinese). doi: 10.1007/s11434-007-6012-x

    CrossRef Google Scholar

    [14] Jin Zhijun, Zhu Dongya, Hu Wenxuan, Zhang Xuefeng, Wang Yi, Yan Xiangbin. 2006. Geological and geochemical signatures of hydrothermal activity and their influence on carbonate reservoir beds in the Tarim Basin[J]. Acta Geologica Sinica, 80(2): 245−253 (in Chinese with English abstract).

    Google Scholar

    [15] Li Cheng, Wang Liangshu, Guo Suiping, Shi Xiaobin. 2000. Thermal evolution in Tarim Basin[J]. Acta Geologica Sinica, 21(3): 13−17 (in Chinese with English abstract).

    Google Scholar

    [16] Li Huili, Qiu Nansheng, Jin Zhijun, He Zhiliang. 2005. Geothermal history of Tarim Basin[J]. Oil and Gas Geology, 26(5): 613−617 (in Chinese with English abstract).

    Google Scholar

    [17] Li Jiawei, Li Zhong, Qiu Nansheng, Zuo Yinhui, Yu Jingbo, Liu Jiaqing. 2016. Carboniferous–Permian abnormal thermal evolution of the Tarim basin and its implication for deep structure and magmatic activity[J]. Chinese Journal of Geophysics, 59(9): 3318−3329 (in Chinese with English abstract).

    Google Scholar

    [18] Li Zilong, Yang Shufeng, Chen Hanlin, Langmuir C H, Yu Xing, Lin Xiubin, Li Yinqi. 2008. Chronology and geochemistry of Taxinan basalts from the Tarim basin: Evidence for Permian plume magmatism[J]. Acta Petrologica Sinica, 24(5): 959−970 (in Chinese with English abstract).

    Google Scholar

    [19] Li Z L, Li Y Q, Chen H L, Santosh M, Yang S F, Xu Y G, Charles H. L, Chen Z X, Yu X, Zou S Y. 2012. Hf isotopic characteristics of the Tarim Permian large igneous province rocks of NW China: Implication for the magmatic source and evolution[J]. Journal of Asian Earth Science, 49: 191−202. doi: 10.1016/j.jseaes.2011.11.021

    CrossRef Google Scholar

    [20] Liu P X, Deng S B, Guan P, Jin Y Q, Wang K, Chen Y Q. 2020. The nature, type, and origin of diagenetic fluids and their control on the evolving porosity of the Lower Cambrian Xiaoerbulak Formation dolostone, northwestern Tarim Basin, China[J]. Petroleum Science, 17(4): 873−895. doi: 10.1007/s12182-020-00434-0

    CrossRef Google Scholar

    [21] Liu Shaowen, Wang Liangshu, Li Cheng, Zhang Peng, Li Hua. 2006. Lithospheric thermo–rheological structure and Cenozoic thermal regime in the Tarim Basin, Northwest China[J]. Acta Petrologica Sinica, 80(3): 344−350 (in Chinese with English abstract).

    Google Scholar

    [22] Pan Yun, Pan Mao, Tian Wei, Wang Zongxiu, Guan Ping, Liu Xiao, Pan Wenqing. 2013. Redefined distribution of the Permian basalt in the Central Tarim Area: A new approach based on down hole logging data explanation[J]. Acta Petrologica Sinica, 87(10): 1542−1549 (in Chinese with English abstract).

    Google Scholar

    [23] Qin K Z, Su B X, Sakyi P A, Tang D M, Li X H, Sun H, Xiao Q H, Liu P P. 2011. SIMS zircon U–Pb geochronology and Sr–Nd isotopes of Ni–Cu–bearing mafic–ultramafic intrusions in Eastern Tianshan and Beishan in correlation with flood basalts in Tarim Basin (NW China): Constraints on a ca. 280 Ma mantle plume[J]. American Journal of Science, 311(3): 237−260. doi: 10.2475/03.2011.03

    CrossRef Google Scholar

    [24] Qiu Nansheng, Li Huili, Jin Zhijun. 2005. Study of the thermal history reconstruction for Lower Paleozoic carbonate succession[J]. Earth Science Frontiers, 12(4): 561−567 (in Chinese with English abstract).

    Google Scholar

    [25] Qiu Nansheng, Zuo Yinhui, Chang Jian, Xu Wei, Zhu Chuanqing. 2015. Characteristics of Meso–Cenozoic thermal regimes in typical eastern and western sedimentary basins of China[J]. Earth Science Frontiers, 22(1): 157−168 (in Chinese with English abstract).

    Google Scholar

    [26] Ren Zhanli, Tian Tao, Li Jinbu, Wang Jiping, Cui Junping, Li Hao, Tang Jianyun, Guo Ke. 2014. Review on methods of thermal evolution history in sedimentary basins and thermal evolution history reconstruction of superimposed basins[J]. Journal of Earth Sciences and Environment, 36(3): 1−21 (in Chinese with English abstract).

    Google Scholar

    [27] Sweeney J J, Burnham A K. 1990. Evaluation of a simple model of vitrinite reflectance based on chemical kinetics[J]. AAPG Bulletin, 10(10): 1559−1570.

    Google Scholar

    [28] Wang Liangshu, Li Cheng, Liu Shaowen, Li Hua, Xu Mingjie, Yu Dayong, Jia Chengzao, Wei Guoqi. 2005. Terrestrial heat flow distribution in Kuqa foreland basin, Tarim, NW China[J]. Petroleum Exploration and Development, 32(4): 79−83 (in Chinese with English abstract).

    Google Scholar

    [29] Wang Tieguan, Dai Shifeng, Li Meijun, Zhang Weibiao, Qiu Nansheng, Wang Guangli. 2010. The thermal history of stratigraphic organic matter in the platform basin of Tarim Basin and its implications for regional geological evolution[J]. Science China: Earth Sciences, 53: 1495−1505. doi: 10.1007/s11430-010-4069-x

    CrossRef Google Scholar

    [30] Wei X, Xu Y G, Feng Y X, Zhao J X. 2014. Plume–lithosphere interaction in the generation of the Tarim large igneous province, NW China: Geochronological and geochemical constraints[J]. American Journal of Science, 314(1): 314−356. doi: 10.2475/01.2014.09

    CrossRef Google Scholar

    [31] Xia Linqi, Li Xiangmin, Xia Zhuchun, Xu Xueyi, Ma Zhongping, Wang Lishe. 2006. Carboniferous–Permian rift–related volcanism and mantle plume in the Tianshan, Northwestern China[J]. Northwestern Geology, 39(1): 1−49 (in Chinese with English abstract).

    Google Scholar

    [32] Xiao Chongyang, Yang Lin, Lin Bo, You Donghua. 2020. Volcanic activity stages and distribution during the Permian in the Shunbei area, Tarim Basin[J]. Pertoleum Geology and Experiment, 42(2): 177−185 (in Chinese with English abstract).

    Google Scholar

    [33] Yan Lei, Li Ming, Pan Wenqing. 2014. Distribution characteristics of Permian igneous rock in Tarim basin: Based on the high–precision aeromagnetic data[J]. Progress in Geophysics, 29(4): 1843−1848 (in Chinese with English abstract).

    Google Scholar

    [34] Yang Shufeng, Chen Hanlin, Li Zilong, Li Yinqi, Yu Xing, Li Dongxu, Meng Lifeng. 2014. Early Permian large igneous provinces in Tarim Basin[J]. Science China: Earth Sciences, 56: 2015−2026.

    Google Scholar

    [35] Zheng Menglin, Wang Yi, Jin Zhijun, Li Jingchang, Zhang Zhongpei, Jiang Huashan, Xie Daqing, Guo Xin. 2014. Superimposition, evolution and petroleum accumulation of Tarim Basin[J]. Oil and Gas Geology, 35(6): 925−934 (in Chinese with English abstract).

    Google Scholar

    [36] Zhu C Q, Hu S B, Qiu N S, Jiang Q, Rao S, Liu S. 2018. Geothermal constraints on Emeishan mantle plume magmatism: Paleotemperature reconstruction of the Sichuan Basin, SW China[J]. International Journal of Earth Sciences, 107(1): 71−88. doi: 10.1007/s00531-016-1404-2

    CrossRef Google Scholar

    [37] Zhu Rukai, Luo Ping, Luo Zhong. 2002. Lithofacies palaeogeography of the Late Devonian and Carboniferous in Tarim Basin[J]. Journal of Palaeogeography, 4(1): 13−24 (in Chinese with English abstract).

    Google Scholar

    [38] 常健, 邱楠生. 2017. 磷灰石低温热年代学技术及在塔里木盆地演化研究中的应用[J]. 地学前缘, 24(3): 79−93.

    Google Scholar

    [39] 陈立英, 吴海波, 邢丽波. 2005. 火成岩复杂岩性测井识别及测井资料数字处理[J]. 石油天然气学报(江汉石油学院学报), 27(6): 877−879.

    Google Scholar

    [40] 陈咪咪, 田伟, 张自力, 潘文庆, 宋宇. 2010. 塔里木二叠纪基性–中性–酸性岩浆岩的年代学及其地质意义[J]. 岩石学报, 26(2): 559−572.

    Google Scholar

    [41] 冯昌格, 刘绍文, 王良书, 李成. 2010. 塔里木盆地中央隆起区现今地温场分布特征及其与油气的关系[J]. 地球科学(中国地质大学学报), 35(4): 645−656.

    Google Scholar

    [42] 何登发, 贾承造, 李德生, 张朝军, 孟庆任, 石昕. 2005. 塔里木多旋回叠合盆地的形成与演化[J]. 石油与天然气地质, 26(1): 64−77. doi: 10.3321/j.issn:0253-9985.2005.01.010

    CrossRef Google Scholar

    [43] 何丽娟, 许鹤华, 刘琼颖. 2017. 前陆盆地构造–热演化: 以龙门山前陆盆地为例[J]. 地学前缘, 24(3): 127−136.

    Google Scholar

    [44] 胡圣标, 何丽娟, 朱传庆, 汪集旸. 2008. 海相盆地热史恢复方法体系[J]. 石油与天然气地质, 29(5): 607−613. doi: 10.3321/j.issn:0253-9985.2008.05.009

    CrossRef Google Scholar

    [45] 季天愚, 杨威, 武雪琼, 蒲仁海, 李德江, 刘满仓, 缪卫东, 苏楠, 叶颖. 2022. 塔里木盆地台盆区寒武系盖层评价及对油气盖层有利区的优选[J]. 中国地质, 49(2): 369−382.

    Google Scholar

    [46] 贾承造, 李本亮, 张兴阳, 李传新. 2007. 中国海相盆地的形成与演化[J]. 科学通报, 52(S1): 1−8. doi: 10.3321/j.issn:0023-074x.2007.z1.001

    CrossRef Google Scholar

    [47] 金之钧, 朱东亚, 胡文瑄, 张学丰, 王毅, 闫相宾. 2006. 塔里木盆地热液活动地质地球化学特征及其对储层影响[J]. 地质学报, 80(2): 245−253. doi: 10.3321/j.issn:0001-5717.2006.02.009

    CrossRef Google Scholar

    [48] 李成, 王良书, 郭随平, 施小斌. 2000. 塔里木盆地热演化[J]. 石油学报, 21(3): 13−17. doi: 10.3321/j.issn:0253-2697.2000.03.003

    CrossRef Google Scholar

    [49] 李慧莉, 邱楠生, 金之钧, 何治亮. 2005. 塔里木盆地的热史[J]. 石油与天然气地质, 26(5): 613−617. doi: 10.3321/j.issn:0253-9985.2005.05.009

    CrossRef Google Scholar

    [50] 李佳蔚, 李忠, 邱楠生, 左银辉, 于靖波, 刘嘉庆. 2016. 塔里木盆地石炭—二叠纪异常热演化及其对深部构造–岩浆活动的指示[J]. 地球物理学报, 59(9): 3318−3329. doi: 10.6038/cjg20160916

    CrossRef Google Scholar

    [51] 厉子龙, 杨树锋, 陈汉林, Langmuir C H, 余星, 林秀彬, 励音骐. 2008. 塔西南玄武岩年代学和地球化学特征及其对二叠纪地慢柱岩浆演化的制约[J]. 岩石学报, 24(5): 957−959.

    Google Scholar

    [52] 刘绍文, 王良书, 李成, 张鹏, 李华. 2006. 塔里木盆地岩石圈热–流变学结构和新生代热体制[J]. 地质学报, 80(3): 344−350. doi: 10.3321/j.issn:0001-5717.2006.03.005

    CrossRef Google Scholar

    [53] 潘赟, 潘懋, 田伟, 王宗秀, 关平, 刘晓, 潘文庆. 2013. 塔里木中部二叠纪玄武岩分布的重新厘定: 基于测井数据的新认识[J]. 地质学报, 87(10): 1542−1550.

    Google Scholar

    [54] 邱楠生, 李慧莉, 金之钧. 2005. 沉积盆地下古生界碳酸盐岩地区热历史恢复方法探索[J]. 地学前缘, 12(4): 561−567. doi: 10.3321/j.issn:1005-2321.2005.04.026

    CrossRef Google Scholar

    [55] 邱楠生, 左银辉, 常健, 许威, 朱传庆. 2015. 中国东西部典型盆地中—新生代热体制对比[J]. 地学前缘, 22(1): 157−168.

    Google Scholar

    [56] 任战利, 田涛, 李进步, 王继平, 崔军平, 李浩, 唐建云, 郭科. 2014. 沉积盆地热演化史研究方法与叠合盆地热演化史恢复研究进展[J]. 地球科学与环境学报, 36(3): 1−21. doi: 10.3969/j.issn.1672-6561.2014.03.003

    CrossRef Google Scholar

    [57] 王良书, 李成, 刘绍文, 李华, 徐鸣洁, 于大勇, 贾承造, 魏国齐. 2005. 库车前陆盆地大地热流分布特征[J]. 石油勘探与开发, 32(4): 79−83. doi: 10.3321/j.issn:1000-0747.2005.04.013

    CrossRef Google Scholar

    [58] 王铁冠, 戴世峰, 李美俊, 张卫彪, 邱楠生, 王广利. 2010. 塔里木盆地台盆区地层有机质热史及其对区域地质演化研究的启迪[J]. 中国科学: 地球科学, 40(10): 1331−1341.

    Google Scholar

    [59] 夏林圻, 李向民, 夏祖春, 徐学义, 马中平, 王立社. 2006. 天山石炭—二叠纪大火成岩省裂谷火山作用与地幔柱[J]. 西北地质, 39(1): 1−49.

    Google Scholar

    [60] 肖重阳, 杨林, 林波, 尤东华. 2020. 塔里木盆地顺北地区二叠纪火山活动期次与分布[J]. 石油实验地质, 42(2): 177−185. doi: 10.11781/sysydz202002177

    CrossRef Google Scholar

    [61] 闫磊, 李明, 潘文庆. 2014. 塔里木盆地二叠纪火成岩分布特征—基于高精度航磁资料[J]. 地球物理学进展, 29(4): 1843−1848.

    Google Scholar

    [62] 杨树锋, 陈汉林, 厉子龙, 励音骐, 余星, 李东旭, 孟立丰. 2014. 塔里木早二叠世大火成岩省[J]. 中国科学: 地球科学, 44(2): 187−199.

    Google Scholar

    [63] 郑孟林, 王毅, 金之钧, 李京昌, 张仲培, 蒋华山, 谢大庆, 郭忻. 2014. 塔里木盆地叠合演化与油气聚集[J]. 石油与天然气地质, 35(6): 925−934. doi: 10.11743/ogg20140619

    CrossRef Google Scholar

    [64] 朱如凯, 罗平, 罗忠. 2002. 塔里木盆地晚泥盆世及石炭纪岩相古地理[J]. 古地理学报, 4(1): 13−24. doi: 10.7605/gdlxb.2002.01.002

    CrossRef Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(8)

Tables(1)

Article Metrics

Article views(126) PDF downloads(0) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint