2021 Vol. 48, No. 3
Article Contents

ZHAO Jinghui, GAO Yuqiao, CHEN Zhenlong, GUO Tao, GAO Xiaokang. 2021. Stress state of deep seam and its influence on development performance of CBM wells in South Yanchuan Block, Odors Basin[J]. Geology in China, 48(3): 785-793. doi: 10.12029/gc20210309
Citation: ZHAO Jinghui, GAO Yuqiao, CHEN Zhenlong, GUO Tao, GAO Xiaokang. 2021. Stress state of deep seam and its influence on development performance of CBM wells in South Yanchuan Block, Odors Basin[J]. Geology in China, 48(3): 785-793. doi: 10.12029/gc20210309

Stress state of deep seam and its influence on development performance of CBM wells in South Yanchuan Block, Odors Basin

    Fund Project: Funded by Ministry of Science and Technology of Sinopec Program(No.P19019-4) and National Science and Technology Major Project (No.2011ZX05035006)
More Information
  • Author Bio: ZHAO Jinghui, male, born in 1982, engineer, mainly engaged in the study of the geology and exploration of coalbed methane; E-mail: school1108@sohu.com
  • The buried depth of the coal seams of South Yanchuan block is between 700 m and 1500 m. And for the most area, the depth is deeper than 900 m. In order to clarify the in-situ stress state of deep coal-bed methane reservoir and its influence on the development of CBM wells, the maximum and minimum horizontal principal stress and the vertical stress are calculated based on the pressure drop data of hydraulic fracturing. The results show that the whole area is in the state of tension. The maximum horizontal principal stress, the minimum horizontal principal stress and the vertical stress are positively correlated with the buried depth. The type of the ground stress is mainly type Ia, followed by Ⅲ type and Ⅱ type. The reservoir with type Ia ground stress is dominated by vertical fractures with the lowest fracture index. However, the stress sensitivity is weak, and the stress sensitivity coefficient is only 0.479. The main and secondary fractures of type Ⅰ stress reservoir are 16μm and 11μm respectively, with the largest width and the strongest reservoir stress sensitivity. Type Ⅰ fractures are mainly horizontal fractures, with the highest fracture index, the longest compression fracture, the best reconstruction effect and the highest gas production. Reservoirs with type Ⅲ in-situ stress develop complex fractures, with medium permeability, stress sensitivity and hydraulic fracture length. However, the production for type Ⅲ is relatively low, and cannot achieve economic development.

  • 加载中
  • Chen Zhaowei, Yang Xiangtong, Wang Gang, Yuan Xuefang, Liu Junyan, Zhou Pengyao, Ba Dan. 2014. Analytical technique of horizontal maximum principal stress for petroleum engineering[J]. Journal of Geomachanics, 20(1): 94-102(in Chinese with English abstract).

    Google Scholar

    Chen Shida, Tang Dazhen, Tao Shu, Xu Hao, Li Song, Zhao Junlong. 2018. Statistic analysis on macro distribution law of geostress field in coalbed methane reservoir[J]. Coal Science and Technology, 46(6): 57-63(in Chinese with English abstract).

    Google Scholar

    Chen Tonggang, Wang Qinian, Zhu Jiangbo, Tang Dazhen, Xu Hao. 2018. Control of mechanical properties of coal seam and its roof and floor rocks over the crack extension during hydraulic fracturing[J]. East China Geology, 39(3): 212-217(in Chinese with English abstract).

    Google Scholar

    Chen Zhenlong, Guo Tao, Li Xin, Xiao Cui, Jin Xiaobo. 2019. Enrichment law and development technology of deep coalbed methane in South Yanchuan Coalbed Methane Field[J]. Coal Science and Technology, 47 (9): 112-118(in Chinese with English abstract).

    Google Scholar

    Chen Zhenlong, Wang Feng, Chen Gang, Mei Junwei, Guo Tao. 2018. Study on enrichment law and development features of deep coalbed methane in South Yanchuan Field[J]. Coal Science and Technology, 46(6): 80-84, 194(in Chinese with English abstract).

    Google Scholar

    Chen Zhengrong, Liu Shujie, Cao Yanfeng, Peng Chengyong, Li Yingying. 2018. Methods to predict in-situ stress and fracture geometry of coal beds in Qinshui basin[J]. China Off-shore Oil and Gas, 30(4): 163-169(in Chinese with English abstract).

    Google Scholar

    Li Bing, Ding Lifeng, Wang Jianxin, Hou Yanhe, Xie Furen. 2019. The state of the in-situ stress and fault stability evaluation of the Penglai coast[J]. Journal of Geomechanics, 25(4): 459-466(in Chinese with English abstract).

    Google Scholar

    Li Yepeng, Shen Jian, Yang Chunli, Zhang Jinbo. 2017. Characteristics and its geological implication of ground stress in Zhengzhuang Block of Qinshui Basin[J]. Coal Science and Technology, 45(10): 176-181, 110(in Chinese with English abstract).

    Google Scholar

    Li Yong, Tang Dazhen, Meng Shangzhi, Wu Peng. 2017. The in-situ stress of coal reservoirs in east margin of Ordos Basin and its influence on coalbed methane development[J]. Journal of Mining Science and Technology, 2(5): 416-424(in Chinese with English abstract).

    Google Scholar

    Liu Dameng, Zhou Sandong, Cai Yidong, Yao Yanbin. 2017. Study on effect of geo-stress on coal permeability and its controlling mechanism[J]. Coal Science and Technology, 45(6): 1-8, 23(in Chinese with English abstract).

    Google Scholar

    Liu Honglin, Wang Bo, Wang Feng, Li Guizhong, Qin Yong. 2007. Ground stress characteristics and prediction of high productivity zoned in south of Qinshui Basin[J]. Natural Gas Geoscience, 18(6): 885-890(in Chinese with English abstract).

    Google Scholar

    Fu Yutong, Ma Jianqiang, Li Yongchen, Xu Zuwei. 2017. Research on key factors of CBM well productivity in deep strata in block of south Yanchuan[J]. Coal Geology & Exploration, 45(5): 48-53(in Chinese with English abstract).

    Google Scholar

    Jia Huimin, Hu Qiujia, Liu Zhong, Liu Chunchun, Qiao Maopo, Qin Yu. 2017. Influence of fractures stress sensitivity on water production law for the single-phase flow of CBM wells and drainage countermeasures[J]. China Coalbed Methane, 14(5): 31-34(in Chinese with English abstract).

    Google Scholar

    Jia Huimin, Hu Qiujia, Qi Kongjun, Liu Chunchun, Fan Bin, He Jun. 2019. Reasons of low yield and stimulation measures for vertical CBM wells in high-rank coal[J]. Coal Geology & Exploration, 47(5): 104-110(in Chinese with English abstract).

    Google Scholar

    Jia Huimin, Sun Shixuan, Mao Chonghao, Wu Zezhou, Luo Tianping, Luo Dan. 2017. Study on single-phase flow water production law of coalbed methane well based on coal and rock stress sensitivity[J]. Coal Science and Technology, 45(12): 189-193(in Chinese with English abstract).

    Google Scholar

    Meng Guixi. 2017. Study on ground stress field features and its impact on coal reservoir pressure and permeability[J]. Coal Geology of China, 29(3): 21-27, 36(in Chinese with English abstract).

    Google Scholar

    Meng Zhaoping, Lan Qiang, Liu Cuili, Ji Yiming, Li Shinan, Zhang Xiaoming. 2013. In-situ stress and coal reservoir pressure in Southeast margin of Ordos basin and their coupling relations[J]. Journal of China coal society, 38(1): 122-128(in Chinese with English abstract).

    Google Scholar

    Meng Zhaoping, Tian Yongdong, Li Guofu. 2010. Characteristics of in-situ stress field in Southern Qinshui Basin and its research significance[J]. Journal of China Coal Society, 35(6): 975-981(in Chinese with English abstract).

    Google Scholar

    Nie Zhihong, Chao Haiyan, Liu Ying, Huang Hongxing, Yu Lizhu. 2018. Development strategy and production characteristics of deep coalbed methane in the east Ordos Basin: Taking Daning-Jixian block for example[J]. Journal of China Coal Society, 43(6): 1738-1746(in Chinese with English abstract).

    Google Scholar

    Niu Linlin, Feng Chengjun, Zhang Peng, Chen Qunche, Tan Chengxuan. 2018. In-situ Measurements in the southern margin of the Ordos Block[J]. Journal of Geomachanics, 24(1): 25-34(in Chinese with English abstract).

    Google Scholar

    Qin Yong, Shen Jian. 2016. On the fundamental issues of deep Coalbed Methane geology[J]. Acta Petrolei Sinica, 37(1): 125-136(in Chinese with English abstract).

    Google Scholar

    Schmitt D R, Zoback M D. 1989. Poroelastic effects in the determination of the maximum horizontal principal stress in hydraulic fracturing tests——A proposed breakdown equation employing a modified effective stress relation for tensile failure[J]. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, 26(6): 499-506.

    Google Scholar

    Sun Jian, Liu Wei, Hui Xuning, Li Qi, Li Linze, Xu Hancheng, Yin Shuai. 2017. Characteristics of in-situ stress at coalbed methane reservoir and its effects on fracturing results[J]. Drilling & Production Technology, 40(6): 45-48, 55(in Chinese with English abstract).

    Google Scholar

    Sun Liangzhong, Kang Yongshang, Wang Jin, Jiang Shanjue, Zhang Bing, Gu Jiaoyang, Ye Jianping, Zhang Shouren. 2017. Vertical transformation of in-situ stress types and its control on Coalbed Reservoir permeability[J]. Geological Journal of China Universities, 23(1): 148-156(in Chinese with English abstract).

    Google Scholar

    Wang Dan, Zhao Fenghua, Geng Hao, Wang Haitao, Sun Junyi, Cheng Chen. 2015. Characteristics of in-situ stress field for upper main coal seam of Linfen Block[J]. Fault-Block Oil & Gas Field, 22(3): 287-290(in Chinese with English abstract).

    Google Scholar

    Wen Zhuo, Kang Yongshang, Deng Ze, Sun Liangzhong, Li Guizhong, Wang Hongyan. 2019. Characteristics and distribution of current in-situ stress at shallow-medium depth in coal-bearing basins in China[J]. Geological Review, 65(3): 729-742(in Chinese with English abstract).

    Google Scholar

    Wu Shuang, Tang Dazhen, Xu Hao, Li Song, Meng Yanjun. 2015. Analysis of the characteristics of deep coalbed methane wells drainage and control factors of productivity[J]. Journal of Northeast Petroleum University, 39(2): 69-76, 101(in Chinese with English abstract).

    Google Scholar

    Xu Hongjie, Sang Shuxun, Yi Tongshegn, Zhao Xia, Liu Huihu, Li Lin. 2014. Control mechanism of buried depth and in-situ sress for coal reservoir permeability in Western Guizhou[J]. Earth Science——Journal of China University of Geoscience, 39(11): 1607-1616(in Chinese with English abstract).

    Google Scholar

    Xue Pei, Gao Chao. 2016. Study on influence of effective stress on coal reservoir permeability in the Baode block[J]. Geology and Exploration, 52(2): 0334-0339(in Chinese with English abstract).

    Google Scholar

    Yang Yanhui, Meng Zhaoping, Chen Yanjun, Yang Yanlei, Gan Dayong. 2015. Geo-stress condition of coal reservoirs in Qinnan-Xiadian block and its influences on permeability[J]. Acta Petrolei Sinica, 36(S1): 91-96 (in Chinese with English abstract).

    Google Scholar

    陈朝伟, 杨向同, 王刚, 袁学芳, 刘军严, 周鹏遥, 巴旦. 2014. 石油工程水平最大地应力分析技术[J]. 地质力学学报, 20(1): 94-102. doi: 10.3969/j.issn.1006-6616.2014.01.009

    CrossRef Google Scholar

    陈世达, 汤达祯, 陶树, 许浩, 李松, 赵俊龙. 2018. 煤层气储层地应力场宏观分布规律统计分析[J]. 煤炭科学技术, 46(6): 57-63.

    Google Scholar

    陈同刚, 汪启年, 朱将波, 汤达祯, 许浩. 2018. 煤层及其顶、底板岩石力学性质对水力压裂裂缝延伸的控制[J]. 华东地质, 39(3): 212-217.

    Google Scholar

    陈贞龙, 郭涛, 李鑫, 肖翠, 金晓波. 2019. 延川南煤层气田深部煤层气成藏规律与开发技术[J]. 煤炭科学技术, 47(9): 112-118.

    Google Scholar

    陈贞龙, 王烽, 陈刚, 梅俊伟, 郭涛. 2018. 延川南深部煤层气富集规律及开发特征研究[J]. 煤炭科学技术, 46(6): 80-84, 194.

    Google Scholar

    陈峥嵘, 刘书杰, 曹砚锋, 彭成勇, 李莹莹. 2018. 沁水盆地煤层地应力模型及压裂裂缝形态预测方法[J]. 中国海上油气, 30(4): 163-169.

    Google Scholar

    李兵, 丁立丰, 王建新, 侯砚和, 谢富仁. 2019. 山东蓬莱近海岸的地应力状态及断层稳定性评价[J]. 地质力学学报, 25(4): 459-466.

    Google Scholar

    李叶朋, 申建, 杨春莉, 张金波. 2017. 沁水盆地郑庄区块地应力发育特征及其地质意义[J]. 煤炭科学技术, 45(10): 176-181, 110.

    Google Scholar

    李勇, 汤达祯, 孟尚志, 吴鹏. 2017. 鄂尔多斯盆地东缘煤储层地应力状态及其对煤层气勘探开发的影响[J]. 矿业科学学报, 2(5): 416-424.

    Google Scholar

    刘大锰, 周三栋, 蔡益栋, 姚艳斌. 2017. 地应力对煤储层渗透性影响及其控制机理研究[J]. 煤炭科学技术, 45(6): 1-8, 23.

    Google Scholar

    刘洪林, 王勃, 王烽, 李贵中, 秦勇. 2007. 沁水盆地南部地应力特征及高产区带预测[J]. 天然气地球科学, 18(6): 885-890. doi: 10.3969/j.issn.1672-1926.2007.06.021

    CrossRef Google Scholar

    付玉通, 马建强, 李永臣, 许祖伟. 2017. 延川南区块深层煤层气井产能主控因素[J]. 煤田地质与勘探, 45(5): 48-53. doi: 10.3969/j.issn.1001-1986.2017.05.009

    CrossRef Google Scholar

    贾慧敏, 胡秋嘉, 刘忠, 刘春春, 乔茂坡, 秦宇. 2017. 裂缝应力敏感性对煤层气井单相流段产水影响及排采对策[J]. 中国煤层气, 14(5): 31-34.

    Google Scholar

    贾慧敏, 胡秋嘉, 祁空军, 刘春春, 樊彬, 何军. 2019. 高阶煤煤层气直井低产原因分析及增产措施[J]. 煤田地质与勘探, 47(5): 104-110. doi: 10.3969/j.issn.1001-1986.2019.05.014

    CrossRef Google Scholar

    贾慧敏, 孙世轩, 毛崇昊, 吴泽舟, 罗天平, 罗丹. 2017. 基于煤岩应力敏感性的煤层气井单相流产水规律研究[J]. 煤炭科学技术, 45(12): 189-193.

    Google Scholar

    孟贵希. 2017. 地应力场特征及其对煤储层压力和渗透率的影响研究[J]. 中国煤炭地质, 29(3): 21-27, 36. doi: 10.3969/j.issn.1674-1803.2017.03.05

    CrossRef Google Scholar

    孟召平, 蓝强, 刘翠丽, 纪懿明, 李诗男, 张小明. 2013. 鄂尔多斯盆地东南缘地应力、储层压力及其耦合关系[J]. 煤炭学报, 38(1): 122-128.

    Google Scholar

    孟召平, 田永东, 李国富. 2010. 沁水盆地南部地应力场特征及其研究意义[J]. 煤炭学报, 35(6): 975-981.

    Google Scholar

    聂志宏, 巢海燕, 刘莹, 黄红星, 余莉珠. 2018. 鄂尔多斯盆地东缘深部煤层气生产特征及开发对策——以大宁-吉县区块为例[J]. 煤炭学报, 43(6): 1738-1746.

    Google Scholar

    牛琳琳, 丰成君, 张鹏, 陈群策, 谭成轩. 2018. 鄂尔多斯地块南缘地应力测量研究[J]. 地质力学学报, 24(1): 25-34.

    Google Scholar

    秦勇, 申建. 2016. 论深部煤层气基本地质问题[J]. 石油学报, 37(1): 125-136. doi: 10.3969/j.issn.1001-8719.2016.01.017

    CrossRef Google Scholar

    孙健, 刘伟, 惠徐宁, 李琪, 李林泽, 徐汉成, 尹帅. 2017. 煤层气储层地应力特征及其对压裂效果的影响[J]. 钻采工艺, 40(6): 45-48, 55. doi: 10.3969/J.ISSN.1006-768X.2017.06.14

    CrossRef Google Scholar

    孙良忠, 康永尚, 王金, 姜杉钰, 张兵, 顾娇杨, 叶建平, 张守仁. 2017. 地应力类型垂向转换及其对煤储层渗透率控制作用[J]. 高校地质学报, 23(1): 148-156.

    Google Scholar

    王丹, 赵峰华, 耿昊, 王海涛, 孙俊义, 程晨. 2015. 临汾区块上主力煤层地应力场特征[J]. 断块油气田, 22(3): 287-290.

    Google Scholar

    文卓, 康永尚, 邓泽, 孙良忠, 李贵中, 王红岩. 2019. 中国含煤盆地浅-中深部现今地应力特点和分布规律[J]. 地质论评, 65(3): 729-742.

    Google Scholar

    吴双, 汤达祯, 许浩, 李松, 孟艳军. 2015. 深部煤层气井排采特征及产能控制因素分析[J]. 东北石油大学学报, 39(2): 69-76, 101.

    Google Scholar

    徐宏杰, 桑树勋, 易同生, 赵霞, 刘会虎, 李林. 2014. 黔西地区煤层埋深与地应力对其渗透性控制机制[J]. 地球科学——中国地质大学学报, 39(11): 1607-1616.

    Google Scholar

    薛培, 高潮. 2016. 有效应力对保德区块煤储层渗透率影响研究[J]. 地质与勘探, 52(2): 334-339.

    Google Scholar

    杨延辉, 孟召平, 陈彦君, 杨艳磊, 干大勇. 2015. 沁南-夏店区块煤储层地应力条件及其对渗透性的影响[J]. 石油学报, 36(增刊): 91-96.

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(8)

Tables(2)

Article Metrics

Article views(2547) PDF downloads(129) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint