2023 Vol. 50, No. 6
Article Contents

CAO Jifei, WENG Kai, Movlanov Jahongir Jurabekovich, Asrorovich Rustamov Akmal, MA Zhongping, LIU Mingyi. 2023. Gold-copper metallogenic characteristics and prospecting potentiality in the Central Tianshan region, Uzbekistan[J]. Geology in China, 50(6): 1731-1744. doi: 10.12029/gc20210226001
Citation: CAO Jifei, WENG Kai, Movlanov Jahongir Jurabekovich, Asrorovich Rustamov Akmal, MA Zhongping, LIU Mingyi. 2023. Gold-copper metallogenic characteristics and prospecting potentiality in the Central Tianshan region, Uzbekistan[J]. Geology in China, 50(6): 1731-1744. doi: 10.12029/gc20210226001

Gold-copper metallogenic characteristics and prospecting potentiality in the Central Tianshan region, Uzbekistan

    Fund Project: Supported by the projects of China Geological Survey (No.DD20201158, No.DD20190445), National Key Research and Development Plan Project (No.2021YFE0190500) and Shaanxi Natural Science Fund (No.2022KW-19)
More Information
  • Author Bio: CAO Jifei, male, born in 1983, master, senior engineer, mainly engaged in the geological investigation of Central Asia and the law of mineralization; E-mail: caojife2008@163.com
  • Corresponding author: WENG Kai, male, born in 1985, doctor, associate researcher, mainly engaged in regional geological investigation and mineralization law; E-mail: kaikaino1@qq.com 
  • This paper is the result of mineral exploration engineering.

    Objective

    The Middle Tianshan metallogenic belt is a crucial supplier of copper, gold, and other key minerals in eastern Uzbekistan. Analyzing the metallogenic characteristics of typical mineral deposits and the regional minerogenetic regularities is of great practical significance for prospecting and investment of Chinese mining enterprises.

    Methods

    This paper systematically collects and sorts out the distribution of key minerals such as copper, gold, uranium and lithium, as well as analyses of the characteristic metallogeny of typical deposits and the regional geochemical anomaly properties related to copper, gold, rare earth, and dispersed elements.

    Results

    The copper deposit is of the porphyry type and is characterized by having symbiotic gold, associated platinum group and rare earth elements. Its metallogenic epoch is during the Late Carboniferous period. The main type of gold deposits is epithermal type, followed by porphyry. The epithermal type gold deposits occurred during the early Permian, while porphyry type gold deposits are mostly concentrated in the late Carboniferous. Some key minerals, such as lithium (volcanic sedimentary type), uranium (volcanic type), and iron (skarn type) are locally produced.

    Conclusions

    The results of 1:1 million geochemical investigation indicate the continues presence of significant geochemical anomalies caused by gold, copper and silver mineralization, as well as evident geochemical anomalies of rare earth and dispersed elements on the periphery of the Angren and Almalyk ore concentration regions. Based on the analysis of regional metallogenic conditions, geochemical characteristics of known ore concentration areas and distribution characteristics of regional geochemical anomalies, it is considered that there is significant potential for prospecting traditional superiority resources like gold, copper and silver around the ore concentration areas in the Middle Tianshan Mountains. This region also holds a favorable potential for mineral resource exploration of rare earth and dispersed elements. Additionally, the areas with significant anomalies represent potential prospecting areas for Chinese mining enterprises to invest.

  • 加载中
  • Alexeiev D V, Cook H E, Jenchuraeva A V, Mikolaichuk A V. 2016. The stratigraphic, sedimentological and structural evolution of the southern margin of the Kazakhstan Continent in the Tien Shan Range during the Devonian to Permian[C]//Brunet M F, McCann T, Sobel E R (eds. ). Geological Evolution of Central Asian Basins and the Western Tien Shan Range. London: Special Publications, 427.

    Google Scholar

    Biske Y S, Seltmann R. 2010. Paleozoic Tian-Shan as a transitional region between the Rheic and Urals-Turkestan Oceans[J]. Gondwana Research, 17: 602-613. doi: 10.1016/j.gr.2009.11.014

    CrossRef Google Scholar

    Burtman V S. 2010. Tien Shan, Pamir, and Tibet: History and geodynamics of Phanerozoic oceanic basins[J]. Geotectonics, 44 (5): 388-404. doi: 10.1134/S001685211005002X

    CrossRef Google Scholar

    Burtman V S. 2015. Tectonics and geodynamics of the Tian Shan in the Middle and Late Paleozoic[J]. Geotectonics, 49(4): 67-85.

    Google Scholar

    Cai Hongyuan, Li Fuchun. 1995. Geological characteristics of the Almarek Porphyry Copper Deposit: Mineralization and enrichment conditions and metallogenic models[J]. Mineral Resources and Geology, 9(47): 180-184 (in Chinese).

    Google Scholar

    Cao Jifei, Wang Bin, Meng Guanglu, Li Baoqiang, Ma Zhongping, Chen Bo. 2016. Major gold deposit type and regional metallogenic regularity on Tianshan ore-forming belt, Kyrgyzstan[J]. Geological Science and Technology Information, 25(1): 140-146 (in Chinese with English abstract).

    Google Scholar

    Chen Lei, Zou Haiyang, Yang Mu. 2013. The present situation of study on epithermal gold deposit[J]. Land and Resources Herald, 10(10): 78-80 (in Chinese).

    Google Scholar

    Cheng Z G, Zhang Z C, Turesebekov A, Nurtaev B S, Xu L J, Santosha M. 2018a. Petrogenesis of gabbroic intrusions in the Valerianov-Beltau-Kurama magmatic arc, Uzbekistan: The role of arc maturity controlling the generation of giant porphyry Cu-Au deposits[J]. Lithos, 320/321: 75-92. doi: 10.1016/j.lithos.2018.08.039

    CrossRef Google Scholar

    Cheng Z G, Zhang Z C, Chai F M, Hou T, Santosh M, Turesebekov A, Nurtaev B S. 2018b. Carboniferous porphyry Cu-Au deposits in the Almalykorefield, Uzbekistan: The Sarycheku and Kalmakyr examples[J]. International Geology Review, 60(1): 1-20. doi: 10.1080/00206814.2017.1309996

    CrossRef Google Scholar

    Dolgopolova A, Seltmann R, Konopelko D, Biske Y S, Shatov V. Armstrong R, Belousova E, Pankhurst R, Koneev R, Divaex F. 2017. Geodynamic evolution of the western Tien Shan, Uzbekistan: Insights from U-Pb SHRIMP geochronology and Sr-Nd-Pb-Hf isotope mapping of granitoids[J]. Gondwana Research, 47: 76-109. doi: 10.1016/j.gr.2016.10.022

    CrossRef Google Scholar

    Drew L J, Berger B R, Kurbanov N K. 1996. Geology and structural evolution of the Muruntau gold deposit, Kyzylkum desert, Uzbekistan[J]. Ore Geology Reviews, 11: 175-196. doi: 10.1016/0169-1368(95)00033-X

    CrossRef Google Scholar

    Dube B, Dunning G R, Lauziere K. 1998. Geology of the Hope Brook Mine, Newfoundland, Canada: A preserved Late Proterozoic high-sulfidation epithermal gold deposit and its implications for exploration[J]. Economic Geology, 93(4): 405-436. doi: 10.2113/gsecongeo.93.4.405

    CrossRef Google Scholar

    Feng Chengyou, Xue Chunji, Ji Jinsheng, Zhang Lianchang, Li Huaqin. 2000. Geochemistry of the Xitan epithermal gold-silver deposit, east Tianshan mountains[J]. Mineral Deposits, 19(4): 322-329 (in Chinese with English abstract).

    Google Scholar

    Heald P. 1987. Comparative anatomy of volcanic-hosted epithermal deposits: Acid-sulfate and adularia-sericite types[J]. Economic Geology, 8(1): 1-26.

    Google Scholar

    Jiang Sihong, Nie Fengjun, Zhang Yi, Hu Peng. 2014. The latest advances in the research ofepithermal deposits[J]. Earth Science Frontiers, 11(2): 401-411 (in Chinese with English abstract).

    Google Scholar

    John D A, Hofstra A H, Fleck R J. 2003. Geologic setting and genesis of the Mule Canyon Low-Sulfidation Epithermal Gold-Silver Deposit, North-Central Nevada[J]. Economic Geology, 98(2): 425-463. doi: 10.2113/gsecongeo.98.2.425

    CrossRef Google Scholar

    Kempe U, Graupner T, Seltmann R, deBoorder H, Dolgopolova A, van Emmichoven M Z. 2016. The Muruntau gold deposit (Uzbekistan)——A unique ancient hydrothermal system in the southern Tien Shan[J]. Geoscience Frontiers, 7(3): 495-528. doi: 10.1016/j.gsf.2015.09.005

    CrossRef Google Scholar

    Konopelko D L, Biske Y S, Kullerud K, Seltmann R, Divaev F K. 2011. The Koshrabad granite massif in Uzbekistan: Petrogenesis, metallogeny, and geodynamic setting[J]. Russian Geology and Geophysics, 52(12): 1563-1573. doi: 10.1016/j.rgg.2011.11.009

    CrossRef Google Scholar

    Kovalenker V A, Safonov Y G, Naumov V B. 1997. The epithermal gold-Telluride Kochbulak Deposit (Uzbekistan)[J]. Geology of Ore Deposits, 39(2): 127-152.

    Google Scholar

    Kröner A, Kovach V, Belousova E, Hegner E, Armstrong R. 2014. Reassessment of continental growth during the accretionary history of the Central Asian Orogenic Belt[J]. Gondwana Research, 25: 103-125. doi: 10.1016/j.gr.2012.12.023

    CrossRef Google Scholar

    Li Nan, Yang Liqiang, Zhang Chuang, Zhang Jing, Lei Shibin, Wang Hengtao, Wang Hongwei, Gao Xue. 2012. Sulfur isotope characteristics of the Yangshan gold belt, West Qinling: Constraints on ore-forming environment and material source[J]. Acta Petrologica Sinica, 28(5): 1577-1587 (in Chinese with English abstract).

    Google Scholar

    Liu Chunyong, Wang Yongjiang. 2007. Primary discussion on the characteristics of the gold deposit in black shale series in central Asian——And the prospecting target of black shale series in Xinjiang[J]. Xinjiang Geology, 25(1): 34-39 (in Chinese with English abstract).

    Google Scholar

    Meng Guanglu, Wang Bin, Li Baoqiang, Cao Jifei, Fan Baocheng. 2013. Research progress of the Muruntau gold deposit in Uzbekistan[J]. Geological Science and Technology Information, 36(2): 50-59 (in Chinese).

    Google Scholar

    Qi Jinping, Chen Yanjing, Li Qiangzhi. 2004. The epithermal deposits in the northern margin of North China Craton: Spatiotemporal distribution and tectonic setting[J]. Journal of Mineralogy and Petrology, 24(3): 82-92 (in Chinese with English abstract).

    Google Scholar

    Qin K, Sun S, Li J. 2010. Paleozoic epithermal Au and porphyry Cu deposits in North Xinjiang, China: Epochs, features, tectonic linkage and exploration significance[J]. Resource Geology, 52(4): 291-300.

    Google Scholar

    Samygin S G, Kheraskova T N, Kurchavov A M. 2015. Tectonic evolution of Kazakhstan and Tien Shan in Neoproterozoic and Early-Middle Paleozoic[J]. Geotectonics, 49(3): 219-241. doi: 10.1134/S0016852114060065

    CrossRef Google Scholar

    Seltmann R, Konopelko D, Biske G, Divaev F, Sergeev S. 2011. Hercynian post-collisional magmatism in the context of Paleozoic magmatic evolution of the Tien Shan orogenic belt[J]. Journal of Asian Earth Science, 42: 821-838. doi: 10.1016/j.jseaes.2010.08.016

    CrossRef Google Scholar

    Seltmann R, Porter T M, Pirajno F. 2014. Geodynamics and metallogeny of the central Eurasian porphyry and related epithermal mineral systems: A review[J]. Journal of Asian Earth Sciences, 79: 810-841. doi: 10.1016/j.jseaes.2013.03.030

    CrossRef Google Scholar

    Soloviev S G, Kryazhev S G. 2018. Geology, mineralization, and fluid inclusion characteristics of the Kashkasu W-Mo-Cu skarn deposit associated with a high-potassic to shoshonitic igneous suite in Kyrgyzstan, Tien Shan: Toward a diversity of W mineralization in Central Asia[J]. Journal of Asian Earth Sciences, 153: 425-449. doi: 10.1016/j.jseaes.2017.11.020

    CrossRef Google Scholar

    Sha Deming, Dong Lianhui, Wu Ruishen, Tian Changlie, Jia Bin. 2003. The geochemical characteristics and ore-forming model of the epithermal gold deposit in West Tianshan Mountains[J]. Northwestern Geology, 36(2): 50-59 (in Chinese with English abstract). doi: 10.3969/j.issn.1009-6248.2003.02.007

    CrossRef Google Scholar

    Simmons S F, Arehart G, Simpson M P. 2000. Origin of massive calcite veins in the Golden Cross Low-Sulfidation, epithermalAu-Ag deposit, New Zealand[J]. Economic Geology, 95(1): 99-112. doi: 10.2113/gsecongeo.95.1.99

    CrossRef Google Scholar

    Wang Zongxiu, Li Chunlin, Pak Nikolai, Ivleva Elena, Yu Xinqi, Zhou Gaozhi, Xiao Weifeng, Han Shuqin, Halilov Zailabidin, Takenov Nurgazy, Yan Xili. 2017. Tectonic division and Paleozoic Ocean-continent transition in Western Tianshan Orogen[J]. Geology in China, 44(4): 623-641 (in Chinese with English abstract).

    Google Scholar

    White N C, Hedenquist J W. 1990. Epithermal environments and styles of mineralization: variations and their causes, and guidelines for exploration[J]. Journal of Geochemical Exploration, 36(1/3): 445-474.

    Google Scholar

    Xue Chunji, Duan Shigang, Chai Fengmei, Muhetaer Maimaiti, Туресебеков А Х, Qu Wenjun. 2013. Metallogenetic epoch of the Almalyk porphyry copper ore field, Uzbekistan, and its geological significance[J]. Earth Science Frontiers, 20(2): 197-204 (in Chinese with English abstract).

    Google Scholar

    Xue Chunji, Zhao Xiaobo, Mo Xuanxue, Dong Lianhui, Gu Xuexiang, Nurtaev Bakhtiar, Pak Nikolay, Zhang Zhaochong, Wang Xinli, Zu Bo, Zhang Guozhen, Feng Bo, Liu Jiaying. 2014. Asia gold belt in western Tianshan and its dynamic settings, metallogenic control and exploration[J]. Earth Science Frontiers, 21(5): 128-155 (in Chinese with English abstract).

    Google Scholar

    Yakubchuk A. 2017. Evolution of the Central Asian Orogenic Supercollage since Late Neoproterozoic revised again[J]. Gondwana Research, 47: 372-398. doi: 10.1016/j.gr.2016.12.010

    CrossRef Google Scholar

    Yu Jiyuan, Ji Bo, Wang Guoqiang. 2018. Geochemistry of dioritic enclaves related to magmatic mixing in the concentrically zoned Alatage igneous complex, central Tianshan Mountains[J]. Geology in China, 45(4): 767-782 (in Chinese with English abstract).

    Google Scholar

    Zhai Wei, Sun Xiaoming, Sun Liwei, He Xiaoping, Wu Youliang. 2010. Axi gold deposit: A Paleozoic low-sulfidation type of epithermal gold deposit in Xinjiang, China[J]. Earth Science Frontiers, 17(2): 266-285 (in Chinese with English abstract).

    Google Scholar

    Zhang Chao, Liu Yu, Liu Xiangdong, Feng Jianqiu, Huang Tao, Zhang Qing, Wang Xudong. 2014. Characteristics of sulfur isotope geochemistry of the Xincheng gold deposit, Northwest Jiaodong[J]. Acta Petrologica Sinica, 30(9): 2495-2506 (in Chinese with English abstract).

    Google Scholar

    Zhang Ruizhong, Wang Zhongliang, Wang Sirui, Liu Yu, Qin Wenkai. 2016. Metallognic mechanism of Dayingezhuang gold deposit, northwestern Jiaodong Peninsula: Geochemistry constrains from the gold bearing pyrite typomorph and sulfur isotope]J]. Acta Petrologica Sinica, 32(8): 2451-2464 (in Chinese with English abstract).

    Google Scholar

    Zhao X B, Xue C J, Chi G X, Mo X X, Nurtaev B, Zhang G Z. 2017. Zircon and molybdenite geochronology and geochemistry of the Kalmakyr porphyry Cu-Au deposit, Almalyk district, Uzbekistan: Implications for mineralization processes[J]. Ore Geology Reviews, 86: 807-824. doi: 10.1016/j.oregeorev.2017.04.008

    CrossRef Google Scholar

    Zhu Jiang, Peng Sanguo, Peng Lianhong, Lei Tianci, Gong Yinjie, Liu Xing'an. 2017. Geology, fluid inclusion characteristics, and U-Pb age of the Dongxi epithermal gold deposit, Anhui Province[J]. Acta Petrologica et Mineralogical, 36(5): 593-607 (in Chinese with English abstract).

    Google Scholar

    Zu B, Seltmann R, Xue C J, Wang T, Dolgopolova A, Li C, Zhou L M, Pak N, Ivleva E, Chai M C, Zhao X B. 2019. Multiple episodes of late Paleozoic Cu-Au mineralization in the Chatkal-Kurama terrane: New constraints from the Kuru-Tegerek and Bozymchak skarn deposits, Kyrgyzstan[J]. Ore Geology Reviews, 113: 103007.

    Google Scholar

    蔡宏渊, 李福春. 1995. 阿尔玛雷克斑岩铜矿地质特征——矿化富集条件及成矿模式[J]. 矿产与地质, 9(47): 180-184.

    Google Scholar

    曹积飞, 王斌, 孟广路, 李宝强, 马中平, 陈博. 2016. 吉尔吉斯斯坦天山成矿带主要金矿类型及区域成矿规律[J]. 地质科技情报, 25(1): 140-146.

    Google Scholar

    陈磊, 邹海洋, 杨牧. 2013. 浅成低温热液型金矿的研究现状[J]. 国土资源导刊, 10(10): 78-80.

    Google Scholar

    丰成友, 薛春纪, 姬金生, 张连昌, 李华芹. 2000. 东天山西滩浅成低温热液金矿床地球化学[J]. 矿床地质, 19(4): 322-329.

    Google Scholar

    江思宏, 聂凤军, 张义, 胡朋. 2004. 浅成低温热液型金矿床研究最新进展[J]. 地学前缘, 11(2): 401-411. doi: 10.3321/j.issn:1005-2321.2004.02.010

    CrossRef Google Scholar

    李楠, 杨立强, 张闯, 张静, 雷时斌, 王恒涛, 王宏伟, 高雪. 2012. 西秦岭阳山金矿带硫同位素特征: 成矿环境与物质来源约束[J]. 岩石学报, 28(5): 1577-1587.

    Google Scholar

    刘春涌, 王永江. 2007. 初论中亚黑色岩系型金矿床的基本特征——兼论新疆黑色岩系型金矿找矿方向[J]. 新疆地质, 25(1): 34-39.

    Google Scholar

    孟广路, 王斌, 李宝强, 曹积飞, 范堡程. 2013. 乌兹别克斯坦穆龙套金矿床研究进展[J]. 地质科技情报, 32(5): 160-167.

    Google Scholar

    祁进平, 陈衍景, 李强之. 2004. 华北克拉通北缘浅成低温热液矿床: 时空分布和构造环境[J]. 矿物岩石, 24(3): 82-92.

    Google Scholar

    沙德铭, 董连慧, 毋瑞身, 田昌烈, 贾斌. 2003. 西天山地区浅成低温热液型金矿地质特征及成矿模式[J]. 西北地质, 36(2): 50-59.

    Google Scholar

    王宗秀, 李春麟, Pak Nikolai, Ivleva Elena, 余心起, 周高, 肖伟峰, 韩淑琴, Halilov Zailabidin, Takenov Nurgazy, 鄢犀利. 2017. 西天山造山带构造单元划分及古生代洋陆转换过程[J]. 中国地质, 44(4): 623-641.

    Google Scholar

    薛春纪, 段士刚, 柴凤梅, 木合塔尔买买提, Туресебеков А Х, 屈文俊. 2013. 乌兹别克斯坦Almalyk斑岩铜矿田成矿时代及其地质意义[J]. 地学前缘, 20(2): 197-204.

    Google Scholar

    薛春纪, 赵晓波, 莫宣学, 董连慧, 顾雪祥, Nurtaev Bakhtiar, Pak Nikolay, 张招崇, 王新利, 俎波, 张国震, 冯博, 刘家瑛. 2014. 西天山"亚洲金腰带"及其动力背景和成矿控制与找矿[J]. 地学前缘, 21(5): 128-155.

    Google Scholar

    余吉远, 计波, 王国强. 2018. 中天山阿拉塔格环状杂岩体中闪长质包体地球化学与岩浆混合作用[J]. 中国地质, 45(4): 767-782.

    Google Scholar

    翟伟, 孙晓明, 苏丽薇, 贺小平, 吴有良. 2010. 新疆阿希金矿: 古生代的低硫型浅成低温热液金矿床[J]. 地学前缘, 17(2): 266-285.

    Google Scholar

    张潮, 刘育, 刘向东, 冯建秋, 黄涛, 张庆, 王旭东. 2014. 胶西北新城金矿床硫同位素地球化学[J]. 岩石学报, 30(9): 2495-2506.

    Google Scholar

    张瑞忠, 王中亮, 王偲瑞, 刘育, 秦文凯. 2016. 胶西北大尹格金矿床成矿机理: 载金黄铁矿标型及硫同位素地球化学约束[J]. 岩石学报, 32(8): 2451-2464.

    Google Scholar

    朱江, 彭三国, 彭练红, 雷天赐, 龚银杰, 刘兴平. 2017. 安徽东溪浅成低温热液型金矿床成矿流体特征和形成时代——流体包裹体和赋矿安山岩U-Pb年代学约束[J]. 岩石矿物学杂志, 36(5): 593-604.

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(8)

Tables(1)

Article Metrics

Article views(1534) PDF downloads(80) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint