2023 Vol. 50, No. 6
Article Contents

LI Shoukui, CHEN Jianhang, LIU Xuelong, ZHANG Shitao, LI Zhenhuan. 2023. The law of ore-forming hydrothermal alteration and element transfer enrichment in the Tongchanggou porphyry Mo-Cu deposit in Shangri-La, Northwest Yunnan[J]. Geology in China, 50(6): 1745-1763. doi: 10.12029/gc20201020001
Citation: LI Shoukui, CHEN Jianhang, LIU Xuelong, ZHANG Shitao, LI Zhenhuan. 2023. The law of ore-forming hydrothermal alteration and element transfer enrichment in the Tongchanggou porphyry Mo-Cu deposit in Shangri-La, Northwest Yunnan[J]. Geology in China, 50(6): 1745-1763. doi: 10.12029/gc20201020001

The law of ore-forming hydrothermal alteration and element transfer enrichment in the Tongchanggou porphyry Mo-Cu deposit in Shangri-La, Northwest Yunnan

    Fund Project: Supported by Yunnan Gold Group School-Enterprise Cooperation Project (No.KKF0202121292), National Natural Science Foundation of China (No.42362010), Kunming University of Science and Technology's 'Double First-Class' Science and Technology Special Project (No.202202AG050006-2), Yunnan Province High-level Scientific and Technological Talents and Innovation Team Selection Special Project (No.202305AT350004-4) and Yunnan Sanjiang Metallogenic System and Evaluation Top Team Cultivation Project (No.202305AS350015)
More Information
  • Author Bio: LI Shoukui, male, born in 1986, doctor, senior engineer, engaged in reaserch on economic geology; E-mail: 289749859@qq.com
  • Corresponding author: LIU Xuelong, male, born in 1983, professor, engaged in geological and mineral research in Sanjiang area of Yunnan Province; E-mail: xuelongliu@foxmail.com 
  • This paper is the result of mineral exploration engineering.

    Objective

    The late Yanshannian epoch was the most important period of multi-metal mineralization of porphyry Mo at the Geza island arc in Zhongdian area, Yunnan province. In this paper, we chose the No.Ⅳ granitic diorite porphyry body of Tongchanggou large-scale porphyry molybdenum-copper deposit in this area as the research object, attempting to reveal the elemental migration rule of porphyry body in the process of mineralized alteration and the relationship between the peripheral rock alteration and mineralization.

    Methods

    In this paper, the major elements, trace elements and rare earth elements in the original rock and the rocks in different alteration zones of No.Ⅳ granodiorite porphyry are analyzed respectively. The mass balance and migration amount of these major elements, trace elements and rare earth elements are calculated and analyzed by using the normalized Isocon method.

    Results

    The results show that K-silicate alteration, sericite-quartz alteration, and propylitization were involved in the process of the mineralization and alteration of the porphyry body, and SiO2, K2O and volatile matters are major elements migrating in the alteration zones while a large amount of Na2O migrated out; while major elements such as Al2O3, TiO2 and P2O5, and high field strength elements such as Zr, Nb, Hf, Th and Ta, and rare earth elements all present poor migration activity, belonging to inert components; mineralizing elements such as Cu, Pb, Zn and Ag, and indicator elements such as Sb and As show a trend to migrate out, reflecting the potential to find relevant types of ore around the rock body; the sericite-quartz zone is the most closely related to Mo mineralization, followed by K-silicate alteration; the deposition and mineralization mechanism of Mo is different from that of Cu, the former is mainly under the control of "converted barrier of pH", and the latter is under the control of "silicon-calcium surface" and "epigenetic structure interface"; this porphyry is small in scale, with a low background value of Mo but high migration amount of over 3000%, and around 30% of the rock body is molybdenum deposit, which implies the deep-seated magma chamber contributed tremendously to the mineralization.

    Conclusions

    This work provides a geological reference for the source of oreforming materials, the study of mineralization and the prospecting and exploration of the Tongchanggou deposit.

  • 加载中
  • Chang C F. 1997. Geology and Tectonics of Qinghai-Xizang Plateau Solid Earth Sciences Research in China[M]. Beijing: Science Press: 1-153.

    Google Scholar

    Chen Yuchuan, Ye Qingtong, Feng Jing. 1996. Metallogenic Conditions and Prediction of the Ashele Cu-Zn Metallogenic Belt[M]. Beijing: Geological Publishing House, 120(in Chinese).

    Google Scholar

    Chi Qinghua, Yan Mingcai. 2007. Handbook of Geochemical Element Abundance Data[M]. Beijing: Geological Publishing House, 3(in Chinese).

    Google Scholar

    Fan Yuhua, Li Wengchang. 2006. Geological characteristics of the Pulang porphyry copper deposit, Yunnan[J]. Geology in China, 33(2): 352-362 (in Chinesewith English abstract).

    Google Scholar

    Gao Xue, Meng Jianyin. 2017. The source of ore-forming fluids and materials in the Tongchanggou Mo-Cu deposit, northwestern Yunnan, China: Constrains from skarn mineralogy and stable isotopes[J]. Acta Petrologica Sinica, 33(7): 2161 -2174(in Chinese with English abstract).

    Google Scholar

    Grant J A. 1986. The isocon diagram: A simple solution to gresens equation for metasomatic alteration[J]. Economic Geology, 81(8): 1976-1982. doi: 10.2113/gsecongeo.81.8.1976

    CrossRef Google Scholar

    Grant J A. 2005. Isocon analysis: A brief review of the method and applications[J]. Physics and Chemistry of the Earth, 30(17-18): 997-1004. doi: 10.1016/j.pce.2004.11.003

    CrossRef Google Scholar

    Gresens R L. 1967. Composition-volume relationships of metasomatism[J]. Chemical Geology, 2: 47-65. doi: 10.1016/0009-2541(67)90004-6

    CrossRef Google Scholar

    Guo S, Ye K, Chen Y, Liu J B. 2009. A normalization solution to mass transfer illustration of multiple progressively altered samples using the isocon diagram[J]. Economic Geology, 104(6): 881-886. doi: 10.2113/gsecongeo.104.6.881

    CrossRef Google Scholar

    Guo Shun, Ye Kai, Chen Yi, Liu Jingbo, Zhang Lingmin. 2013. Introduction of mass-balance calculation method for component transfer during the opening of a geological system[J]. Acta Petrologica Sinica, 29(5): 1486-1498(in Chinese with English abstract).

    Google Scholar

    He J, Wang B D, Wang L Q, Wang Q Y, Yan G C. 2019. Geochemistry and geochronology of the Late Cretaceous Tongchanggou Mo-Cu deposit, Yidun Terrane, SE Tibet; implications for post-collisional metallogenesis[J]. Journal of Asian Earth Sciences, 172: 308-327. doi: 10.1016/j.jseaes.2018.09.015

    CrossRef Google Scholar

    Hezarkhani A, Williams-Jones A E, Gammons C H. 1999. Factors controlling copper solubility and chalcopyrite deposition in the Sungun porphyry copper deposit, Iran[J]. Mineralium Deposita, 34(8): 770-783. doi: 10.1007/s001260050237

    CrossRef Google Scholar

    Hou Zengqian, Yang Yueqing, Qu Xiaoming, Huang Dianhao, Lü Qingtian, Wang Haiping, Yu Jinjie, Tang Shaohua. 2004. Tectonic evolution and mineralization systems of the Yidun arc orogen in Sanjiang Region, China[J]. Acta Geologica Sinica, 78(1): 109-120(in Chinese with English abstract).

    Google Scholar

    Hou Zengqian, Yang Yueqing, Wang Haiping. 2003. Collision Orogeny and Metallogenic System of Yidun Island Arc in Sanjiang[M]. Beijing: Geological Publishing House, 1-345(in Chinese).

    Google Scholar

    Huang Dingzhu. 2017. Exploration Report of Tongchanggou Mo-Cu Deposit in Shangri La, Yunnan Province [R]. Kunming: Yunnan Geological Survey Institute, 23-37(in Chinese).

    Google Scholar

    Li W C, Yin G H, Yu H J, Liu X L. 2014. The Yanshanian granites and associated Mo-polymetallic mineralization in the Xiangcheng-Luoji area of the Sanjiang-Yangtze conjunction zone in southwest China[J]. Acta Geologica Sinica, 88(6): 1742-1756. doi: 10.1111/1755-6724.12341

    CrossRef Google Scholar

    Li W C, Yu H J, Gao X, Liu X L, Wang J H. 2017. Review of Mesozoic multiple magmatism and porphyry Cu-Mo (W) mineralization in the Yidun Arc, eastern Tibet Plateau [J]. Ore Geology Reviews, 90: 795-812. doi: 10.1016/j.oregeorev.2017.03.009

    CrossRef Google Scholar

    Li W C, Zeng P S, Hou Z Q, White N C. 2011. The pulang porphyry copper deposit and associated felsic intrusions in Yunnan Province, southwest China[J]. Economic Geology and the Bulletin of the Society of Economic Geologists, 106(1): 79-92. doi: 10.2113/econgeo.106.1.79

    CrossRef Google Scholar

    Li Wenchang, Yu Haijun, Yin Guanghou, Cao Xiaomin, Huang Dingzhu, Dong Tao. 2012. Re-Os dating of molybdenite from Tongchanggou Mo-polymetal lic deposit in northwest Yunnan and its metal logenic environment[J]. Mineral Deposits, 31(2): 282-292(in Chinese with English abstract).

    Google Scholar

    Li Wenchang, Yin Guanghou, Yu Haijun, Lu Yingxiang, Liu Xuelong. 2011. The porphyry metallogenesis of Geza volcanic magmatic arc in NW Yunnan[J]. Acta Petrologica Sinica, 27(9): 2541-2552(in Chinese with English abstract).

    Google Scholar

    Liu Shusheng, Yang Yongfei, Guo Linnan, Nie Fei, Peng Zhiming, Pan Guitang. 2018. Tectonic characteristics and metallogeny in Southeast Asia[J]. Geology in China, 45(5): 863-889(in Chinese with English abstract).

    Google Scholar

    Liu X L, Chen J H, Li W C, Zhang N, Yang F C. 2019. Late Cretaceous magmatism and porphyry Mo-Cu polymetallic mineralization in the Tongchanggou Intrusion, Geza Arc, Southwestern China[J]. Arabian Journal of Geosciences, 90: 795-812.

    Google Scholar

    Liu Xuelong, Li Wenchang, Zhang Na, Yang Fucheng, Kang Jian, Zhang Biao. 2016a. Characteristics of sulfur and lead isotopes and tracing of mineral sources in the Tongchanggou porphyry Mo(Cu) deposit at the southern edge of Geza arc belt, Yunnan[J]. Geology in China, 43(1): 209-220(in Chinese with English abstract).

    Google Scholar

    Liu Xuelong, Li Wenchang, Zhang Na, Lai Anqi, Li Zhe, Yang FuCheng. 2016b. Metallogenic system of the Yanshanian porphyry Mo polymetallic deposit in the Xiangcheng-Lijiang suture zone, western margin of Yangtze block, SW China[J]. Acta Petrologica Sinica, 32(8): 2281-2302(in Chinese with English abstract).

    Google Scholar

    Liu Xuelong, Li Wenchang, Zhang Na. 2014. Sulfur and lead isotope tracing of Tongchanggou Cu-Mo deposit in the southern margin of Geza island arc, Yunnan Province [J]. Mineral Deposits, 33(S1): 25-26 (in Chinese).

    Google Scholar

    Liu Xuelong, Li Wenchang. 2017. Xiangcheng-Luoji Molybdenum Polymetallic Deposit and Metallogenic System in the Western Margin of Yangtze Block[M]. Kunming: Yunnan Science and Technology Press: 1-162(in Chinese).

    Google Scholar

    Maclean W H, Kranidiotis P. 1987. Immobile elements as monitors of mass-transfer in hydrothermal alteration-Phelps dodge massive sulfide deposit, Matagami, Quebec[J]. Economic Geology, 82(4): 951-962. doi: 10.2113/gsecongeo.82.4.951

    CrossRef Google Scholar

    Maclean W H. 1990. Mass change calculations in altered rock series[J]. Mineralium Deposita, 25: 44 -49. doi: 10.1007/BF03326382

    CrossRef Google Scholar

    Montoya J W, Hemley J J. 1975. Activity relations and stabilities in alkali feldspar and mica alterations[J]. Economic Geology, 70(3): 577-583. doi: 10.2113/gsecongeo.70.3.577

    CrossRef Google Scholar

    Ouyang Zongyin, Li Hui, Liu Hanzhong. 1990. Geochemical Anomaly Model of Typical Nonferrous Metal Deposits[M]. Beijing: Science Press: 1-178(in Chinese).

    Google Scholar

    Rempel K U, Williams-Jones A E, Migdisov A A. 2008. The solubility of molybdenum dioxide and trioxide in HCl-bearing water vapour at 350℃ and pressures up to 160 bars[J]. Geochimica et Cosmochimica Acta, 72(13): 3074-3083. doi: 10.1016/j.gca.2008.04.015

    CrossRef Google Scholar

    Sillhoe R H. 2010. Porphyry copper systems[J]. Economic Geology, 105(1): 3-41. doi: 10.2113/gsecongeo.105.1.3

    CrossRef Google Scholar

    Sun S S, McDonough W F. 1989. Chemical and isotopic systematics of oceanic basalts: Implications for mantle composition and processes. [C]// Saunders A D, Norry M J (eds. ). Magmatism in the Ocean Basins. London: Geological Society Special Publications, 42(1): 313-345

    Google Scholar

    Tan Rongyu, Chen Jianlin, Xu Jifeng, Huang Wenlong, Tang Wanli. 2018. Petrogenesis of the ca. 80 Ma felsic-intermediate magmatism in the Zhongdian arc terrane and western Yangtze block: Implications for post-collisional metallogenesis[J]. Acta Petrologica Sinica, 34(5): 1413-1426(in Chinese with English abstract).

    Google Scholar

    Taylor S R, Mclennan S. 1985. The Continental Crust: It's Composition and Evolution[M]. Oxford: Blackwall Scientific Publications, 54(2): 209-230.

    Google Scholar

    Tian Guangli, Chen Shouyu, Dong Kai1, Zhao Jiangnan, Qin Wei, Chen Junlin. 2019. Elements migration and mass change calculations in alteration zones of Zheyaoshan VMS deposit, Baiyinchang, Gansu Province[J]. Mineral Deposits, 38(1): 80-100(in Chinese with English abstract).

    Google Scholar

    Vigneresse J L. 2006. Element mobility in melts during successive intrusions of crustal-derived magmas and Sn-W mineralization[J]. Resource Geology, 56(3): 293-314. doi: 10.1111/j.1751-3928.2006.tb00285.x

    CrossRef Google Scholar

    Vigneresse J L, Duley S, Chattaraj P K. 2011. Describing the chemical character of a magma[J]. Chemical Geology, 287(1/2): 102-113.

    Google Scholar

    Vigneresse J L. 2009. Evaluation of the chemical reactivity of the fluid phase through hard-soft acid-base concepts in magmatic intrusions with applications to ore generation[J]. Chemical Geology, 263(1/4): 69-81.

    Google Scholar

    Vigneresse J L. 2012. Chemical reactivity parameters (HSAB) applied to magma evolution and ore formation[J]. Lithos, 153: 154-164. doi: 10.1016/j.lithos.2012.03.014

    CrossRef Google Scholar

    Wang B Q, Zhou M F, Li J W, Yan D P. 2011. Late Triassic porphyritic intrusions and associated volcanic rocks from the Shangri-La region, Yidun terrane, Eastern Tibetan Plateau: Adakitic magmatism and porphyry copper mineralization[J]. Lithos, 127(1/2): 24-38.

    Google Scholar

    Wang Lei, Hu Zhaoguo, Li Xiangmin, Yan Haizhong, Yang Chao. 2020. Geochemical characteristics of stream sediments and prediction of mining prospects in the Wulandaban—Zhazigou area, Danghe South Mountain, Gansu Province [J]. Geology in China, 47(2): 516-527 (in Chinese with English abstract).

    Google Scholar

    Wang X S, Bi X W, Leng C B, Zhong H, Tang H F, Chen Y W, Yin G H, Huang D Z, Zhou M F. 2014. Geochronology and geochemistry of Late Cretaceous igneous intrusions and Mo Cu (W) mineralizationin the southern Yidun arc, SW China: Implications for metallogenesis and geodynamic setting[J]. Ore Geology Reviews, 61: 73-95. doi: 10.1016/j.oregeorev.2014.01.006

    CrossRef Google Scholar

    Xiang Kun. 2019. Laba Porphyry-Skarn Cu-Mo Deposit in Northwestern Yunnan: Alteration Mineralization Characteristics and Metallogenic Model[D]. Kunming: Kunming University of Science and Technology, 1-131(in Chinese with English abstract).

    Google Scholar

    Yang L Q, Deng J, Gao X, He W Y, Meng J Y, Santosh M, Yu H J, Yang Z, Wang D. 2016. Timing of formation and origin of the Tongchanggou porphyry-skarn deposit: Implications for Late Cretaceous Mo-Cu metallogenesis in the southern Yidun Terrane, SE Tibetan Plateau [J]. Ore Geology Reviews, 81(Pt. 2): 1015-1032.

    Google Scholar

    Yang Liqiang, Gao Xue, He Wenyan. 2015. Late Cretaceous porphyry metallogenic system of the Yidun arc, SW China[J]. Acta Petrologica Sinica, 31(11): 3155-3170(in Chinese with English abstract).

    Google Scholar

    Yang Z M, Cooke D R. 2019. Porphyry Copper Deposits in China[M]. Chang Z S, Goldfarb R (eds. ). Mineral Deposits of China. Untied States: Society of Economic Geologists Special Publication, 133-187.

    Google Scholar

    Yao Fengliang, Sun Fengyue. 2006. Ore Deposit Geology[M]. Beijing: Geological Publishing House, 132-153 (in Chinese).

    Google Scholar

    Yao Xue, Li Wenchang, Liu Xuelong, Zhang Na, Yang Fucheng, Yan Tinglong, Wang Shuaishuai, Luo Ying. 2017. Geochemistry and zircon U- Pb age of the Tongchanggou porphyry Cu-Mo deposit on the southern margin of Geza arc, northwest Yunnan Province, and its geological significance[J]. Geological Bulletin of China, 36(10): 1800-1813(in Chinese with English abstract).

    Google Scholar

    Ye Tianzhu, Lü Zhicheng, Pang Zhenshan. 2014. Prospecting Prediction Theory and Method in Exploration Area (General) [M]. Beijing: Geological Publishing House, 1-375(in Chinese).

    Google Scholar

    Ye Tianzhu, Wei Changshan, Wang Yuwang, Zhu Xinyou, Pang Zhenshan. 2017. Theory and Method of Ore Prospecting Prediction in Exploration Area[M]. Beijing: Geological Publishing House, 1-592(in Chinese).

    Google Scholar

    Yu H J, Li W C, Yin G H, Lu Y X, Cao X M, Huang D Z, Dong T, Zhang Y M. 2014. Zircon U-Pb ages of the granodioritic porphyry in the Laba molybdenum deposit, Yunnan, SW China and its geological implication[J]. Acta Geologica Sinica, 88(4): 1183-1194. doi: 10.1111/1755-6724.12282

    CrossRef Google Scholar

    Yu Haijun, Li Wenchang, Yin Guanghou, Wang Jianhua, Jiang Wentao, Wu Song, Tang Zhong. 2015. Geochronology, geochemistry and geological significance of the intrusion from the Tongchanggou Mo-Cu deposit, northwestern Yunnan[J]. Acta Petrologica Sinica, 31(11): 3217-3233(in Chinese with English abstract).

    Google Scholar

    Zhang Keqing, Yang Yong. 2002. Introduction of the method for mass balance calculation in altered rocks[J]. Geological Science and Technology Information, (3): 104-107(in Chinese with English abstract).

    Google Scholar

    Zu B, Xue C J, Zhao Y, Qu W J, Li C, Symons D T A, Du A D. 2015. Late cretaceous metallogeny in the Zhongdian area: Constraints from Re-Os dating of molybdenite and pyrrhotite from the Hongshan Cu deposit, Yunnan, China[J]. Ore Geology Reviews, 64: 1-12. doi: 10.1016/j.oregeorev.2014.06.009

    CrossRef Google Scholar

    陈毓川, 叶庆同, 冯京. 1996. 阿舍勒铜锌成矿带成矿条件和成矿预测[M]. 北京: 地质出版社: 120.

    Google Scholar

    迟清华, 鄢明才. 2007. 应用地球化学元素丰度数据手册[M]. 北京: 地质出版社: 3.

    Google Scholar

    范玉华, 李文昌. 2006. 云南普朗斑岩铜矿床地质特征[J]. 中国地质, 33(2): 352-362.

    Google Scholar

    高雪, 孟健寅. 2017. 滇西北铜厂沟Mo-Cu矿床成矿流体和成矿物质来源: 矽卡岩矿物学与稳定同位素证据[J]. 岩石学报, 33(7): 2161-2174.

    Google Scholar

    郭顺, 叶凯, 陈意, 刘景波, 张灵敏. 2013. 开放地质体系中物质迁移质量平衡计算方法介绍[J]. 岩石学报, 29(5): 1486-1498.

    Google Scholar

    侯增谦, 杨岳清, 王海平. 2003. 三江义敦岛弧碰撞造山过程与成矿系统[M]. 北京: 地质出版社: 1-345.

    Google Scholar

    侯增谦, 杨岳清, 曲晓明, 黄典豪, 吕庆田, 王海平, 余金杰, 唐绍华. 2004. 三江地区义敦岛弧造山带演化和成矿系统[J]. 地质学报, 78(1): 109-120.

    Google Scholar

    黄定柱. 2017. 云南省香格里拉市铜厂沟钼铜矿勘探报告[R]. 昆明: 云南省地质调查院, 23-37.

    Google Scholar

    李文昌, 尹光侯, 余海军, 卢映祥, 刘学龙. 2011. 滇西北格咱火山-岩浆弧斑岩成矿作用[J]. 岩石学报, 27(9): 2541-2552.

    Google Scholar

    李文昌, 余海军, 尹光侯, 曹晓民, 黄定柱, 董涛. 2012. 滇西北铜厂沟钼多金属矿床辉钼矿Re-Os同位素年龄及其成矿环境[J]. 矿床地质, 31(2): 282-292.

    Google Scholar

    刘书生, 杨永飞, 郭林楠, 聂飞, 彭智敏, 潘桂堂. 2018. 东南亚大地构造特征与成矿作用[J]. 中国地质, 45(5): 863-889.

    Google Scholar

    刘学龙, 李文昌, 张娜. 2014. 云南格咱岛弧南缘铜厂沟铜钼矿床硫铅同位素示踪研究[J]. 矿床地质, 33(S1): 25-26.

    Google Scholar

    刘学龙, 李文昌, 张娜, 杨富成, 康健, 张彪. 2016a. 云南格咱岛弧带南缘铜厂沟斑岩型铜钼矿床硫铅同位素特征与成矿物质来源示踪[J]. 中国地质, 43(1): 209-220.

    Google Scholar

    刘学龙, 李文昌, 张娜, 赖安琦, 李喆, 杨富成. 2016b. 扬子西缘乡城-丽江结合带燕山期斑岩Mo多金属矿床成矿系统[J]. 岩石学报, 32(8): 2281-2302.

    Google Scholar

    刘学龙, 李文昌. 2017. 扬子西缘结合带乡城-洛吉钼多金属矿床及成矿系统[M]. 昆明: 云南科技出版社: 1-162.

    Google Scholar

    欧阳宗圻, 李惠, 刘汉忠. 1990. 典型有色金属矿床地球化学异常模式[M]. 北京: 科学出版社: 1-178.

    Google Scholar

    谈荣钰, 陈建林, 许继峰, 黄文龙, 唐婉丽. 2018. 跨越中甸弧到扬子地块西缘的~80Ma中酸性火成岩成因及其对碰撞后成矿的意义[J]. 岩石学报, 34(5): 1413-1426.

    Google Scholar

    田光礼, 陈守余, 董凯, 赵江南, 覃伟, 陈俊霖. 2019. 甘肃白银厂折腰山VMS矿床蚀变带元素迁移及定量计算[J]. 矿床地质, 38(1): 80-100.

    Google Scholar

    王磊, 胡兆国, 李向民, 闫海忠, 杨超. 2020. 甘肃省党河南山乌兰达坂沟—扎子沟地区水系沉积物地球化学特征及找矿远景预测[J]. 中国地质, 47(2): 516-527.

    Google Scholar

    向坤. 2019. 滇西北拉巴斑岩-矽卡岩型铜钼矿床: 蚀变-矿化特征及成矿模式[D]. 昆明: 昆明理工大学: 1-131.

    Google Scholar

    杨立强, 高雪, 和文言. 2015. 义敦岛弧晚白垩世斑岩成矿系统[J]. 岩石学报, 31(11): 3155-3170.

    Google Scholar

    姚凤良, 孙丰月. 2006. 矿床学教程[M]. 北京: 地质出版社, 132-153.

    Google Scholar

    姚雪, 李文昌, 刘学龙, 张娜, 杨富成, 彦廷龙, 王帅帅, 罗应. 2017. 滇西北格咱岛弧带南缘铜厂沟斑岩铜钼矿床花岗闪长斑岩地球化学特征、锆石U-Pb年龄及其地质意义[J]. 地质通报, 36(10): 1800-1813.

    Google Scholar

    叶天竺, 吕志成, 庞振山. 2014. 勘查区找矿预测理论与方法(总论)[M]. 北京: 地质出版社, 1-375.

    Google Scholar

    叶天竺, 韦昌山, 王玉往, 祝新友, 庞振山. 2017. 勘查区找矿预测理论与方法(分论)[M]. 北京: 地质出版社, 1-592.

    Google Scholar

    余海军, 李文昌, 尹光候, 王建华, 姜文涛, 吴松, 唐忠. 2015. 滇西北铜厂沟Mo-Cu矿床岩体年代学、地球化学及其地质意义[J]. 岩石学报, 31(11): 3217-3233.

    Google Scholar

    张可清, 杨勇. 2002. 蚀变岩质量平衡计算方法介绍[J]. 地质科技情报, (3): 104-107.

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(10)

Tables(2)

Article Metrics

Article views(1218) PDF downloads(58) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint