2023 Vol. 50, No. 4
Article Contents

LI Yanyan, ZHANG Baojian, XING Yifei, WANG Guiling. 2023. Fragmentation law of carbonate rocks under different confining pressure in Gaoyuzhuang Formation, Gaoyang geothermal field, Xiong'an New Area[J]. Geology in China, 50(4): 1138-1148. doi: 10.12029/gc20210220002
Citation: LI Yanyan, ZHANG Baojian, XING Yifei, WANG Guiling. 2023. Fragmentation law of carbonate rocks under different confining pressure in Gaoyuzhuang Formation, Gaoyang geothermal field, Xiong'an New Area[J]. Geology in China, 50(4): 1138-1148. doi: 10.12029/gc20210220002

Fragmentation law of carbonate rocks under different confining pressure in Gaoyuzhuang Formation, Gaoyang geothermal field, Xiong'an New Area

    Fund Project: Supported by National Key Research and Development Projects (No.2019YFB1504102), Chinese Academic Geological Sciences Project (No.JKY202018, YWF201903-01) and the project of China Geological Survey (No.DD20189114)
More Information
  • Author Bio: LI Yanyan, female, born in 1988, Ph.D, assistant researcher, mainly engaged in geothermal geology; E-mail: liyanyan@cags.ac.cn
  • The paper is the result of geothermal geological survey engineering.

    Objective

    D34 well of Gaoyang geothermal field in Xiong'an New Area is the highest temperature geothermal well in North China Basin drilled by Chinese Academy of Geological Sciences and China Geological Survey in 2020. The wellhead temperature is 123.4℃, and the water output is 94.5 m3/h. Obviously, such high temperature corresponds with a relatively low flow. In order to provide important theoretical support for fracturing stimulation, this study intends to clarify the fragmentation law of reservoir carbonate rock under different confining pressures.

    Methods

    Based on previous studies, this paper takes the deep Gaoyuzhuang Formation reservoir carbonate rocks drilled from D34 well as the research object, and carries out conventional triaxial compression and tensile experiments.

    Results

    The experimental results show that: (1) The tensile strength characteristics of the reservoir carbonate rock in the Gaoyuzhuang Formation are similar with that of compressive strength, and shows obvious compression failure features. With the increase of the surrounding rock pressure, the compressive strength shows a typical secondary increase. (2) The compressive strength and the distribution of the fractures show differences with the depth. Among them, the uniformly developed multiple fractures and single main fractures are the main forms of expansion. Under the confining pressure of 20 MPa and 40 MPa, the yield strength changes synergistically with the Young's Modulus and Poisson's Ratio, respectively. (3) The expansion methods of tensile fractures are different with different depth. The shallower tensile fractures mainly expand with small amplitude and multi-stage expansion, while the deeper rocks show a uniform expansion trend.

    Conclusions

    Combined with the result of conventional triaxial compression and tensile experiments, it is concluded that the possibility of forming a complex fracturing network in the shallow part of the reservoir is higher than that in the deep part, but the overall brittleness index is less different, so there is no need to adopt different construction plans for different depths of the reservoir.

  • 加载中
  • Chen Moxiang, Huang Geshan, Zhang Wenren, Zhang Rongyan, Liu Bingyi. 1982. The temperature distribution pattern and the utilization of geothermal water at Niutuozhen basement protrusion of central Hebei Province[J]. Chinese Journal of Geology, (3): 239-252 (in Chinese with English abstract).

    Google Scholar

    Goldstein B A, Hill A J, Long A, Budd A R, Holgate F, Malavazos M. 2009. Hot rock geothermal energy plays in Australia[R]. Proceedings, Thirty-Fourth Workshop on Geothermal Reservoir Engineering, Stanford University, Stanford, California.

    Google Scholar

    Guo Liangliang. 2016. Test and Model Research of Hydraulic Fracturing and Reservoir Damage Evolution in Enhanced Geothermal System[D]. Changchun: Jilin University (in Chinese with English abstract).

    Google Scholar

    Lin Wenjing, Liu Zhiming, Wang Wanli, Wang Guiling. 2013. The assessment of geothermal resources potential of China[J]. Geology in China, 40(1): 312-321 (in Chinese with English abstract).

    Google Scholar

    Ma Feng, Wang Guiling, Wei Shuaichao, Sun Zhanxue. 2019. Summary of hot research topics in geothermal exploration in 2018[J]. Science & Technology Review, 37(1): 134-143 (in Chinese with English abstract).

    Google Scholar

    Pang Zhonghe, Huang Shaopeng, Hu Shengbiao, Zhao Ping, He Lijuan. 2014. Geothermal studies in China: Progress and prospects 1995-2014[J]. Chinese Journal of Geology, 49(3): 719-727 (in Chinese with English abstract).

    Google Scholar

    Pang Zhonghe, Kong Yanlong, Pang Jumei, Hu Shengbiao, Wang Jiyang. 2017. Geothermal resources and development in Xiong'an New Area[J]. Bulletin of Chinese Academy of Sciences, 32(11): 1224-1230 (in Chinese with English abstract).

    Google Scholar

    Rickman R, Mullen M, Petre E, Grieser B, Kundert D. 2008. A practical use of shale petrophysics for stimulation design optimization: All shale plays are not clones of the Barnett shale[C]//SPE Annual Technical Conference and Exhibition. Colorado: Society of Petroleum Engineers, 121-129.

    Google Scholar

    Wang Jiyang, Sun Zhanxue. 2001. Magical Geothermal[M]. Beijing: Tsinghua University (in Chinese with English abstract).

    Google Scholar

    Wang Guiling, Zhang Wei, Lin Wenjing, Liu Feng, Zhu Xi, Liu Yanguang, Li Jun. 2017a. Research on formation mode and development potential of geothermal resources in Beijing-Tijian-Hebei region[J]. Geology in China, 44(6): 1074-1085 (in Chinese with English abstract).

    Google Scholar

    Wang Guiling, Zhang Wei, Liang Jiyun, Lin Wenjing, Liu Zhiming, Wang Wanli. 2017b. Evaluation of geothermal resources potential in China[J]. Acta Geoscientica Sinica, 38(4): 449-459 (in Chinese with English abstract).

    Google Scholar

    Wang Guiling, Li Jun, Wu Aimin, Zhang Wei, Hu Qiuyue. 2018. A study of the thermal storage characteristics of Gaoyuzhuang Formation, a new layer system if thermal reservoir in Rongcheng uplift area, Hebei Province[J]. Acta Geoscientia Sinica, 39(5): 533-541 (in Chinese with English abstract).

    Google Scholar

    Wang Guiling, Wanli Wang, Wei Zhang, Feng Ma, Feng Liu. 2020. The status quo and prospect of geothermal resources exploration and development in Beijing-Tianjin-Hebei region in China[J]. China Geology, 3: 173-181. doi: 10.31035/cg2020013

    CrossRef Google Scholar

    Wang Siqi, Zhang Baojian, Ma Yan, Li Yanyan, Xing Yifei, Yuan Wenzhen, Li Jun, Gao Jun, Zhao Tian. 2021. Heat accumulation mechanism of deep ancient buried hill in the Northeast of Gaoyang geothermal field, Xiong'an New Area[J]. Bulletin of Geological Science and Technology, 40(3): 12-21 (in Chinese with English abstract).

    Google Scholar

    Wei Shuaichao, Zhang Wei, Fu Yong, Liu Feng, Wang Guiling, Yuan Ruoxi, Yan Xiaoxue, Liao Yuzhong. 2023. Distribution characteristics and resource potential evaluation of lithium in geothermal water in China[J]. Geology in China, doi: 10.12029/20230214001(in Chinese with English abstract).

    CrossRef Google Scholar

    Xi Daoying, Xu Songlin. 2016. Petrophysics and Constitutive Theory[M]. Hefei: University of Science and Technology of China Press (in Chinese with English abstract).

    Google Scholar

    Xing Yifei, Wang Huiqun, Li Jie, Teng Yanguo, Zhang Baojian, Li Yanyan, Wang Guiling. 2022. Chemical field of geothermal water in Xiong'an New Area and analysis of influencing factors[J]. Geology in China, 49(6): 1711-1722 (in Chinese with English abstract).

    Google Scholar

    Yue Xiwei, Dai Junsheng, Wang Ke. 2014. Influence of rock mechanics parameters on development of fracture[J]. Journal of Geomechanics, 20(4): 372-378 (in Chinese with English abstract).

    Google Scholar

    Zeng Lixin. 1999. Laboratory test methods study of deep rock physical mechanics[J]. Journal of Geomechanics, 5: 1-7 (in Chinese with English abstract).

    Google Scholar

    Zhao Xiujuan, Zhang Xujiao, Li Zongmin, Wu Zhonghai, Ye Peisheng, Sun Dongsheng, Lü Yong. 2012. The engineering mechanical properties of the rock mass along the Dali-Ruili railway, western Yunnan Province[J]. Geological Bulletin of China, 31: 366-373 (in Chinese with English abstract).

    Google Scholar

    Zheng Keyan. 2009. Strategic Development of Geothermal Energy[M]. Beijing: Geological Publishing House (in Chinese with English abstract).

    Google Scholar

    Zhou Ruiliang, Liu Qisheng, Zhang Jing, Yang Liqiang. 1989. The geothermal features and exploitive prospects of the geothermal field of salient type of bed rock of Niutuozhen in the fault basin of north China[C]//Bulletin of the 562 Comprehensive Geological Brigade Chinese Academy of Geological Sciences, (7/8): 21-36 (in Chinese with English abstract).

    Google Scholar

    陈墨香, 黄歌山, 张文仁, 张容燕, 刘炳义. 1982. 冀中牛驼镇凸起地温场的特点及地下热水的开发利用[J]. 地质科学, (3): 239-252.

    Google Scholar

    郭亮亮. 2016. 增强型地热系统水力压裂和储层损伤演化的试验及模型研究[D]. 长春: 吉林大学.

    Google Scholar

    蔺文静, 刘志明, 王婉丽, 王贵玲. 2013. 中国地热资源及其潜力评估[J]. 中国地质, 40(1): 312-321.

    Google Scholar

    马峰, 王贵玲, 魏帅超, 孙占学. 2019. 2018地热勘探开发热点回眸[J]. 科技导报, 37(1): 134-143.

    Google Scholar

    庞忠和, 黄少鹏, 胡圣标, 赵平, 何丽娟. 2014. 中国地热研究的进展与展望(1995-2014)[J]. 地质科学, 49(3): 719-727.

    Google Scholar

    庞忠和, 孔彦龙, 庞菊梅, 胡圣标, 汪集旸. 2017. 雄安新区地热资源与开发利用研究[J]. 中国科学院院刊, 32(11): 1224-1230.

    Google Scholar

    汪集旸, 孙占学. 2001. 神奇的地热[M]. 北京: 清华大学出版社.

    Google Scholar

    王贵玲, 张薇, 蔺文静, 刘峰, 朱喜, 刘彦广, 李郡. 2017a. 京津冀地区地热资源成藏模式与潜力研究[J]. 中国地质, 44(6): 1074-1085.

    Google Scholar

    王贵玲, 张薇, 梁继运, 蔺文静, 刘志明, 王婉丽. 2017b. 中国地热资源潜力评价[J]. 地球学报, 38(4): 449-459.

    Google Scholar

    王贵玲, 李郡, 吴爱民, 张薇, 胡秋韵. 2018. 河北容城凸起区热储新层系-高于庄组热储特征研究[J]. 地球学报, 39(5): 533-541.

    Google Scholar

    王思琪, 张保建, 马岩, 李燕燕, 邢一飞, 袁文真, 李郡, 高俊, 赵甜. 2021. 雄安新区高阳地热田东北部深部古潜山聚热机制[J]. 地质科技通报, 40(3): 12-21.

    Google Scholar

    魏帅超, 张薇, 付勇, 刘峰, 原若溪, 闫晓雪, 廖煜钟, 王贵玲. 2023. 我国地热水中锂元素分布特征及资源开发利用[J]. 中国地质, dio: 10.12029/20230214001. doi: 10.12029/20230214001

    CrossRef Google Scholar

    席道瑛, 徐松林. 2016. 岩石物理学与本构理论[M]. 合肥: 中国科学技术大学出版社.

    Google Scholar

    邢一飞, 王慧群, 李捷, 滕彦国, 张保健, 李燕燕, 王贵玲. 2022. 雄安新区地热水的化学场特征及影响因素分析[J]. 中国地质, 49(6): 1711-1722.

    Google Scholar

    岳喜伟, 戴俊生, 王珂. 2014. 岩石力学参数对裂缝发育程度的影响[J]. 地质力学学报, 20(4): 372-378.

    Google Scholar

    曾立新. 1999. 深层岩石力学性质的试验方法[J]. 地质力学学报, 5: 1-7.

    Google Scholar

    赵秀娟, 张绪教, 李宗敏, 吴中海, 叶培盛, 孙东生, 吕勇. 2012. 滇西大理至瑞丽铁路沿线岩石力学参数的测定及其意义[J]. 地质通报, 31: 366-373.

    Google Scholar

    郑克棪. 2009. 地热能的战略开发[M]. 北京: 地质出版社.

    Google Scholar

    周瑞良, 刘琦胜, 张晶, 杨力强. 1989. 华北断陷盆地牛驼镇基岩高凸起型热田地质特征及其开发前景[C]. 中国地质科学院562综合大队集刊, (7/8): 21-36.

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(9)

Tables(3)

Article Metrics

Article views(2093) PDF downloads(140) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint