2021 Vol. 48, No. 2
Article Contents

WANG Zhaolin, MENG Guixiang, TANG Hejun, YUAN Lulu, YANG Zhusen, XIAO Yandong. 2021. Geochemistry of clinopyroxene and chrome spinel in the Zhaheba peridotite, Eastern Junggar, Xinjiang, China and its chromitite metallogenesis[J]. Geology in China, 48(2): 477-494. doi: 10.12029/gc20210209
Citation: WANG Zhaolin, MENG Guixiang, TANG Hejun, YUAN Lulu, YANG Zhusen, XIAO Yandong. 2021. Geochemistry of clinopyroxene and chrome spinel in the Zhaheba peridotite, Eastern Junggar, Xinjiang, China and its chromitite metallogenesis[J]. Geology in China, 48(2): 477-494. doi: 10.12029/gc20210209

Geochemistry of clinopyroxene and chrome spinel in the Zhaheba peridotite, Eastern Junggar, Xinjiang, China and its chromitite metallogenesis

    Fund Project: Supported by the project of China Geological Survey (No. DD20190071) and scientific research project of Chinese Academy of Geological Sciences (No. JKY201908-01)
More Information
  • Author Bio: WANG Zhaolin, male, born in 1978, senior engineer, engaged in metal mineral exploration and research; Email: geology231@126.com
  • Zhaheba ophiolite is a significant ophiolite complex in Eastern Junggar, consisting mainly of peridiotite, basalt, layered gabbro, plagiogranite and chert. Among them, the peridiotite is mainly composed of harzburgite, herzolite, and minor dunite. The average contents of clinopyroxene in herzolite are Cr2O3 1.11%, Al2O3 4.77%, MgO 16.99%, CaO 21.84%, SiO2 50.00%, and the accessory mineral chromium spinel falling within the high-Al types has lower average contents Cr2O3 40.35%、Cr# 0.53 but higher Al2O3 24.10%, MgO 13.23% and Mg#(0.62), which indicate that it was formed during the extension of Zhaheba ocean in MOR environment. While the element contents of chrome spinels in massive chromites changes little with average contents of Cr2O3 55.45%、Al2O3 10.88%, MgO 11.98% and Mg# 0.60, which fall in high-Cr type fields and belong to SSZ type of chromites. Clinopyroxenes in herzolite is characterized by typical structures of melted residue and melt-rock reaction, and orthopyroxene in harzburgite kept bastitic pseudomorphs and unaltered enstatites, but chrome spinel accessory minerals show corrosion features. The melting residual structure of monocline is a manifestation of the melting and chromium release of chromium-bearing minerals, and also a structural indicator of the partial melting degree of peridotite increasing and the evolution towards more magnesium rich direction, which may have limited contribution to the formation of Cr-rich chromite. The peridotite contains monoclinopyroxene, olivine and textures newly generated from melt-rock reaction. The role of fluid and volatiles in the melt-rock reaction cannot be ignored. Based on the above studies, the relationship among the content differences of Cr#、Mg# and Al2O3 of chromite and tectonic settings of ophiolite, and its influence factors are discussed. It is concluded that mantle convection and subduction of Kalamaili ocean led to the enrichment of the high-Al chrome spinels in MOR environment and forming of massive chromites.

  • 加载中
  • Ahmed A H, Shoji A, Attia A K. 2001. Petrological characteristics of podiform chromitites and associated peridotites of the Pan African ophiolite complexes of Egypt[J]. Mineralium Deposita, 36: 72-84. doi: 10.1007/s001260050287

    CrossRef Google Scholar

    Ahmed A H. 2013. Highly depleted harzburgite-dunite-chromitite complexes from the Neoproterozoic ophiolite, south Eastern Desert, Egypt: A possible recycled upper mantle lithosphere[J]. Precambrian Research, 233: 173-192. doi: 10.1016/j.precamres.2013.05.001

    CrossRef Google Scholar

    Ahmed A H, Habtoor A. 2015. Heterogeneously depleted Precambrian lithosphere deduced from mantle peridotites and associated chromitite deposits of Al'Ays ophiolite, Northwestern Arabian Shield, Saudi Arabia[J]. Ore Geology Reviews, 67: 279-296. doi: 10.1016/j.oregeorev.2014.12.018

    CrossRef Google Scholar

    Akmaz R M, Uysalİ, Saka S. 2014. Compositional variations of chromite and solid inclusions in ophiolitic chromitites from the southeastern Turkey: Implications forchromitite genesis[J]. Ore Geology Reviews, 58: 208-224. doi: 10.1016/j.oregeorev.2013.11.007

    CrossRef Google Scholar

    Arai S. 1992. Chemistry of chromian spinel in volcanic rocks as a potential guide to magma chemistry[J]. Mineralogical Magazine, 56: 173-184. doi: 10.1180/minmag.1992.056.383.04

    CrossRef Google Scholar

    Arai S, Yurimoto H. 1994. Podiform chromitites of the Tari-Misaka ultramafic complex, Southwest Japan, as mantle-melt interaction products[J]. Economic Geology, 89: 1279-1288. doi: 10.2113/gsecongeo.89.6.1279

    CrossRef Google Scholar

    Arai S. 1997. Control of wall-rock composition on the formation of podiform chromitites as a result of magma/peridotite interaction[J]. Resource Geology, 47(4): 177-187.

    Google Scholar

    Arai S, Matsukage K. 1998. Petrology of a chromitite micropod from Hess Deep, equato-rial Pacific: A comparison between abyssal and alpine-type podiform chromitites[J]. Lithos, 43: 1-14. doi: 10.1016/S0024-4937(98)00003-6

    CrossRef Google Scholar

    Arai S. 2010. Possible recycled origin for ultrahigh-pressure chromitites in ophiolites[J]. Journal of Mineralogical and Petrological Science, 105(5): 280-285. doi: 10.2465/jmps.100622a

    CrossRef Google Scholar

    Arai S. 2013. Conversion of low-pressure chromitites to ultrahigh-pressure chromititesby deep recycling: A good inference[J]. Earth and Planetary Science Letters, 379: 81-87. doi: 10.1016/j.epsl.2013.08.006

    CrossRef Google Scholar

    Arai S, Miura M. 2016. Formation and modification of chromitites in the mantle[J]. Lithos, 264: 277-295. doi: 10.1016/j.lithos.2016.08.039

    CrossRef Google Scholar

    Bao Peisheng. 2009. Further discussion on the genesis of the podiform chromite deposits in the ophiolites-questioning about the rock/melt interaction metallogeny[J]. Geological Bulletin of China, 28(12): 1741-1761 (in Chinese with English abstract).

    Google Scholar

    Barnes S J. 2000. Chromite in komatiites. Ⅱ. Modification during greenschist to mid-amphibolite facies metamorphism[J]. Journal of Petrology, 41: 387-409. doi: 10.1093/petrology/41.3.387

    CrossRef Google Scholar

    Barnes S J, Roeder P L. 2001. The range of spinel compositions in terrestrial mafic and ultramafic rocks[J]. Journal of Petrology, 42: 2279-2302. doi: 10.1093/petrology/42.12.2279

    CrossRef Google Scholar

    Basch V, Rampone E, Crispini L, Ferrando C, Ildefonse B, Godard M. 2018. From mantle peridotites to hybrid troctolites: Textural and chemical evolution during melt-rock interaction history (Mt. Maggiore, Corsica, France)[J]. Lithos, 323: 4-23. doi: 10.1016/j.lithos.2018.02.025

    CrossRef Google Scholar

    Becker H, Shirey S B, Carlson R W. 2001. Effects of melt percolation on the Re-Os systematics of peridotites from a Paleozoic convergent plate margin[J]. Earth and Planetary Science Letters, 188: 107-121. doi: 10.1016/S0012-821X(01)00308-9

    CrossRef Google Scholar

    Bonavia F F, Diella V, Ferrario A. 1993. Precambrian podiform chromitites from Kenticha Hill, Southern Ethiopia[J]. Economic Geology, 88: 198-202. doi: 10.2113/gsecongeo.88.1.198

    CrossRef Google Scholar

    Choi S H, Shervaıs J W, Mukasa S B. 2008. Supra-subduction and abyssalmantle peridotites of the coast range ophiolite, California[J]. Contributions to Mineralogy and Petrology, 156: 551-576. doi: 10.1007/s00410-008-0300-6

    CrossRef Google Scholar

    Daniele B, Monique S, Anna C, Luisa O, Enrico B. 2006. Discontinuous melt extraction and weak refertilization of mantle peridotites at the vema Lithospheric Section (Mid-Atlantic Ridge)[J]. Journal of Petrology, 47: 745-771. doi: 10.1093/petrology/egi092

    CrossRef Google Scholar

    Dick H J B, Bullen T. 1984. Chromian spinel as a petrogenetic indicator in abyssal and Alpine-type peridotites and spatially associated lavas[J]. Contributions to Mineralogy and Petrology, 86: 54-76. doi: 10.1007/BF00373711

    CrossRef Google Scholar

    Duke J M. 1982. Ore deposit model 7: Magma segregation deposits of chromite[J]. Geochimica et Cosmochimica Acta, 39: 1061-1074.

    Google Scholar

    Elthon D. 1992. Chemical trends in abyssal peridotites: Refertilization of depleted suboceanic mantle[J]. Journal of Geophysical Research, 97: 9015-9025. doi: 10.1029/92JB00723

    CrossRef Google Scholar

    Eric H, Snow J E, Peter H, Hofmann A W. 2002. Garnet-field melting and late-stage refertilization in 'residual' abyssal peridotites from the Central Indian Ridge[J]. Journal of Petrology, 43: 2305-2338. doi: 10.1093/petrology/43.12.2305

    CrossRef Google Scholar

    Erdi A, İbrahim U, Recep M A, Samet S. 2017. Ophiolitic chromitites from the Kızılyüksek area of the Pozantı-Karsantı ophiolite (Adana, southernTurkey): Implication for crystallization from a fractionated boninitic melt[J]. Ore Geology Reviews, 90: 166-183. doi: 10.1016/j.oregeorev.2016.08.033

    CrossRef Google Scholar

    Evans B, Frost R B. 1975. Chrome spinel in progressive metamorphism: A preliminary analysis[J]. Geochimica et Cosmochimica Acta, 39: 959-972. doi: 10.1016/0016-7037(75)90041-1

    CrossRef Google Scholar

    Foley S F. 2011. A reappraisal of redox melting in the earth's mantle as a function of tectonic setting and time[J]. Journal of Petrology, 52: 1363-1391. doi: 10.1093/petrology/egq061

    CrossRef Google Scholar

    Gonzalez J J M, Proenza J A, Gervilla F, Melgarejo J C, Blanco M J A, Ruiz S R, Griffin W L. 2011. High-Cr and high-Al chromitites from the Sagua de Tanamo district, Mayari-Cristal ophiolitic massif (eastern Cuba): Constraints on their origin from mineralogy and geochemistry of chromian spinel and platinum-group elements[J]. Lithos, 125: 101-121. doi: 10.1016/j.lithos.2011.01.016

    CrossRef Google Scholar

    Günay K, Çolakoğlu A R. 2016. Spinel compositions of mantle-hosted chromitite from the Eastern Anatolian ophiolite body, Turkey: Implications for deep and shallow magmatic processes[J]. Ore Geology Reviews, 73: 29-41. doi: 10.1016/j.oregeorev.2015.10.021

    CrossRef Google Scholar

    Hao Ziguo. 1991. Study on the genesis of ophilites and podiform chromite deposites of the western Junggar area, Xinjiang[J]. Bulletin of the Chinese Academy of Geological Sciences, 23: 73-83(in Chinese with English abstract).

    Google Scholar

    He Guoqi, Li Maosong, Jia Jindou, Zhou Hui. 2001. A discussion on age and tectonic significance of ophiolite in Eastern Junggar, Xinjiang[J]. Acta Scientiarum Naturalium Universitatis Pekinensis, 37(6): 852-858(in Chinese with English abstract).

    Google Scholar

    Huang Qishuai, Shi Rendeng, Ding Binghua, Liu Deliang, Zhang Xiaoran, Fan Shuaiquan, Zhi Xiachen. 2012. Re-Os isotopic evidence of MOR-type ophiolite from the Bangong Co for the opening of Bangong-Nu jiang Tethys Ocean[J]. Acta Petrologica et Mineralogica, 31(4): 465-478 (in Chinese with English abstract).

    Google Scholar

    Irvine T N. 1967. Chromium spinels as a petrogenetic indicator petrologic applications[J]. Canadian Journal of Earth Sciences, 11 (4): 71-103.

    Google Scholar

    Jian Ping, Liu Dunyi, Zhang Qi, Zhang Fuqin, Shi Yuruo, Shi Guanghai, Zhang Luqiao, Tao Hua. 2003. Shrimp dating of ophiolite and leucocratic rocks within ophiolite[J]. Earth Science Frontiers, 11 (4): 71-103 (in Chinese with English abstract).

    Google Scholar

    Kamenetsky V S, Crawford A J, Meffre S. 2001. Factors controlling chemistry of magmatic spinel: An empirical study of associated olivine, Cr-spinel and melt inclusionsfrom primitive rocks[J]. Journal of Petrology, 42: 655-671. doi: 10.1093/petrology/42.4.655

    CrossRef Google Scholar

    Li D, He D F, Santosh M, Tang J Y. 2014. Petrogenesis of Late Paleozoic volcanics from the Zhaheba depression, East Junggar: Insights into collisional event in an accretionary orogen of Central Asia[J]. Lithos, 184-187, 167-193. doi: 10.1016/j.lithos.2013.10.003

    CrossRef Google Scholar

    Luo J, Xiao W J, Wakabayashi W, Han C M, Zhang J E, Wan B, Ao S J, Zhang Z Y, Tian Z H, Song D F, Chen Y C. 2017. The Zhaheba ophiolite complex in Eastern Junggar (NW China): Long lived supra-subduction zone ocean crust formation and its implications for the tectonic evolution in southern Altaids[J]. Gondwana Research, 43: 17-40. doi: 10.1016/j.gr.2015.04.004

    CrossRef Google Scholar

    Leblanc M, Nicolas A. 1992. Ophiolitic chromitites[J]. International Geology Review, 34: 653-686. doi: 10.1080/00206819209465629

    CrossRef Google Scholar

    Li Jinyi. 1991. Early Paleozoic evolution of lithosphere plate, east Junggar, Xinjiang[J]. Bulletin of the Chinese Academy of Geological Sciences, 23: 1-12(in Chinese with English abstract).

    Google Scholar

    Li Jinyi. 1995. Main characteristics and emplacement processes of the east Junggar ophiolites, Xinjiang, China[J]. Acta Petrologica Sinica, 11(Supp. ): 37-84(in Chinese with English abstract).

    Google Scholar

    Li Rongshe, Ji Wenhua, Xiao Peixi, Ma Zhongping, Cheng Junlu, Pan Shujuan. 2012. The periodical achievement and new cognitions of regional geological survey, northern Xinjiang[J]. Xinjiang Geology, 30(3): 253-257(in Chinese with English abstract).

    Google Scholar

    Liu Ting, Zheng Youye, Wang Pengchong, Yang Weiguang, Guo Tongjun. 2019. Geochemial indicator for podiform chromite mineralization and its formation mechanism[J]. Bulletin of Mineralogy, Petrology and Geochemistry, 38(1): 176-194(in Chinese with English abstract).

    Google Scholar

    Liu Wei, Zhang Xiangbing. 1993. The characteristics and geological significance of Ulungur-Zhaisangpo tectonic setting[C]//Tu Guangchi(ed. ). New Progress of Sold Geosciences in Norther Xinjiang. Beijing: Science Press, 217-228(in Chinese with English abstract).

    Google Scholar

    Luo Zhaohua, Jiang Xiumin, Liu Xiao, Li Zhong, Wu Zongchang, Jing Wenchao. 2019. Imprints of fluid process of shell dunite in ophiolitic chromite deposits: Evidences from geology, petrology and crystal chemistry of olivine found in Luobusha and Zedang ophiolites in the Yarlung Zangbo suture zone, Tibet[J]. Earth Science Frontiers, 26 (1): 272-285 (in Chinese with English abstract).

    Google Scholar

    Melcher F, Grum W, Thalhammer T V, Thalhammer O A R. 1999. The giant chromite deposits at Kempirsai, Urals: Constraints from trace element (PGE, REE) and isotope data[J]. Mineralium Deposita, 34: 250-272. doi: 10.1007/s001260050202

    CrossRef Google Scholar

    Miura M, Arai S, Ahmed A H, Mizukami T, Okuno M, Yamamoto S. 2012. Podiform chromitite classification revisited: A comparison of discordant and concordant chromitite pods fromWadi Hilti, northern Oman ophiolite[J]. Journal of Asian Earth Sciences, 59: 52-61. doi: 10.1016/j.jseaes.2012.05.008

    CrossRef Google Scholar

    Mohamed Z K, Shoji A. 2017. Peridotite-chromitite complexes in the Eastern Desert of Egypt: Insight into Neoproterozoic sub-arc mantle processes[J]. Gondwana Research, 52: 59-79. doi: 10.1016/j.gr.2017.09.001

    CrossRef Google Scholar

    Monnier C, Girardeau J, Maury R, Cotten J. 1995. Back-arc basin origin for the East Su-lawesi ophiolite (eastern Indonesia)[J]. Geology, 23: 851-854. doi: 10.1130/0091-7613(1995)023<0851:BABOFT>2.3.CO;2

    CrossRef Google Scholar

    Niu Heicai, Shan Qiang, Zhang Haixiang, Yu Xueyuan. 2007. 40Ar/39Ar geochronology of the ultrahigh-pressure metamorphic quartz-magnesitite in Zhaheba, eastern Junggar, Xinjiang[J]. Acta Petrologica Sinica, 23(7): 1627-1634 (in Chinese with English abstract).

    Google Scholar

    Pan Chengze, Qiu Lin, Ye Xiantao, Dong Yongguan. 2016. Zircon U-Pb ages and Hf-O isotope compositions of the Zhaheba ophiolite in the northern margin of the Junggar terrane and their tectonic implications[J]. East China Geology, 37(2): 106-112(in Chinese with English abstract).

    Google Scholar

    Pearce J A, Barker P F, Edwards S J, Parkinson I J, Leat P T. 2000. Geochemistry and tectonic significance of peridotites from the South Sandwich arc basin system, south Atlantic[J]. Contributions to Mineralogy and Petrology, 139: 36-53. doi: 10.1007/s004100050572

    CrossRef Google Scholar

    Rammlmair D. 1986. Chromite in Philippines: Its relationship to the tectonic setting of the host ophiolites: Examples from Zambales and Palawan, in Chromites. UNESCO's IGCP-197 Project Metallogeny of Ophiolites: Athens, Greece, Theophastus 199-228.

    Google Scholar

    Rampone E, Piccardo G B, Hofmann A W. 2008. Multi-stage melt-rock interaction in the Mt. Maggiore (Corsica, France) ophiolitic peridotites: Microstructural and geochemical evidence[J]. Contributions to Mineralogy and Petrology, 156: 453-475. doi: 10.1007/s00410-008-0296-y

    CrossRef Google Scholar

    Roberts S. 1988. Ophiolitic chromitite formation: A marginal basin phenomenon?[J]. Economic Geology, 83: 1034-1036. doi: 10.2113/gsecongeo.83.5.1034

    CrossRef Google Scholar

    Roberts S, Neary C R. 1993. Petrogenesis of ophiolitic chromitites[C]//Prichard H M, Alabaster T, Harris N B W, Neary C R (eds. ). Magmatic Processes and Plate Tectonics. Geological Society London Special Publications, 76(1): 257-272.

    Google Scholar

    Rollinson H, Adetunji J. 2013. Mantle podiform chromitites do not form beneathmid-ocean ridges: A case study from the Moho transition zone of the Oman ophiolite[J]. Lithos, 177: 314-327. doi: 10.1016/j.lithos.2013.07.004

    CrossRef Google Scholar

    Saal A E, Takazawa E, Frey F A, Shimizu N, Hart S R. 2001. Re-Os Isotopes in the Horoman Peridotite: Evidence for Refertilization?[J]. Journal of Petrology, 42(1): 25-37. doi: 10.1093/petrology/42.1.25

    CrossRef Google Scholar

    Seyler M, Toplis M J, Lorand J P, Luguet A, Cannat M. 2001. Clinopyroxene microtextures reveal incompletely extracted melts in abyssal peridotites[J]. Geology, 29: 155-158. doi: 10.1130/0091-7613(2001)029<0155:CMRIEM>2.0.CO;2

    CrossRef Google Scholar

    Seyler M, Lorand J P, Dick H J B, Drouin M. 2007. Pervasive melt percolation reactions in ultra-depleted refractory harzburgites at the Mid-Atlantic Ridge, 15 degrees 20'N: ODP Hole 1274A[J]. Contributions to Mineralogy and Petrology, 153: 303-319. doi: 10.1007/s00410-006-0148-6

    CrossRef Google Scholar

    Shi R, Griffin W L, Reilly S Y O, Zhou M, Zhao G, Huang Q, Zhang X, Ding B, Ding L. 2012. Archean mantle contributes to the genesis of chromitite in the Palaeozoic Sartohay ophiolite, Asiatic Orogenic Belt, northwestern China[J]. Precambrian Research, 216-219: 87-94. doi: 10.1016/j.precamres.2012.06.016

    CrossRef Google Scholar

    Shi Rendeng, Huang Qishuai, Liu Deliang, Fan Shuaiquan, Zhang Xiaoran, Ding Lin, William L Griffin, Suzanne Y O'Reilly. 2012. Recycling of ancient subcontinental lithospheric mantle constraints on the genesis of the ophiolitic podiform chromitites[J]. Geological Review, 58(4): 643-652(in Chinese with English abstract).

    Google Scholar

    Su Benxun, Bai Yang, Chen Chen, Liu Xai, Xiao Yan, Tang Dongmei, Liang Zi, Cui Mengmeng, Peng Qingshan. 2018. Petrological and mineralogical investigations on hydrous properties of parental magmas of chromite deposits[J]. Bulletin of Mineralogy, Petrology and Geochemitry, 37(6): 1035-1046 (in Chinese with English abstract).

    Google Scholar

    Su B X, Zhou M F, Jing J J, Robinson P T, Chen C, Xiao Y, Liu X, Shi R D, Lennaz D, Hu Y. 2019. Distinctive melt activity and chromite mineralization in Luobusa and Purang ophiolites, southern Tibet: Constraints from trace element compositions of chromite and olivine[J]. Chinese Science Bulletin, 64: 108-121.

    Google Scholar

    Tian Yazhou, Yang Jingsui. 2016. Study on the mineral inclusions in Sartohay chromitites[J]. Acta Geologica Sinica, 90(11): 3114-3128 (in Chinese with English abstract).

    Google Scholar

    Trevor J F, David H G, Leonid V D, Andrew W M. 2008. The composition ofnear-solidus partial melts of fertile peridotite at 1 and 1.5 GPa: Implications for thepetrogenesis of MORB[J]. Journal of Petrology, 49: 591-613. doi: 10.1093/petrology/egn009

    CrossRef Google Scholar

    Uysal İ, Zaccarini F, Garuti G, Meisel T, Tarkian M, Bernhardt H J, Sadiklar M B. 2007. Ophiolitic chromitites from the Kahramanmaras area, southeastern Turkey: Their platinum group elements (PGE) geochemistry, mineralogy and Os isotope signature[J]. Ofioliti, 32: 151-161.

    Google Scholar

    Uysal İ, Sadiklar M B, Tarkian M, Karsli O, Aydin F. 2005. Mineralogy and composition of the chromitites and their platinum-group minerals from Ortaca (Mugla-SW Turkey): Evidence for ophiolitic chromitite genesis[J]. Mineral. Petrol., 83: 219-242. doi: 10.1007/s00710-004-0063-3

    CrossRef Google Scholar

    Uysal İ, Tarkian M, Sadiklar M B, Zaccarini F, Meisel T, Garuti G, Heidrich, S. 2009. Petrology of Al- and Cr-rich ophioliticchromitites from the Muğla, SW Turkey: Implications from composition of chromite, solid inclusions of platinum-group mineral(PGM), silicate, and base-metal mineral(BMM), and Os-isotope geochemistry[J]. Contributions to Mineralogy and Petrology, 158: 659-674 doi: 10.1007/s00410-009-0402-9

    CrossRef Google Scholar

    V Le Roux, J L Bodinier, A Tommasi, O Alard, J M Dautria, A Vauchez, A J V Riches. 2007. The Lherz spinel lherzolite: Refertilized rather than pristine mantle[J]. Earth and Planetary Science Letters, 259: 599-612. doi: 10.1016/j.epsl.2007.05.026

    CrossRef Google Scholar

    Wang Xibin, Bao Peisheng. 1987. The genesis of podiform chromite deposits-a case study of the Luobusha chromite deposit, Tibet[J]. Acta Geologica Sinica, (2): 166-181 (in Chinese with English abstract).

    Google Scholar

    Xiao W J, Windley B F, Badarch G, Sun S, Li J, Qin K, Wang Z. 2004. Palaeozoic accretionary and convergent tectonics of the southern Altaids: Implications for the growth of Central Asia[J]. Journal of the Geological Society, London, 161: 339-342. doi: 10.1144/0016-764903-165

    CrossRef Google Scholar

    Xiao W J, Windley B F, Yuan C, Sun M, Han C M, Lin S F, Chen H L, Yan Q R, Liu D Y, Qin K Z, Li J L, Sun S. 2009. Paleozoic multiple subduction accretion processes ofthe southern Altaids[J]. American Journal of Science, 309: 221-270. doi: 10.2475/03.2009.02

    CrossRef Google Scholar

    Xiao Xuchang, Tang Yaoqing. 1991. Tectonic Evolution of the Southern Margin of the Paleo-Asian Composite Megasuture Zone[M]. Beijing: Beijing Science and Technology Press, 1-150 (in Chinese with English abstract).

    Google Scholar

    Xiong Fahui, Yang Jingsui, Liu Zhao. 2013. Multi-stage formation of the podiform chromite[J]. Geology in China, 40(3): 820-839 (in Chinese with English abstract).

    Google Scholar

    Xiong Fahui, Yang Jingsui, Ba Dengzhu, Liu Zhao, Xu Xiangzhen, Feng Gaungying, Niu Xiaolu, Xu Jifeng. 2014. Different type of chromitite and genetic model from Luobusa ophiolite, Tibet[J]. Acta Petrologica Sinica, 30(8): 2137-2163 (in Chinese with English abstract).

    Google Scholar

    Xiong Fahui, Yang Jingsui, Xu Xiangzhen, Lai Shenming, Zhang Lan, Guo Guoling, Chen Yanhong, Zhao Hui. 2015. The prospects of chromitite in ophiolite of Yarlung Zangbo Suture Zone, Tibet[J]. Geology in China, 42(5): 1535-1558(in Chinese with English abstract).

    Google Scholar

    Zaccarini F, Garuti G, Proenza J A, Campos L, Thalhammer O A R, Aiglsperger T, Lewis J. 2011. Chromite and platinum-group-elements mineralization in the Santa Elena ophiolitic ultramafic nappe (Costa Rica): Geodynamic implications[J]. Geologica Acta, 9: 407-423.

    Google Scholar

    Zhang Hongfu. 2008. Variation of Re-Os isotopic system during peridotite-melt interaction: Implication for the meaning of Re-Os isotopic age of Cenozoic mantal peridotites from the North China craton[J]. Acta Petrologica Sinica, 24(11): 2457-2467(in Chinese with English abstract).

    Google Scholar

    Zhang Yuanyuan, Guo Zhaojie. 2010. New constraints on formation ages of ophiolites in northern Junggar and comparative study on their connection[J]. Acta Petrologica Sinica, 26(2): 421-430(in Chinese with English abstract).

    Google Scholar

    Zeng L J, Niu H C, Bao Z W, Shan Q, Li H, Li N B, Yang W B. 2015. Petrogenesis and tectonic significance of the plagiogranites in the Zhaheba ophiolite, Eastern Junggar orogen, Xinjiang, China[J]. Journal of Asian Earth Sciences, 113: 137-150. doi: 10.1016/j.jseaes.2014.09.031

    CrossRef Google Scholar

    Zhou Erbin, Yang Zhusen, Jiang Wan, Hou Zengqian, Guo Fusheng, Hong Jun. 2011. Study on mineralogy of Cr-spinel and genesis of Luobusha chromite deposit in South Tibet[J]. Acta Petrologica Sinica, 27(7): 2060-2072(in Chinese with English abstract).

    Google Scholar

    Zhou M F, Bai W J. 1992. Chromite deposits in China and their origin[J]. Mineralium Deposita, 27: 192-199. doi: 10.1007/BF00202542

    CrossRef Google Scholar

    Zhou Meifu, Bai Wenji. 1994. The origin of the podiform chromite deposits[J]. Mineral Deposits, 13(3): 242-249(in Chinese with English abstract).

    Google Scholar

    Zhou M F, Robinson P T. 1994. High-chromium and high-aluminium podiform chromitites, Western China, relationship to partial melting and melt/rockinteractionin the upper mantle[J]. International Geology Review, 36: 678-686. doi: 10.1080/00206819409465481

    CrossRef Google Scholar

    Zhou M F, Robinson P T, Malpas J, Li Z. 1996. Podiform chromitites from the Luobusa ophiolite (southern Tibet): Implications for melt-rock interaction and chromite segregation[J]. Journal of Petrology, 37: 3-21. doi: 10.1093/petrology/37.1.3

    CrossRef Google Scholar

    Zhou M F, Robinson P T. 1997. Origin and tectonic environment of podiform chromite deposits[J]. Economic Geology, 92: 259-262. doi: 10.2113/gsecongeo.92.2.259

    CrossRef Google Scholar

    Zhou M F, Sun M, Keays R R, Kerrich R. 1998. Controls on the platinum-group elemental distributions in high-Cr and high-Al chromitites: A case study of the podiform chromitites from the Chinese orogenic belts[J]. Geochimica et Cosmochimica Acta, 62: 677-688. doi: 10.1016/S0016-7037(97)00382-7

    CrossRef Google Scholar

    Zhou M F, Robinson P T, Malpas J, Aitchison J, Sun M, Bai W J, Hu X F, Yang J S. 2001. Melt-mantle interaction and melt evolution in the Sartohay high-Al chromite deposits of the Dalabute ophiolite (NW China)[J]. Journal of Asian Earth Sciences, 19: 517-534. doi: 10.1016/S1367-9120(00)00048-1

    CrossRef Google Scholar

    Zhou M F, Robinson P T, Malpas J, Edwards S, Qi, L. 2005. REE and PGE geochemical constraints on the formation of dunites in the Luobusha ophiolite, Southern Tibet[J]. Journal of Petrology, 46(3): 615-639.

    Google Scholar

    Zhou M F, Robinson P T, Su B X, Gao J F, Li J W, Yang J S, Malpas J. 2014. Compositions of chromite, associated minerals, and parental magmas of podiform chromite deposits: The role of slab contamination of asthenospheric melts in suprasubduction zone environments[J]. Gondwana Research, 26: 262-283. doi: 10.1016/j.gr.2013.12.011

    CrossRef Google Scholar

    鲍佩声. 2009. 再论蛇绿岩中豆荚状铬铁矿的成因——质疑岩石/熔体反应成矿说[J]. 地质通报, 28(12): 1742-1761.

    Google Scholar

    黄启帅, 史仁灯, 丁炳华, 刘德亮, 张晓冉, 樊帅权, 支霞臣. 2012. 班公湖MOR型蛇绿岩Re-Os同位素特征对班公湖-怒江特提斯洋裂解时间的制约[J]. 岩石矿物学杂志, 31(4): 465-478. doi: 10.3969/j.issn.1000-6524.2012.04.001

    CrossRef Google Scholar

    郝梓国. 1991. 新疆西准噶尔地区蛇绿岩与豆英型铬铁矿床的成因研究[J]. 中国地质科学院院报, 23: 73-83.

    Google Scholar

    何国琦, 李茂松, 贾进斗, 周辉. 2001. 论新疆东准噶尔蛇绿岩的时代及意义[J]. 北京大学学报(自然科学版), 37(6): 852-858. doi: 10.3321/j.issn:0479-8023.2001.06.017

    CrossRef Google Scholar

    简平, 刘敦一, 张旗, 张福勤, 石玉若, 施光海, 张履桥, 陶华. 2003. 蛇绿岩及蛇绿岩中淡色岩的SHRIMP U-Pb测年[J]. 地学前缘, 10(4): 439-456. doi: 10.3321/j.issn:1005-2321.2003.04.012

    CrossRef Google Scholar

    李锦轶. 1991. 试论新疆东准噶尔早古生代岩石圈板块构造演化[J]. 中国地质科学院院报, 2 3): 1-1 2.

    Google Scholar

    李锦轶. 1995. 新疆东准噶尔蛇绿岩的基本特征和侵位历史[J]. 岩石学报, 11(增刊): 37-84.

    Google Scholar

    李荣社, 计文化, 校培喜, 马中平, 陈隽璐, 潘术娟. 2012. 北疆区域地质调查阶段性成果与新认识[J]. 新疆地质, 30(3): 253-257. doi: 10.3969/j.issn.1000-8845.2012.03.002

    CrossRef Google Scholar

    刘婷, 郑有业, 王朋冲, 杨伟光, 郭统军. 2019. 豆荚状铬铁矿床成矿地球化学指标对比和成矿作用讨论[J]. 矿物岩石地球化学通报, 38(1): 176-194.

    Google Scholar

    刘伟, 张湘炳. 1993. 乌伦古-斋桑泊构造杂岩带特征及其地质意义[C]//涂光炽主编. 新疆北部固体地球科学新进展. 北京: 科学出版社, 217-228.

    Google Scholar

    罗照华, 江秀敏, 刘晓, 李重, 吴宗昌, 井文超. 2019. 蛇绿岩型铬铁矿床包壳纯橄榄岩中的流体过程印记: 来自西藏雅鲁藏布江缝合带罗布莎和泽当岩体的地质学、岩石学和橄榄石晶体化学证据[J]. 地学前缘, 26(1): 272-285.

    Google Scholar

    牛贺才, 单强, 张海祥, 于学元. 2007. 东准噶尔扎河坝超高压变质成因石英菱镁岩的40Ar/39Ar同位素年代学信息及地质意义[J]. 岩石学报, 23(7): 1627-1634. doi: 10.3969/j.issn.1000-0569.2007.07.008

    CrossRef Google Scholar

    潘成泽, 邱林, 叶现韬, 董永观. 2016. 扎河坝蛇绿岩锆石U-Pb年龄、Hf-O同位素组成及其地质意义[J]. 华东地质, 37(2): 106-112.

    Google Scholar

    史仁灯, 黄启帅, 刘德亮, 樊帅权, 张晓冉, 丁林, William L G, Suzanne Y O'Reilly. 2012. 古老大陆岩石圈地幔再循环与蛇绿岩中铬铁矿床成因[J]. 地质论评, 58(4): 643-652. doi: 10.3969/j.issn.0371-5736.2012.04.005

    CrossRef Google Scholar

    苏本勋, 白洋, 陈晨, 刘霞, 肖燕, 唐冬梅, 梁子, 崔梦萌, 彭青山. 2018. 铬铁矿床母岩浆含水性的岩石矿物学探讨[J]. 矿物岩石地球化学通报, 37(6): 1035-1046.

    Google Scholar

    田亚洲, 杨经绥. 2016. 萨尔托海铬铁矿中的矿物包体研究[J]. 地质学报, 90(11): 3114-3128. doi: 10.3969/j.issn.0001-5717.2016.11.010

    CrossRef Google Scholar

    王希斌, 鲍佩声. 1987. 豆荚状铬铁矿的成因——以西藏自治区罗布莎铬铁矿床为例[J]. 地质学报, (2): 166-181.

    Google Scholar

    肖序常, 汤耀庆. 1991. 古中亚复合巨型缝合带南缘构造演化[M]. 北京: 北京科学技术出版社, 1-150.

    Google Scholar

    熊发挥, 杨经绥, 刘钊. 2013. 豆荚状铬铁矿多阶段形成过程的讨论[J]. 中国地质, 40(3): 820-839. doi: 10.3969/j.issn.1000-3657.2013.03.014

    CrossRef Google Scholar

    熊发挥, 杨经绥, 巴登珠, 刘钊, 徐向珍, 冯光英, 牛晓露, 许继峰. 2014. 西藏罗布莎不同类型铬铁矿的特征及成因模式讨论[J]. 岩石学报, 30(8): 2137-2163.

    Google Scholar

    熊发挥, 杨经绥, 徐向珍, 来盛民, 张岚, 郭国林, 陈艳虹, 赵慧. 2015. 雅鲁藏布江缝合带蛇绿岩中铬铁矿的前景讨论[J]. 中国地质, 42(5): 1535-1558. doi: 10.3969/j.issn.1000-3657.2015.05.023

    CrossRef Google Scholar

    张宏福. 2008. 橄榄岩-熔体相互作用过程中Re-Os体系的变化趋势: 对华北新生代地幔橄榄岩Re-Os年龄含义的启示[J]. 岩石学报, 24(11): 2457-2467.

    Google Scholar

    张元元, 郭召杰. 2010. 准噶尔北部蛇绿岩形成时限新证据及其东、西准噶尔蛇绿岩的对比研究[J]. 岩石学报, 26: 421-430.

    Google Scholar

    周二斌, 杨竹森, 江万, 侯增谦, 郭福生, 洪俊. 2011. 藏南罗布莎铬铁矿床铬尖晶石矿物学与矿床成因研究[J]. 岩石学报, 27(7): 2060-2072.

    Google Scholar

    周美付, 白文吉. 1994. 对豆英状铬铁矿床成因的认识[J]. 矿床地质, 13(3): 242-249.

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(10)

Tables(1)

Article Metrics

Article views(2358) PDF downloads(87) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint