HE Liang, LIN Bin, ZHAXI Pingcuo, BASANG Duoji, DU Qiu, SHAO Rui, ZHANG Qizhi, HE Wenge. 2021. The first large-sized graphite deposit in Tibet: geology of the Qingguo graphite deposit and U-Pb age of its ore-bearing pluton[J]. Geology in China, 48(2): 359-373. doi: 10.12029/gc20210202
Citation: HE Liang, LIN Bin, ZHAXI Pingcuo, BASANG Duoji, DU Qiu, SHAO Rui, ZHANG Qizhi, HE Wenge. 2021. The first large-sized graphite deposit in Tibet: geology of the Qingguo graphite deposit and U-Pb age of its ore-bearing pluton[J]. Geology in China, 48(2): 359-373. doi: 10.12029/gc20210202

The first large-sized graphite deposit in Tibet: geology of the Qingguo graphite deposit and U-Pb age of its ore-bearing pluton

    Fund Project: Funded by China Geological Survey (No.DD20160026, No. DD20160016 and No.DD20190167), Tibet Exploration Fund (No.29, 2018), Tibet Science Plan Project (No.XZ201901-GB-24), the Basic Research Fund of the Chinese Academy of Geological Sciences (No.SYSCR2019-02), National Key R&D Program of China (No.2018YFC0604101) and National Natural Science Foundation of China (No.41902097)
More Information
  • Author Bio: HE Liang, male, born in 1984, master, senior engineer, engaged in the research of mineral resource exploration and evaluation; E-mail: heliang_tibet@163.com
  • Corresponding author: LIN Bin, male, born in 1987, associate research fellow, engaged in the research of mineral deposit and exploration in Tibet; E-mail: linbinlxt@sina.com 
  • China is rich in graphite mineral resources, and the existing exploration and research results are mostly concentrated in the central and eastern regions. However, the present situation and prospecting potential of graphite mineral resources in Tibet are not clear. With the investment of mineral exploration work, the first large graphite deposit in the Sanjiang area of Tibet was discovered, namely the Qingguo graphite deposit. Its resource is 1.0694 million tons of fixed carbon minerals (indicated and inferred) at average grade of 8.40%. Through detailed field geological survey and borehole geological logging, the basic geological characteristics of the deposit have been clarified. The emplacement age of the ore-bearing pluton was determined by zircon U-Pb geochronology. Combined with the carbon isotopic composition, the genesis and metallogenic age of the deposit were studied. Orebodies in the deposits are hosted in a monzogranite pluton as thick tabular and irregular shape, and graphite is present as ball or irregular rains. These ore-bodies might be formed as the product of recrystallization during the magmatic hydrothermal activity when the coal-bearing strata of the Lower Carboniferous Kagong Formation were captured by monzogranite magma. The U-Pb age of ore-bearing monzogranite yielding (244.7±1.3)Ma indicates its emplacement during Middle Triassic, which represents the magmatic age and metallogenic age. The discovery of many graphite deposits and prospects in Tibet indicate that there is good exploration potential of graphite resources, especially in the Sanjiang area.

  • 石墨是重要的非金属矿产资源,也被称为工业粮食矿产(李超等,2015Sun et al., 2018)。随着高新技术产业的发展,其产品越来越多地被运用于高精尖工业领域,如石墨烯在新材料、新能源、生物医药等领域的应用(肖克炎等,2016张苏江等,2018)。石墨矿产在全球分布极不均匀,主要集中于中国、印度、加拿大、斯里兰卡和西班牙等国家(Baiju et al., 2005Martín-Méndez et al., 2016肖克炎等,2016Ai et al., 2018)。其中,中国作为世界上主要的石墨矿产地之一,其石墨矿空间分布也不均匀,整体呈现“东多西少”的特征(李超等,2015; 蔡文春等, 2020)。前人曾对中国石墨矿产资源进行了详细的统计,系统总结了其时空分布规律及矿床成因类型,相关工作多集中在黑龙江、内蒙古、新疆等地区(陈衍景等,2000刘松柏等,2011李思远等,2016),而青藏高原石墨矿相关勘查与研究工作则较少,研究程度极低。近年来,随着矿产勘查工作的不断深入,在西藏三江地区陆续发现了纽多、青果、地果等多个中型—大型石墨矿床。这些石墨矿床通常具有规模大、结晶度高、埋藏浅等特征。本文以三江成矿带青果大型石墨矿床为研究对象,详细解剖其矿床地质特征,利用含矿岩体的锆石U-Pb年代学以及矿石碳同位素分析,探究矿床成因。此外,结合区域上最新勘查探矿成果,总结分析区域石墨矿产成矿地质条件及找矿前景,为该成矿带上石墨矿的后续勘查与评价提供理论基础。

    青果矿床大地构造位置位于西藏—三江造山系羌塘弧盆系的唐古拉—左贡地块之竹卡—东达山岩浆弧(唐菊兴等,2006a邓军等, 2013, 2018)(图 1)。区内主要出露地层以元古宇、中—上古生界和中生界为主,局部出露少量的新生界。其中,下石炭统卡贡组(C1kg)与本区石墨矿成矿关系密切。该地层分布于紫曲西—卡贡—金多—青果—曲登乡西一带,主要为一套含煤的碎屑岩建造,具有海陆交互相特征;上部主要为褐色岩屑长石石英砂岩与深灰色—灰黑色粉砂质板岩、深灰色砂质板岩、炭质板岩夹煤线呈不等厚互层,下部则发育结晶灰岩、砂屑灰岩、大理岩化灰岩加长石石英砂岩,内部发育明显的褶皱变形。受北东-南西向挤压及走滑作用的影响,区域上主要发育一系列北东-南西向的复式褶皱和断裂构造(唐菊兴等,2006b钟康惠等,2008)。区域岩浆活动强烈,主要发育大量中生代的中酸性侵入体,以花岗闪长岩、二长花岗岩为主,呈岩枝或者岩株状产出(郭娜等,2008)。此外,区域内局部可见少量辉长岩等基性岩脉,多侵位于中酸性岩体或岩枝中。区域尺度,矿产种类繁多,资源较为丰富(唐菊兴等, 2006a, 2006b),除了著名的玉龙铜多金属成矿带以外(Lin et al., 2017a, 2017b, 2018, 2019; 林彬等,2017唐菊兴等,2019),还包括拉荣钨钼矿、索打锡多金属矿、卡贡铁矿、金多煤矿、维贡煤矿、两股地煤矿、曲登煤矿以及纽多石墨矿、地果石墨矿、青果石墨矿等多处矿床或矿化点(图 1)。

    图 1.  西藏青果石墨矿床区域地质简图(据何亮等,2019)
    Figure 1.  Regional geological map of the Qingguo graphite deposit, Tibet (after He Liang et al., 2019)

    青果矿区出露地层为下石炭统卡贡组(C1kg),岩性主要为岩屑砂岩、粉砂质板岩、炭质板岩,夹煤线、结晶灰岩、大理岩(图 2),局部可见少量辉绿岩岩块。矿区内构造活动不明显,但矿区外围发育北西-南东向的几组断裂(图 1图 2)。矿区内岩浆岩十分发育,主要为晚二叠世—中三叠世中酸性侵入岩,呈岩枝状产出(图 2)。其中,花岗闪长岩大面积出露,侵位于卡贡组,呈浅灰黄色、中粒花岗结构,主要矿物为石英、斜长石、钾长石、角闪石和黑云母。花岗闪长岩中局部可见少量辉长岩脉,发育明显的绿泥石化。其次为二长花岗岩,呈岩脉形式侵位于早期的花岗闪长岩及卡贡组中,具有细粒花岗结构,主要矿物为斜长石、钾长石、石英。该岩脉与石墨矿化关系密切,发育大量球状、不规则状的石墨块体,岩石新鲜面呈灰白色,因石墨矿化而呈深灰色—灰黑色。岩石中,斜长石(30%)多呈半自形板状,发育明显的泥化和绢英岩化蚀变,钾长石(40%)则可见明显的卡式双晶和条纹结构,石英(25%)则多呈浑圆状。二长花岗岩中镜下可见大量的石墨晶体,多呈粒状、鳞片状产出,鳞片直径可达0.1~0.4 mm,呈团块状集中分布。此外,可见少量的电气石,呈柱状包含于石墨团块内。

    图 2.  西藏青果石墨矿床地质简图
    Figure 2.  Geological map of the Qingguo graphite deposit, Tibet

    截止目前,青果矿区共圈定7个矿体,分别为Ⅰ-1、Ⅰ-2、Ⅰ-3、Ⅰ-4、Ⅱ-1、Ⅱ-2、Ⅲ,累计探获固定碳资源量106.94万t(何文革等,2018),达到大型规模,矿床固定碳平均品位8.40%。其中,Ⅰ-1、Ⅱ-1、Ⅲ矿体为主要矿体。

    Ⅰ-1矿体:出露于矿区北东侧,呈不规则状,出露面积约0.055 km2,总体呈北北西-南南东向展布,与矿区的主要构造线一致。由ZK0501、ZK0502、ZK03、ZK05等工程揭露和控制,长约330 m,宽140~200 m,矿体厚度11.95~42.63 m,平均厚度27.3 m(图 2)。矿体总体北东缓倾,倾向65°~75°,倾角15°~20°。矿体内部的品位变化较大,总体呈现地表较富、往深部变贫的趋势,固定碳平均含量10.92%。赋矿岩石为细粒二长花岗岩,矿石矿物为结晶较好的石墨晶体,最大的结晶颗粒可达2 mm。石墨晶体的集合体呈球状、粒状、稠密浸染状分布于细粒二长花岗岩之中,球粒直径在5~50 mm。部分石墨球粒被岩浆改造的不完全,可见残留的板岩碎块和硅化砂岩角砾。矿体固定碳平均品位为10.92%。

    Ⅱ-1矿体:位于Ⅰ-1矿体南侧约110 m,平面呈不规则椭圆状展布,由ZK04、ZK06等工程揭露和控制,长约320 m,宽90~150 m,矿体厚度25.3~52 m,平均厚度约40 m;矿体总体向东缓倾,倾向80°~ 95°,倾角18°~25°。矿体固定碳平均含量6.17%,赋矿岩石为二长花岗岩,晶质鳞片石墨多呈球状,局部呈豆状、叶片状、棱角状集合体,较均匀地分布于岩体内。该矿体在剖面上往西侧呈现分支并尖灭的趋势,东侧厚大稳定(图 2图 3)。

    图 3.  西藏青果石墨矿床Ⅱ-1号矿体剖面地质图
    Figure 3.  Section of No.Ⅱ-1 orebody in the Qingguo graphite deposit, Tibet

    Ⅲ矿体:出露于Ⅱ-1矿体南侧约350 m,呈不规则椭圆状、北西-南东向展布。该矿体工程控制程度较低,产状不明,推测矿体长约300 m,宽约130 m。矿体固定碳平均含量7.17%,赋矿岩石为二长花岗岩,晶质鳞片石墨多呈球状,局部呈豆状、叶片状、棱角状集合体大致均匀地分布于岩体内。

    石墨矿体中矿石物质成分相对较简单,有用矿物以石墨为主,同时含有少量金属矿物,如黄铁矿、磁黄铁矿、磁铁矿等;非金属矿物则主要为石英、长石、绢云母、黑云母,以及少量电气石、绿泥石、方解石、绿帘石、白云母以及少量的阳起石等。矿石矿物共生组合地表主要为石墨-绢云母-高岭石-褐铁矿-石英,钻孔揭露深部则主要为石墨-黄铁矿- 电气石-石英-白云母组合。其中,含石墨二长花岗岩,主要依据固定碳品位高低确定是否为矿石(图 4ab)。

    图 4.  西藏青果石墨矿床矿体露头及典型矿石特征
    Figure 4.  Outcrop and typical ores in the Qingguo graphite deposit, Tibet

    矿石整体以球状、豆状、不规则粒状构造为主,同时也有少量浸染状、斑杂状构造(图 4c图 4d)。其中,典型的球状或豆状构造中,石墨呈皮壳状结晶聚集,中心包裹少量浑圆二长花岗岩角砾和少量隐晶质石墨,球体直径1~5 cm不等,个别大于10 cm。镜下鉴定显示:矿石中石墨多呈交代残余结构,花边状结构,蠕虫结构,粒鳞片状变晶结构,鳞片粒状结构(图 5ab),含浸染状石墨的二长花岗岩也广泛发育石英溶蚀结构及蠕虫结构,说明石墨矿体形成深度较浅,主要靠近岩体顶部或边部。矿石中的石墨大部分呈片状或鳞片状集合体,球状构造,片的长径方向具有一定的定向性,延长方向或矿石片理的方向一致,呈不均匀团状、透镜体平行分布,多数片径相对较粗大,单鳞片石墨直径可达40 μm以上,是典型的晶质石墨(图 6ab)。石墨之间及内部偶见少量星点状磁铁矿、磁黄铁矿、黄铁矿。

    图 5.  西藏青果石墨矿床矿石镜下特征
    Figure 5.  Microphotograph of graphite in the Qingguo deposit, Tibet
    图 6.  西藏青果石墨矿床鳞片状石墨扫描电镜分析
    Figure 6.  Scanning electron microscope photoes of graphite in the Qingguo deposit, Tibet

    本次针对矿区出露的两套岩体进行锆石U-Pb年代学分析。其中,花岗闪长岩(QG-1)采于矿区中部,含石墨的二长花岗岩(QG-2)则采自钻孔ZK06附近,样品岩石学特征如前文所述。两岩体分选出的锆石颗粒分别被固定在环氧树脂中,抛光制靶,并完成阴极发光(CL)和透反射照相。锆石的U-Pb同位素测年在自然资源部沉积盆地与油气重点实验室完成,分析仪器为LA- ICP- MS,采用GeoLasPro 193 nm激光剥蚀系统,以He作为剥蚀物质的载气,激光波长193 nm、束斑直径32 μm、脉冲频率6 Hz、激光能量为6 J/cm2。实验以锆石标样GJ-1作为外标,进行U-Pb同位素分馏效应和质量歧视的校正计算,测试时每5~8个样品点插一组标样。详细的测试方法及流程参考文献(Liu et al., 2010),数据处理采用ICPMSDataCal软件。锆石样品的U-Pb年龄谐和图绘制和年龄权重平均值计算采样Isoplot/Ex-ver3.75(Ludwig,2012)完成。

    锆石测年结果见表 1图 7。阴极发光图像(图 7a)显示,花岗闪长岩(QG-1)锆石颗粒呈自形柱状,发育典型的振荡环带,锆石长度多介于60~140 μm,长短轴比例多为1.0~2.0。锆石Th、U含量分别为272×10-6~2087 ×10-6和545×10-6~1882 ×10-6,Th/ U比值为0.4~1.1,具有典型岩浆锆石特征。二长花岗岩(QG-2)锆石颗粒亦呈自形柱状,发育典型的振荡环带,锆石长度多介于80~180 μm,长短轴比例多为1.0~2.1(图 7b);Th、U含量分别为166×10- 6~ 1275×10-6、312×10-6~1763×10-6,Th/U比值为0.4~1.0 (表 1),具有典型岩浆锆石特征(雷玮琰等,2013)。花岗闪长岩(QG-1)共获得25个有效测年点,其测年数据均位于谐和线上及其附近,锆石206Pb/238U年龄值为(250.2±2.5)Ma ~(259.9±2.8)Ma,其年龄加权平均值为(255.4±1.3)Ma(MSWD=1.7),代表花岗闪长岩的形成年龄(图 8)。二长花岗岩(QG-2) 共获得20个有效测年点,其测年数据均位于谐和线上及其附近,锆石206Pb/238U年龄值为(239.2±2.1) Ma~(250.0±2.2)Ma(表 2),其年龄加权平均值为(244.7±1.3)Ma(MSWD=1.6),代表二长花岗岩的形成年龄(图 9)。

    表 1.  西藏青果石墨矿床花岗闪长岩、二长花岗岩锆石测年结果
    Table 1.  U-Pb dating data of granodiorite and monzogranite in the Qingguo graphite deposit, Tibet
     | Show Table
    DownLoad: CSV
    图 7.  西藏青果矿床花岗闪长岩(a)和二长花岗岩(b)测年锆石
    Figure 7.  Zircon U-Pb dating of granodiorite (a) and monzonite granite (b) in the Qingguo deposit, Tibet
    图 8.  西藏青果石墨矿床花岗闪长岩锆石U-Pb年龄图解
    Figure 8.  Zirco U-Pb Age of granodiorite in the Qingguo graphite deposit, Tibet
    图 9.  西藏青果石墨矿床二长花岗岩锆石测年结果
    Figure 9.  Zircon U-Pb Age of monzonite granite in the Qingguo graphite deposit, Tibet

    根据成因类型,石墨矿床分为区域变质型、接触变质型和岩浆热液型(莫如爵等,1989李超等,2015)。其中,区域变质型矿床是指古老地层中的有机质经过区域变质作用形成的石墨矿床,这类古老地层通常为含炭质黏土岩-中基性火山岩-碳酸盐岩建造,如元古界的孔兹岩系(陈衍景等,2000李凯月等,2018马旭东等,2019)。接触变质型矿床是指产于侵入体外围的富含有机质泥岩、页岩或者煤系地层,受岩浆热液烘烤形成的石墨矿床(李超等,2015)。岩浆热液型矿床则指中酸性岩体侵入过程中,捕获同化富含有机质的地层,并将其有机质重结晶形成的石墨矿床(刘松柏等, 2011; 白建科等, 2018)。从成因类型而言,区域变质型石墨矿床的成岩成矿时代多受控于区域大规模的变质作用事件,与岩浆热液活动无必然联系(颜玲亚等, 2018a, 2018b)。而接触变质型和岩浆热液型则与岩浆活动直接有关,岩浆热液活动为石墨矿床的形成提供了巨大的热动力。因此,针对接触变质型和岩浆热液型石墨矿床,其成岩成矿作用时代可以通过对岩浆热液活动时限加以约束(白建科等,2018)。

    锆石U-Pb测年结果表明,青果矿区内花岗闪长岩侵位时代为(255.4±1.3)Ma,属于晚二叠世岩浆活动的产物;二长花岗岩侵位时代为(244.7±1.3) Ma,属于中三叠世岩浆活动的产物。矿区中石墨矿体主要赋存于二长花岗岩中。从野外露头及镜下照片中,可以清晰看出,当二长花岗斑岩与卡贡组地层中含煤线的炭质组分接触时,常出现石墨矿化,部分接触带可见未完全蚀变的炭质组分(图 4ad)。目前,矿区花岗闪长斑岩与卡贡组地层接触时,并未出现明显的石墨矿化,原因可能有两种:第一,花岗闪长斑岩侵位时可能并未捕掳到地层中含煤线组分,所以,没有形成石墨矿化;第二,可能花岗闪长斑岩侵位时,侵位的温压条件,并不能重熔炭质组分,或温度较低、扩散较快,只能与地层形成侵入接触。当然,后续还需要进一步的详细研究,去探究花岗闪长斑岩与二长花岗斑岩岩石学性质差异。所以,根据上述研究,认为青果石墨矿床成矿作用应该与二长花岗斑岩有关,时代为中三叠世。从区域尺度而言,成矿带北侧的纽多石墨矿床中含矿的黑云母二长花岗岩形成时代亦为(243.6± 1.4)Ma(樊炳良等,2018),与青果矿床一致,均属于中三叠世岩浆活动的产物。

    矿床地质特征表明,青果矿区石墨矿体主体呈不规则状、透镜状产于二长花岗岩中,明显不同于区域变质型矿床特征。详细的野外地质调查、钻孔编录和镜下鉴定表明,青果矿床石墨矿体中包含未完全混染的二长花岗岩角砾和炭质板岩角砾,同时石墨晶体集合体呈现典型的不规则“球粒状”构造,这与新疆黄羊山、苏吉泉石墨矿床相似,具有典型的岩浆热液型石墨矿床特征。

    对于岩浆热液型石墨矿床,需要大量中酸性岩浆在侵位过程中捕虏富含有机质的岩石,这类有机质组分在岩浆热液高温高压条件下发生熔融、重结晶形成石墨。对于球粒状石墨的成因,前人研究表明,当深部岩浆同化混染有机质组分形成石墨晶体,但由于含矿岩浆具有很高温度,呈现沸腾的性质,石墨晶体在结晶过程中会边结晶边滚动,类似“滚雪球”(张国新等,1996刘松柏等,2011)。同时,由于压力比较大,当残留岩浆结晶时,其岩体组分(如二长花岗岩)也会随石墨的结晶混入石墨“球粒”中(白建科等, 2018)。此外,岩浆热液型石墨矿床形成的重要条件除了大规模的中酸性岩浆活动,也需要提供有机质的炭质地层;并且,其石墨的碳同位素组成会有明显的“继承性”,呈现有机碳的同位素特征。自然界中,碳同位素的来源主要有4类(Katz,1987):(1)以炭质球粒陨石为代表的初始碳和金刚石、碳酸岩岩浆代表的初生碳,δ13C约为-5 ‰;(2)空气或者地表的CO2δ13C约为-8‰;(3)生物体有机碳,δ13C为(-26±7)‰;(4)沉积碳酸盐岩中的无机碳,δ13C为(0.5±2.5)‰(陈衍景等,2000李凯月等,2018)。青果石墨矿床2件石墨的碳同位素分析结果表明,2件样品δ13C值均为-15.3 ‰,明显不同于无机碳,而与有机质组成相似,却略低于标准有机碳同位素组成,可能是因为其石墨晶体中混入了少量二长花岗岩组分或者其他热源的碳组分,导致碳同位素组成的变化。

    对于青果石墨矿床中有机质的来源,从矿区及外围地质条件来看,来源于矿区出露的下石炭统卡贡组炭质板岩。同时,含矿二长花岗岩中出现的不规则状炭质板岩角砾或者碎块的出现,也说明其来源于卡贡组地层。

    综上所述,青果石墨矿床成因是中三叠世(244.7±1.3)Ma中酸性岩浆沿澜沧江深大断裂侵位,运移过程中同化混染早石炭世的富有机质沉积岩(卡贡组),致使沉积岩的含煤质或有机质组分发生混染和重结晶,改变内部结构,形成石墨晶体。在不完全同化重熔的条件下,可见残留有机质地层岩块。当上述石墨晶体富集到一定程度,形成具有高品位的固定碳的石墨矿体,最终形成青果大型晶体石墨矿床。

    过去的研究结果显示,中国石墨矿产资源主要集中富集在中部、东部地区,而西部则相对匮乏(路耀祖等,2016徐新文等,2019),尤其是对西藏境内的石墨矿产资源尚未有文献报道(樊炳良等,2018)。然而,随着国家基础地质调查的深入和西藏自治区地勘基金的投入,在藏东三江成矿带陆续发现多个重要石墨矿产资源(辛军强等, 2015, 2017)(表 2),其中,达中型—大型规模的就有青果、地果、纽多,这类石墨矿床以岩浆热液型为主(表 2),主要与中三叠世的岩浆活动有关,同时也受控于狭长的下石炭统卡贡组含煤线地层的分布。此外,还有多个小型的石墨矿床,如刚给、夏荣戛、帕塘雄等,这类石墨矿床则主要受区域变质作用控制,产于孔兹岩系地层或区域变质地层中(表 2)。当然,1∶25万、1∶5区域地质调查工作均揭示在西藏境内还存在多个石墨矿点或小型石墨矿床,这类矿床形成多与区域变质作用相关。已有成果显示,西藏境内存在良好的石墨资源找矿潜力,尤其是三江地区。

    表 2.  西藏石墨矿床地质信息一览
    Table 2.  Geological information of these graphite deposits in Tibet
     | Show Table
    DownLoad: CSV

    通过对青果、地果以及纽多石墨矿床地质特征分析,这类矿床产出于中三叠世酸性岩体与下石炭统含煤层系的耦合部位,石墨晶体较粗大,多呈鳞片状,具有良好的经济价值。而在东达山岩浆弧东侧,区域上大面积出露下石炭统卡贡组含煤层系,同时普遍发育中三叠世侵入岩,具有较好的岩浆热液型石墨矿床找矿前景,建议在纽多—青果之间的空白区部署石墨矿找矿勘查工作。当然,也需要注意的是:青果矿床中早期侵位的花岗闪长斑岩(二叠世)与石炭系卡贡组地层接触时,并未形成大规模的石墨矿化,所以,在调查过程中也需要详细探究可能的致矿岩体的岩石学特征。此外,藏东卡贡组地层广泛分布区域,即使没有出现三叠世的侵入体,也不排除有其他晚期的酸性岩体侵位并致使形成石墨矿化或其他矿化。

    此外,从区域成矿作用来看,青果石墨矿床与拉荣钨钼矿、索打铅锌矿空间上位置较近,属于同一成矿带的产物。其中,拉荣矿床,钨钼矿体主要产于晚白垩世的二长花岗斑岩及其围岩卡贡组地层中,同时,年代学证据表明,拉荣钨钼矿的辉钼矿Re-Os等时线年龄为(90.6±2.1)Ma,属于晚白垩世岩浆活动的产物(刘俊等,2019)。对于索打矿床,其铅锌多金属矿体主要呈脉状、透镜状产于下石炭统马查拉组灰岩和石英砂岩的层间破碎带及后期的断裂带中,目前尚无详细的年代学证据,推测其成矿作用与燕山期索打花岗岩有关。据此,可以看出,青果矿床与拉荣、索打矿床虽然空间位置较近,但与后两者属于不同成矿作用事件的产物。

    通过以上研究,得到以下结论:

    (1) 青果矿床是西藏境内首个达大型规模的石墨矿床,其石墨晶体多呈宽大鳞片状,结晶粗大,具有重要的经济价值。

    (2) 锆石U-Pb年代学分析揭示,青果矿区含矿二长花岗岩成岩时代为(244.7±1.3)Ma,属于中三叠世岩浆活动的产物。

    (3) 矿床地质特征及碳同位素分析揭示,青果矿床是二长花岗岩捕掳富含有机质的下石炭统卡贡组岩石,经过混染重结晶形成优质的晶质石墨,属于岩浆热液成因。

    结合区域成矿作用分析,认为西藏三江地区具有良好的优质石墨矿产资源找矿潜力。

    ❶何文革, 巴桑多吉, 代顺军, 何亮, 高杨, 米玛扎西, 扎西平措, 吴强, 闫朋刚, 邵锐, 杜秋, 德央, 边巴次仁. 2019. 西藏左贡县青果地区石墨矿调查评价报告[R]. 1-160.

    ❷代顺军, 吴强, 闫朋刚, 高杨, 德央, 米玛扎西. 2019. 西藏左贡县地果石墨矿普查报告[R]. 1-143.

    ❸冯德新, 周新, 张力文, 汤勇, 罗拉次旺, 樊炳良. 2019. 西藏察雅县纽多石墨矿普查报告[R]. 1-121.

    ❹何亮, 何文革, 扎西平措, 邵锐, 杜秋. 2019. 藏东地区石墨矿找矿方向研究[R]. 1-85.

    ❺陈美涛, 许昌辉, 王兴强, 梁丕松, 蒋涛, 何文静, 贺元, 范国强, 赵小兵, 王晓丹, 黄安虎, 陈爽, 李智鹏. 2019. 1∶5万区域地质调查报告芒康戈波地区两幅[R]. 1-279.

    ❻谢尧武, 彭兴阶, 西洛朗杰, 包俊跃, 段国玺, 何绍华, 强巴扎西, 沙绍礼, 陈应明, 陈德泉, 彭道平. 2007. 1∶25万区域地质调查报告拉萨市幅、泽当镇幅[R]. 1-315.

    ❼尹光侯, 陈应明, 包俊跃, 侯世云, 吕勇, 段国玺, 张家云, 刘志, 肖玲. 2003. 1∶25万区域地质调查报告林芝县幅[R]. 1-259.

    ❽苏学军, 黄建国, 彭兴阶, 包俊跃, 段国玺, 侯世云, 陈应明, 肖玲, 张家云, 刘志, 杨淑胜, 邓志祥, 张留清. 2004. 1∶25万区域地质调查报告隆子县幅[R]. 1-256.

  • 感谢西藏地勘局曾庆高高级工程师、西洛朗杰高级工程师的悉心指导;感谢自然资源部沉积盆地与油气重点实验室对实验测试的帮助;感谢匿名审稿专家提出的宝贵审改意见。

  • Ai Jiang, Lü Xinbiao, Li Zuowu, Wu Yalun. 2018. A super-large graphite deposit discovered in granite rocks at Huangyangshan, Xinjiang, China[J]. China Geology, 1: 164-166. doi: 10.31035/cg2018016

    CrossRef Google Scholar

    Baiju K R, Satish-Kumar M, Kagi H, Nambiar C G, Ravisankar M. 2005. Mineralogical characterization of graphite deposits from Thodupuzha-Kanjirappally Belt, Madurai granulite block, Southern India[J]. Gondwana Research, 8(2): 223-230. doi: 10.1016/S1342-937X(05)71120-5

    CrossRef Google Scholar

    Bai Jianke, Chen Juanlu, Peng Suxia. 2018. Geochronology and geochemistry of ore-bearing intrusions from Huangyangshan magmatic hydrothermal graphite deposit in Qitai County, Xinjiang[J]. Acta Petrologica Sinica, 34(8): 2327-2340 (in Chinese with English abstract).

    Google Scholar

    Cai Wenchun, Zeng Zhongcheng, Song Shuguang, Li Jingchen, Wu Hao, Chen Yan. 2020. Geological characteristics and genesis of the Xianghe crystalline graphite deposit in Shangnan County of Shaanxi Province[J]. Northwestern Geology, 53(3): 220-232(in Chinese with English abstract).

    Google Scholar

    Chen Yanjing, Liu Congqiang, Chen Huayong, Zhang Zengjie, Li Chao. 2000. Carbon isotope geochemistry of graphite deposits and ore-bearing khondalite series in North China: Implications f or several geoscientific problems[J]. Acta Petrologica Sinica, 16(2): 233-244(in Chinese with English abstract).

    Google Scholar

    Deng Jun, Ge Liangsheng, Yang Liqiang. 2013. Tectonic dynamic system and compound orogeny: Additionally discussing the temporal-spatial evolution of Sanjiang orogeny, Southwest China[J]. Acta Petrologica Sinica, 29(4): 1099-1114(in Chinese with English abstract).

    Google Scholar

    Dun Jun, Zhang Jing, Wang Qinfei. 2018. Research advances of composite metallogenic system and deep driving mechanism in the Tethys, SW China[J]. Acta Petrologica Sinica, 34(5): 1229-1238(in Chinese with English abstract).

    Google Scholar

    Fan Bingliang, Bai Tao, Feng Dexing, Zhang Tingting, Tang Yong, Zhang Liwen, Liang Hongyan. 2018. Zircon U-Pb age and genesis of Niuduo biotite mon-zogranite in east Tibet[J]. Geological Bulletin of China, 37(7): 1226-1235(in Chinese with English abstract).

    Google Scholar

    Guo Na, Chen Jianping, Tang Juxing. 2008. Remote sensing information extraction of mineralizing anomaly in the Dongdashan arean of Eastern Tibet[J]. Geology and Prospecting, 44(4): 69-73(in Chinese with English abstract).

    Google Scholar

    Katz M B. 1987. Graphite deposits of Sri Lanka: A consequence of granulite facies metamorphism[J]. Mineralium Deposita, 22: 18-25. doi: 10.1007/BF00204238

    CrossRef Google Scholar

    Lei Weiyan, Shi Guanghai, Liu Yinxin. 2013. Research progress on trace element characteristics of zircons of different origins[J]. Earth Science Frontiers, 20(4): 273-284(in Chinese with English abstract).

    Google Scholar

    Li Chao, Wang Denghong, Zhao Hong, Pei Haoxiang, Li Xinwein, Zhou Limin, Du Andao, Qu Wenjun. 2015. Minerogenetic regularity of graphite deposits in China[J]. Mineral Deposits, 34(6): 1223-1236(in Chinese with English abstract).

    Google Scholar

    Li Chao, Wang Denghong, Zhou Limin, Zhao Hong, Li Xinwei, Qu Wenjun. 2017. Study on the Re-Os isotope composition of graphite from the Lutang graphite deposit in Hunan Province[J]. Rock and Mineral Analysis, 36(3): 297-304(in Chinese with English abstract).

    Google Scholar

    Li Kaiyue, Chen Yanjing, Yu Zhenbing, Tang Shuhao, Chen Weiyu. 2018. Carbon isotope compositions and geochemical characteristics of the Zhangshe graphite deposit of the Jingshan Group, Jiaobei[J]. Earth Science Frontiers, 25(5): 19-33(in Chinese with English abstract).

    Google Scholar

    Li Siyuan, Sun Li, Meng Fanlei, Zhang Jidan, Li Yunguo. 2016. Resource potential prediction of the Yunshan graphite deposit in Heilongjiang Province[J]. Journal of Geology, 40(2): 288-292(in Chinese with English abstract).

    Google Scholar

    Lin Bin, Chen Yuchuan, Tang Juxing, Wang Qin, Song Yang, Yang Chao, Wang Wenlei, He Wen, Zhang Lejun. 2017b. 40Ar/39Ar and Rb-Sr ages of the Tiegelongnan porphyry Cu-(Au) deposit in the Bangong Co-Nujiang metallogenic belt of Tibet, China: Implication for generation of super-large deposit[J]. Acta Geologica Sinica, 91(2): 602-616. doi: 10.1111/1755-6724.13120

    CrossRef Google Scholar

    Lin Bin, Wang Liqiang, Tang Juxing, Tang Juxing, Song Yang, Zhou Xin, Liu Zhibo, Gao Yiming, Tang Xiao Qiang, Xu Ruige, Chen Zaojun. 2017. Zircon U-Pb geochronology of ore-bearing porphyries in Baomai deposit, Yulong Copper Belt, Tibet[J]. Earth Science, 42(9): 1454-1471(in Chinese with English abstract).

    Google Scholar

    Lin Bin, Wang Liqiang, Tang Juxing, Song Yang, Cao Huawen, Baker M J, Zhang Lejun, Zhou Xin. 2018. Geology, geochronology, geochemical characteristics and origin of Baomai porphyry Cu (Mo) deposit, Yulong Belt, Tibet[J]. Ore Geology Reviews, 92: 186-204. doi: 10.1016/j.oregeorev.2017.10.025

    CrossRef Google Scholar

    Lin Bin, Tang Juxing, Chen Yuchuan Michael Baker, Song Yang, Yang Huanhuan, Wang Qin, He Wen, Liu Zhibo. 2019. Geology and geochronology of Naruo large porphyry-breccia Cu deposit in the Duolong district, Tibet[J]. Gondwana Research, 66: 168-182. doi: 10.1016/j.gr.2018.07.009

    CrossRef Google Scholar

    Lin Bin, Tang Juxing, Chen Yuchuan, Song Yang, Greg Hall, Wang Qin, Yang Chao, Fang Xiang, Duan Jilin, Yang Huanhuan, Liu Zhibo, Wang Yiyun, Feng Jun. 2017a. Geochronology and genesis of the Tiegelongnan porphyry-epithermal Cu(Au) deposit in Tibet: Evidence from U-Pb, Re-Os dating and Hf, S, H-O isotopes[J]. Resource Geology, 67(1): 1-21. doi: 10.1111/rge.12113

    CrossRef Google Scholar

    Liu Jun, zhu Xiangping, Li Wenchang, Wang Baodi, Dong Yu, Yang Fucheng, Yang Houbin, Wu Jianghua. 2019. Molybdenite Re-Os dating of the Larong porphyry W-Mo deposit in eastern Tibet and its geological significance[J]. Acta Geologica Sinica, 93(7): 1708-1719.

    Google Scholar

    Liu Yongsheng, Hu Zaochu, Zong Keqing, Gao Changgui, Gao Shan, Xu Juan, Chen Haihong. 2010. Reappraisement and refinement of zircon U-Pb isotope and trace element analyses by LA-ICP-MS[J]. Chinese Science Bulletin, 55: 1535-1546. doi: 10.1007/s11434-010-3052-4

    CrossRef Google Scholar

    Liu Songbai, Yang Meizhen, Wu Hongen, Zhao Wenping, Zhang Lianlian. 2011. Metallogenic model of graphite deposit from Sujiquan, Eastern Junggaer[J]. Xijiang Geology, 29(2): 178-182.

    Google Scholar

    Lu Yaozu, Shi Guocheng. 2016. Geological characteristics and genersis analysis of graphite deposit in South Mountain of Datonggou region, Qinghai Province[J]. Journal of Qinghai University (Natural Science), 34(2): 53-59(in Chinese with English abstract).

    Google Scholar

    Ludwig K R. 2012. User's manual for isoplot 3.75: A geochronological tool kit for Microsoft Excel: Berkeley, Berkeley Geochronology Center, 1-70.

    Google Scholar

    Ma Xudong, Zhong Yan, Chen Yali, Qu Xiaoming. 2019. The graphite mineralized controlled by the sedimentary process of the Khondalite series, western north China craton[J]. Geotectonica et Metallogenia, 43(6): 1155-1168(in Chinese with English abstract).

    Google Scholar

    Ma Yubo, Xing Shuwen, Xiao Keyan, Yu Cheng, Tang Chen, Ding Jianhua, Zhang Yong, Ma Lukuo. 2016. Geological metallogenic characteristics and mineral resource potential of the Au-Ag-Cu-Mo metallogenic belt in Eastern Jilin-Heilongjiang Provinces[J]. Acta Geologica Sinica, 90(7): 1281-1297(in Chinese with English abstract).

    Google Scholar

    Martín-Méndez, Iván y Boixereu, Ester y Villaseca González, Carlos. 2016. Mineralogical and isotopic characterization of graphite deposits from the Anatectic complex of Toledo, central Spain[J]. Mineralium Deposita, 51 (5): 575-590. doi: 10.1007/s00126-015-0625-9

    CrossRef Google Scholar

    Mo Rujue, Liu Shaobin, Huang Cuirong, Zhang Guangrong, Tan Guanmin, Wang Baoxian, Xiao Xiangzhang. 1989. Geology of China Graphite Deposit[M]. Beijing: China Building Industry Press, 1-290 (in Chinese).

    Google Scholar

    Sun Li, Xu Cuiping, Xiao Keyan, Zhu Yusheng, Yan Lingya. 2018. Geological characteristics, metallogenic regularities and the exploration of graphite deposits in China[J]. China Geology, 3: 425-434.

    Google Scholar

    Tang Juxing, Zhang Li, Li Zhijun, Chen Jianping, Huang Wei, Wang Qian. 2006a. Porphyry copper deposit controlled by structural nose trap: Yulong porphyry copper deposit in eastern Tibet[J]. Mineral Deposits, 25(6): 652-662 (in Chinese with English abstract).

    Google Scholar

    Tang Juxing, Zhong Kanghui, Liu Zhaochang, Li Zhijun, Dong Shuyi, Zhang Li. 2006b. Intracontinent orogen and metallogenesis in Himalayan Epoch: Changdu large composite basin, Eastern Tibet[J]. Acta Geologica Sinica, 80(9): 1364-1376(in Chinese with English abstract).

    Google Scholar

    Tang Juxing. 2019. Mineral resources base investigation and research status of the Tibet Plateau and its adjacent major metallogenic belts[J]. Acta Petrologica Sinica, 35(3): 617-624(in Chinese with English abstract). doi: 10.18654/1000-0569/2019.03.01

    CrossRef Google Scholar

    Xiao Keyan, Sun Li, Li Siyuan, Huang An. 2016. Geological characteristics and mineralization potential of graphite resource in China[J]. Acta Geoscientia Sinica, 37(5): 607-614(in Chinese with English abstract).

    Google Scholar

    Xin Junqiang, Shui Yingdong, Shao Ji, Chen Xuejun, 2017. Geological characteristics and potential analysis of graphite deposits in Xixi Te Guole of Qinghai[J]. Journal of Qinghai University (Natural Science), 35(2): 60-66(in Chinese with English abstract).

    Google Scholar

    Xin Junqiang, Yang Yanjing, Zhao Shenghui, Lei Yanjun, He Huhu. 2015. Geological characteristics and ore genesis of east Hongshui River graphite deposit in Qinghai Province[J]. Journal of Qinghai University(Natural Science), 33(6): 81-84(in Chinese with English abstract).

    Google Scholar

    Xu Xinwen, Duan Jianhua, Lu Yaozu, Bai Qiang, Xu Jiaqiu. 2019. Geological characteristics and availiability evaluation of graphite deposit in Qinghai Province[J]. Metal Mine, (1): 125-140(in Chinese with English abstract).

    Google Scholar

    Yan Lingya, Gao Shuxue, Sun Li, Chen Zhengguo, Jiao Lixiang, Sun Li, Liu Yanfei, Zhou Wen. 2018a. Metallogenic characteristics and metallogenic zoning of graphite deposits in China[J]. Geology in China, 45(3): 421-440 (in Chinese with English abstract).

    Google Scholar

    Yan Lingya, Gao Shuxue, Sun Li, Chen Zhengguo, Jiao Lixiang, Zhou Wen, Liu Yanfei, Sun Jixiu. 2018b. Metallogenic characteristics and metallogenic factors of regional metamorphic graphite deposit in China[J]. China Non-metallic Mining Industry, (3): 21-24, 28(in Chinese with English abstract).

    Google Scholar

    Zhang Guoxin, Hu Aiqin, Zhang Hongbin, Zhang Qianfeng, Shen Youlin. 1996. Carbon isotopic evidence for the origin of the spherical graphite in a granite-hosted granphite deposit, Sujiquan, Xinjiang, China[J]. Geochemica, 25(4): 379-386(in Chinese with English abstract).

    Google Scholar

    Zhang Sujiang, Cui Wei, Zhang Yanwen, Han Jian, Shang Lei. 2018. Summarize on the graphite mineral resources and their distribution at home and abroad[J]. China Mining Magazine, 27(10): 8-14(in Chinese with English abstract).

    Google Scholar

    Zhong Kanghui, Tang Juxing, Liu Zhaochang, Kou Linlin, Dong Shuyi, Li Zhijun, Zhou Huiwen. 2006. Mesozoic-Cenozoic intracontinental rifting of Changdu-Simao tectonic zone in east margin of Qinhai-Tibet, WS China[J]. Acta Geologica Sinica, 80(9): 1295-1311(in Chinese with English abstract).

    Google Scholar

    白建科, 陈隽璐, 彭素霞. 2018. 新疆奇台县黄羊山岩浆热液型石墨矿床含矿岩体年代学与地球化学特征[J]. 岩石学报, 34(8): 2327-2340.

    Google Scholar

    蔡文春, 曾忠诚, 宋曙光, 李景晨, 吴昊, 陈艳. 2020. 陕西商南湘河晶质石墨矿床地质特征与成因探讨[J]. 西北地质, 53(3): 220-232.

    Google Scholar

    陈衍景, 刘丛强, 陈华勇, 张增杰, 李超. 2000. 中国北方石墨矿床及赋矿孔达岩系碳同位素特征及有关问题讨论[J]. 岩石学报, 16(2): 233-244.

    Google Scholar

    邓军, 葛良胜, 杨立强. 2013. 构造动力体制与复合造山作用——兼论三江复合造山带时空演化[J]. 岩石学报, 29(4): 1099-1114.

    Google Scholar

    邓军, 张静, 王庆飞. 2018. 中国西南特提斯典型复合成矿系统及其深部驱动机制研究进展[J]. 岩石学报, 34(5): 1229-1238.

    Google Scholar

    樊炳良, 白涛, 冯德新, 张婷婷, 汤勇, 张力文, 梁宏岩. 2018. 藏东纽多黑云母二长花岗岩锆石U-Pb年龄及成因[J]. 地质通报, 37(7): 1226-1235.

    Google Scholar

    郭娜, 陈建平, 唐菊兴. 2008. 藏东东达山地区遥感找矿地质异常提取方法研究[J]. 地质与勘探, 44(4): 69-73.

    Google Scholar

    雷玮琰, 施光海, 刘迎新. 2013. 不同成因锆石的微量元素特征研究进展[J]. 地学前缘, 20(4): 273-284.

    Google Scholar

    李超, 王登红, 赵鸿, 裴浩翔, 李欣尉, 周利敏, 杜安道, 屈文俊. 2015. 中国石墨矿床成矿规律概要[J]. 矿床地质, 34(6): 1223-1236.

    Google Scholar

    李超, 王登红, 周利敏, 赵鸿, 李欣尉, 屈文俊. 2017. 湖南鲁塘石墨矿Re-Os同位素研究[J]. 岩矿测试, 36(3): 297-304.

    Google Scholar

    李凯月, 陈衍景, 佘振兵, 汤好书, 陈威宇. 2018. 胶北荆山群张舍石墨矿碳同位素特征及其地质意义[J]. 地学前缘, 25(5): 19-33.

    Google Scholar

    李思远, 孙莉, 孟凡磊, 张寄丹, 李云国. 2016. 黑龙江云山石墨矿床资源潜力预测[J]. 地质学刊, 40(2): 288-292. doi: 10.3969/j.issn.1674-3636.2016.02.288

    CrossRef Google Scholar

    林彬, 王立强, 唐菊兴, 宋扬, 周新, 刘治博, 高一鸣, 唐晓倩, 徐瑞阁, 陈早军. 2017. 西藏玉龙铜矿带包买矿床含矿斑岩锆石U-Pb年代学[J]. 地球科学, 42(9): 1454-1471.

    Google Scholar

    刘松柏, 杨梅珍, 吴洪恩, 赵文平, 张练练. 2011. 新疆苏吉泉球状石墨矿床成矿模式[J]. 新疆地质, 29(2): 178-182. doi: 10.3969/j.issn.1000-8845.2011.02.012

    CrossRef Google Scholar

    刘俊, 祝向平, 李文昌, 王保弟, 董宇, 杨富成, 杨后斌, 吴江华. 2019. 藏东拉荣斑岩钨钼矿床辉钼矿Re-Os定年及地质意义[J]. 地质学报, 93(7): 1708-1719. doi: 10.3969/j.issn.0001-5717.2019.07.011

    CrossRef Google Scholar

    路耀祖, 石国成. 2016. 青海大通沟南山石墨矿床地质特征及其成因分析[J]. 青海大学学报(自然科学版) 34, (2): 53-59.

    Google Scholar

    马旭东, 钟焱, 陈雅丽, 曲晓明. 2019. 华北克拉通孔兹岩带内孔兹岩系沉积过程对石墨矿床成矿的控制[J]. 大地构造与成矿学, 43(6): 1155-1168.

    Google Scholar

    . 马玉波, 邢树文, 肖克炎, 于城, 唐臣, 丁建华, 张勇, 马路阔. 2016. 吉黑东部Au-Ag-Cu-Mo-石墨成矿带主要地质成矿特征及潜力分析[J]. 地质学报, 90(7): 1281-1297. doi: 10.3969/j.issn.0001-5717.2016.07.003

    CrossRef Google Scholar

    莫如爵, 刘绍斌, 黄翠蓉, 张光荣, 谭冠民, 王宝娴, 肖祥章. 1989. 中国石墨矿床地质[M]. 北京: 中国建筑工业出版社, 1-290.

    Google Scholar

    唐菊兴, 张丽, 李志军, 陈建平, 黄卫, 王乾. 2006a. 西藏玉龙铜矿床——鼻状构造圈闭控制的特大型矿床[J]. 矿床地质, 25(6): 652-662.

    Google Scholar

    唐菊兴, 钟康惠, 刘肇昌, 李志军, 董树义, 张丽. 2006b. 藏东缘昌都大型复合盆地喜马拉雅期陆内造山与成矿作用[J]. 地质学报, 80(9): 1364-1376.

    Google Scholar

    唐菊兴. 2019. 青藏高原及邻区重要成矿带矿产资源基地调查与研究进展[J]. 岩石学报, 35(3): 617-624.

    Google Scholar

    肖克炎, 孙莉, 李思远, 黄安. 2016. 我国石墨矿产地质特征及资源潜力分析[J]. 地球学报, 37(5): 607-614.

    Google Scholar

    辛军强, 水应东, 邵继, 陈学俊. 2017. 青海细细特郭勒地区石墨矿床地质特征及潜力分析[J]. 青海大学学报, 35(2): 60-66.

    Google Scholar

    辛军强, 杨延景, 赵生辉, 雷延军, 何虎虎. 2015. 青海洪水河东地区石墨矿床地质特征及成因探讨[J]. 青海大学学报(自然科学版) 33(6): 81-84.

    Google Scholar

    徐新文, 段建华, 路耀祖, 白强, 徐加球. 2019. 青海省石墨矿地质特征及可利用性评价[J]. 金属矿山, (1): 125-140.

    Google Scholar

    颜玲亚, 高树学, 陈正国, 焦丽香, 孙莉, 刘艳飞, 周雯. 2018a. 中国石墨矿成矿特征及成矿区带划分[J]. 中国地质, 45(3): 421-440.

    Google Scholar

    颜玲亚, 高树学, 孙莉, 陈正国, 焦丽香, 周雯, 刘艳飞, 孙即秀. 2018b. 我国区域变质型石墨矿成矿特征及成矿要素[J]. 中国非金属矿工业导刊, (3): 21-24, 28.

    Google Scholar

    张国新, 胡霭琴, 张鸿斌, 张前锋, 申佑林. 1996. 新疆苏吉泉石墨矿床成因的碳同位素证据[J]. 地球化学, 25(4): 379-386. doi: 10.3321/j.issn:0379-1726.1996.04.010

    CrossRef Google Scholar

    张苏江, 崔立伟, 张彦文, 韩健, 尚磊. 2018. 国内外石墨矿产资源及其分布概述[J]. 中国矿业, 27(10): 8-14.

    Google Scholar

    钟康惠, 唐菊兴, 刘肇昌, 寇林林, 董树义, 李志军, 周慧文. 2006. 青藏东缘昌都-思茅构造带中新生代陆内裂谷作用[J]. 地质学报, 80(9): 1295-1311. doi: 10.3321/j.issn:0001-5717.2006.09.007

    CrossRef Google Scholar

  • Related articles

    [1] ZUO Li-yan1,2, HOU Zeng-qian3, MENG Xiang-jin2, YANG Zhi-ming2, SONG Yu-cai3, LI Zheng4. SHRIMP U-Pb zircon geochronology of the ore-bearing rock in the Lengshuikeng porphyry type Ag-Pb-Zn deposit. Geology in China, 2010, 37(5): 1450-1450.
    [2] Shao Jianbo, Li Jingguang,Wang Hongtao, Chen Dianyi, Ren Qiang. Geological characteristics and zircon U-Pb age of the Wudaoyangcha Neoarchaean vanadic titanomagnetite deposit in Baishan, Jilin Province. Geology in China, 2014, 41(2): 463-463.
    [3] ZHAO Jichang, LIU Yonggang, FAN Xinxiang, HU Xiaochun, FU Quan, FANG Shaozhong, YANG Zhenxi. Discovery of large-sized crystalline graphite deposit in the Aobaoshan area of Dunhuang block, Gansu Province. Geology in China, 2021, 48(3): 972-972. doi: 10.12029/gc20210328
    [4] QIN Ke-zhang1, LI Guang-ming1, ZHAO Jun-xing1, LI Jin-xiang1, XUE Guo-qiang1, YAN Gang2, SU Deng-kui2, XIAO Bo1, CHEN Lei1, FAN Xin1. Discovery of sharang large-scale porphyry molybdenum deposit, the first Single Mo deposit in Tibet and its significance. Geology in China, 2008, 35(6): 1101-1101.
    [5] AI Jiang, LÜ Xinbiao, LI Zuowu, WU Yalun. Geological characteristics and diagenetic geochronology of the Huangyangshan graphite deposit, Xinjiang. Geology in China, 2020, 47(2): 334-334. doi: 10.12029/gc20200205
    [6] LI Fen-qi1, GAO Ming2, TANG Wen-qing1, LIANG Ting3. U-Pb zircon LA-ICP-MS age of the Yaguila molybdenum-bearing intrusion in Tibet and its geological significance. Geology in China, 2010, 37(6): 1566-1566.
    [7] YANG Peiqi, LIU Jingdang, ZHANG Yanfei, LIANG Shuai, ZHAO Yue, LIU Shumei. Ore geochemical characteristics and metallogenic epoch of typical graphite deposits in Jiamusi Massif, Heilongjiang Province. Geology in China, 2017, 44(2): 301-301. doi: 10.12029/gc20170207
    [8] CAO Qiang1,2, LIU Jia-jun1, LI Long-yin2, SUN Yi-wei1, YANG Ming-yin2, LI Shu-tao2, YANG Shang-song1. Zircon U-Pb age of ore-bearing rock in the Qiaomaichong gold deposits on the southern margin of the Qinling orogenic belt and its geological significance. Geology in China, 2015, 42(5): 1303-1303.
  • 1.  赵吉昌,汤庆艳,柳永刚,苏天宝,王振,胡小春,杨镇熙,宋宏,张家和. 敦煌地块敖包山晶质石墨矿集区矿床地质特征、变质岩原岩恢复及形成环境. 中国地质. 2023(02): 557-572 .
    2.  刘俊,李文昌,周清,王保弟,巴桑多吉,杨富成,杨后斌. 藏东类乌齐-左贡成矿带构造演化与成矿作用. 沉积与特提斯地质. 2022(01): 88-104 .
    3.  周新,樊炳良,余佳树,易金龙,冯德新. 藏东纽多石墨矿床含矿花岗岩锆石U-Pb年龄及岩石地球化学特征. 地质通报. 2020(10): 1518-1526 .

    Other cited types(1)

  • Created with Highcharts 5.0.7Amount of accessChart context menuAbstract Views, PDF Downloads StatisticsAbstract ViewsPDF Downloads2024-052024-062024-072024-082024-092024-102024-112024-122025-012025-022025-032025-0400.250.50.7511.25Highcharts.com
    Created with Highcharts 5.0.7Chart context menuAccess Class DistributionDOWNLOAD: 2.0 %DOWNLOAD: 2.0 %META: 98.0 %META: 98.0 %DOWNLOADMETAHighcharts.com
    Created with Highcharts 5.0.7Chart context menuAccess Area Distribution其他: 12.5 %其他: 12.5 %其他: 0.3 %其他: 0.3 %Aurora: 2.4 %Aurora: 2.4 %Bandar Seri Begawan: 0.3 %Bandar Seri Begawan: 0.3 %Beijing: 0.6 %Beijing: 0.6 %Carouge: 0.3 %Carouge: 0.3 %Chengbei: 0.1 %Chengbei: 0.1 %Chengdu: 0.3 %Chengdu: 0.3 %Dar es Salaam: 0.3 %Dar es Salaam: 0.3 %Ghaziabad: 0.1 %Ghaziabad: 0.1 %Guangzhou: 0.4 %Guangzhou: 0.4 %Haidian: 8.7 %Haidian: 8.7 %Hyderabad: 0.3 %Hyderabad: 0.3 %Jianshui: 0.1 %Jianshui: 0.1 %Jinan: 0.3 %Jinan: 0.3 %Jinrongjie: 0.8 %Jinrongjie: 0.8 %Medford: 0.3 %Medford: 0.3 %Mountain View: 13.2 %Mountain View: 13.2 %Nanchang: 0.1 %Nanchang: 0.1 %Phoenix: 1.2 %Phoenix: 1.2 %San Jose: 0.1 %San Jose: 0.1 %Sanaa: 0.6 %Sanaa: 0.6 %Shanghai: 0.1 %Shanghai: 0.1 %Shijiazhuang: 0.3 %Shijiazhuang: 0.3 %Sunshine West: 0.5 %Sunshine West: 0.5 %Thimphu: 0.3 %Thimphu: 0.3 %Wuzhu: 0.2 %Wuzhu: 0.2 %Xicheng District: 0.6 %Xicheng District: 0.6 %XX: 0.2 %XX: 0.2 %Zhongba: 0.6 %Zhongba: 0.6 %[]: 0.8 %[]: 0.8 %上海: 0.3 %上海: 0.3 %北京: 0.7 %北京: 0.7 %南京: 0.3 %南京: 0.3 %印多尔: 0.1 %印多尔: 0.1 %哥伦布: 0.1 %哥伦布: 0.1 %大庆: 0.2 %大庆: 0.2 %孟买: 0.1 %孟买: 0.1 %惠州: 0.1 %惠州: 0.1 %慕尼黑: 0.2 %慕尼黑: 0.2 %成都: 0.2 %成都: 0.2 %昆明: 0.3 %昆明: 0.3 %济宁: 0.3 %济宁: 0.3 %湖州: 0.2 %湖州: 0.2 %牡丹江: 0.1 %牡丹江: 0.1 %芒廷维尤: 41.1 %芒廷维尤: 41.1 %芝加哥: 0.6 %芝加哥: 0.6 %莫斯科: 3.1 %莫斯科: 3.1 %衢州: 0.1 %衢州: 0.1 %西宁: 5.2 %西宁: 5.2 %其他其他AuroraBandar Seri BegawanBeijingCarougeChengbeiChengduDar es SalaamGhaziabadGuangzhouHaidianHyderabadJianshuiJinanJinrongjieMedfordMountain ViewNanchangPhoenixSan JoseSanaaShanghaiShijiazhuangSunshine WestThimphuWuzhuXicheng DistrictXXZhongba[]上海北京南京印多尔哥伦布大庆孟买惠州慕尼黑成都昆明济宁湖州牡丹江芒廷维尤芝加哥莫斯科衢州西宁Highcharts.com
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(9)

Tables(2)

Article Metrics

Article views(2828) PDF downloads(82) Cited by(4)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    • 表 1.  西藏青果石墨矿床花岗闪长岩、二长花岗岩锆石测年结果
      Table 1.  U-Pb dating data of granodiorite and monzogranite in the Qingguo graphite deposit, Tibet
       | Show Table
      DownLoad: CSV
    • 表 2.  西藏石墨矿床地质信息一览
      Table 2.  Geological information of these graphite deposits in Tibet
       | Show Table
      DownLoad: CSV