2024 Vol. 51, No. 5
Article Contents

WU Zijie, ZHANG Guoren, QIU Longwei, WANG Haipeng, ZHONG Mishan, GAO Fuliang, PAN Yuqi, LUO Niangang. 2024. Geochemical characteristics of sandstone and sedimentary background of Neoproterozoic Qiaotou Formation in Liaoning[J]. Geology in China, 51(5): 1714-1726. doi: 10.12029/gc20200919002
Citation: WU Zijie, ZHANG Guoren, QIU Longwei, WANG Haipeng, ZHONG Mishan, GAO Fuliang, PAN Yuqi, LUO Niangang. 2024. Geochemical characteristics of sandstone and sedimentary background of Neoproterozoic Qiaotou Formation in Liaoning[J]. Geology in China, 51(5): 1714-1726. doi: 10.12029/gc20200919002

Geochemical characteristics of sandstone and sedimentary background of Neoproterozoic Qiaotou Formation in Liaoning

    Fund Project: Supported by the projects of Liaoning Provincial Geological Exploration and Mining Group (No.2017−03, No.2016−01),China Geological Survey (No.1212011120734) and Liaoning Bureau of Geology and Mineral Resources (No.1994−15).
More Information
  • Author Bio: WU Zijie, male, born in 1987, professor level senior engineer, mainly engaged in sedimentology and petrology; E-mail: midnight29@163.com
  • Corresponding authors: QIU Longwei, male, born in 1967, professor, mainly engaged in sedimentology and reservoir geology; E-mail: qiulwsd@163.com;  GAO Fuliang, male, born in 1987, senior engineer, mainly engaged in petrology; E-mail: kevinangus@sina.com
  • This paper is the result of geological survey engineering.

    Objective

    The sedimentary period of the Qiaotou Formation in Liaoning is still not accurately determined, which leads to controversial discussions about its depositional background, especially the palaeoclimate. It is of great significance to discuss its depositional background by using petrogeochemical characteristics and other methods.

    Methods

    We reconstructed the palaeo−weathering climate conditions, palaeo−salinity and palaeo−oxidation−reduction conditions by analysing the elemental ratios of CaO/(CaO+Fe), Sr/Ba, and V/(Ni+V), as well as the parameters of CIA, ICV, and Ceanom from the petrogeochemical data of the sandstones of the Qiaotou Formation.

    Results

    Most of the CIA values of the sandstone samples from the Qiaotou Formation are located in the warm and humid region, while most of the ICV values are located in the cold and dry region. Most of the CaO/(CaO+Fe) and Sr/Ba values of the samples fall into the medium saline region, and a small amount is in the slightly saline region. V/(Ni+V) and Ceanom values of sandstone samples are in the reduced region, and a small amount is in the oxidised region.

    Conclusions

    The Qiaotou Formation was not deposited in the Nanhua Period, and its depositional period was generally in an anoxic reducing environment with medium saline water and a warm and humid climate.

  • 加载中
  • [1] Ao Guang, Liu Jie, Chen Cong, Zhong Mishan, Chen Shuliang. 2016. The Qiaotou Formation splitting and its significance in southern Liaoning Province[J]. Jilin Geology, 35(3): 27−30 (in Chinese with English abstract).

    Google Scholar

    [2] Chen Lirong. 1994. Evolution history of authigenic sea greenstone in the early diagenesis process[J]. Chinese Science Bulletin, 39(9): 829−831 (in Chinese). doi: 10.1360/csb1994-39-9-829

    CrossRef Google Scholar

    [3] Chen Shuhui, Li Yun, Hu Zuowei, Li Xiaoping, Ma Yongkun, Zhu Ping, Chen Anqing. 2014. Genesis, diagnostic role and age significance of glauconites[J]. Acta Petrologica et Mineralogica, 33(5): 971−979 (in Chinese with English abstract).

    Google Scholar

    [4] Cheng Cheng, Li Shuangying, Wang Song, Peng Liang, Lu Yanlin, Huang Jialong. 2014. Geochemical characteristics and its geological significance of fine–grained clastic sedimentary rocks in the middle member of Yangzhanling Formation of Nanhua System in south Anhui[J]. Chinese Journal of Geology, 49(2): 651−667 (in Chinese with English abstract).

    Google Scholar

    [5] Condie K C. 1991. Another look at rare earth elements in shales[J]. Geochimica et Cosmochimica Acta, 55(9): 2527−2531. doi: 10.1016/0016-7037(91)90370-K

    CrossRef Google Scholar

    [6] Cox R, Lowe D R. Cullers R L. 1995. The influence of sediment recycling and basement composition on evolution of mudrock chemistry in the southwestern united states[J]. Geochim. Cosmochim. Acta, 59(14): 2919−2940. doi: 10.1016/0016-7037(95)00185-9

    CrossRef Google Scholar

    [7] Cullers R L. 2000. The geochemistry of shales, siltstones and sandstones of Pennsylvanian–Permian age, Colorado, USA: Implications for provenance and metamorphic studies[J]. Lithos, 51(3): 181−203. doi: 10.1016/S0024-4937(99)00063-8

    CrossRef Google Scholar

    [8] Du Xiaodong, Zou Heping Su Zhangxin, Lao Miaoji, Chen Shiai, Ding Ruxing. 2013. Geochemical characteristics and sedimentary–tectonic setting of the Cambrian sandstones and mudstones in Dayaoshan–Damingshan area, Guangxi[J]. Geology in China, 40(4): 1112−1128 (in Chinese with English abstract).

    Google Scholar

    [9] Duan Ming, Zhang Bo, Tang Chao, Xie Yu, Teng Xueming, Zhang Qi, Xu Zenglian, Wei Anjun, Jiang Zhiquan. 2024. Geochemical characteristics of sand (mud) rocks of Saihan Formation in Erennur sag and their constraints on uranium mineralization[J]. Geology in China, 51(3): 932–950 (in Chinese with English abstract).

    Google Scholar

    [10] Feng Lianjun, Chu Xuelei, Zhang Qirui, Zhang Tongganget. 2003. CIA (Chemical Index of Alteration) and its applications in the Neo–proterozoic clastic rocks[J]. Earth Science Frontiers, 10(4): 539−544 (in Chinese With English Abstract).

    Google Scholar

    [11] Gao Zhenjia, Chen Keqiang. 2003. The Nanhua System of Xingjiang and some geologial issues of Nanhua System in China[J]. Geologial Survey and Researh, 26(1): 8−14 (in Chinese with English abstract).

    Google Scholar

    [12] Gromet L P, Haskin L A, Korotev R L, Dymek R F. 1984. The "North American shale composite": Its compilation, major and trace element characteristics[J]. Geochimica et Cosmochimica Acta, 48(12): 2469−2482. doi: 10.1016/0016-7037(84)90298-9

    CrossRef Google Scholar

    [13] Hatch J R, Leventhal J S, Meyers P A, Pratt L M, Nagy B. 1992. Relationship between inferred redox potential of the depositional environment and geochemistry of the Upper Pennsylvanian (missourian) stark shale member of the dennis limestone, Wabaunsee county, Kansas, U. S. A[J]. Chemical Geology, 99(1/3): 65−82.

    Google Scholar

    [14] He Zhongbo, Hu Baoqun, Ji Huali, He Feng, Geng Yingying, Huang Shaohua, Zhu Manhuai. 2024. Geochemical characteristics of Lower Cretaceous in Zhenyuan area of Ordos Basin and its indication to provenance and tectonic setting[J]. Geological Review, 70(4): 1291−1313 (in Chinese with English abstract).

    Google Scholar

    [15] Hu Junjie, Ma Yinsheng, Wu Yi, Li Zongxing, Peng Bo, Wei Xiaojie, Liu Dapeng. 2019. Jurassic palaeoclimate evolution of the Qaidam Basin: Evidence from chemical weathering analyses[J]. Acta Metallurgica Sinica, 25(4): 548−557 (in Chinese with English abstract).

    Google Scholar

    [16] Lei Bianjun, Que Hongpei, Hu Yu, Niu Zhijun, Wanghua. 2002. Geochemistry and sedimentary environments of the Palaeozoic siliceous rocks in Western Hubei[J]. Sedimentary Geology and Tethyan Geology, 22(2): 70−79 (in Chinese with English abstract).

    Google Scholar

    [17] Li Dongming, Sun Zhengcheng, Peng Licai, Wang Min, Wang Ailei. 1996. Reconsideration for “Facies Mineral” glauconite[J]. Acta Petrologica et Mineralogica, 15(4): 379−384 (in Chinese with English abstract).

    Google Scholar

    [18] Li Minglong, Chen Lin, Tian Jingchun, Zheng Deshu, Xu Keyuan, Fang Xilin, Cao Wensheng, Zhao Jun, Ran Zhongxi. 2019. Paleoclimate and paleo–oxygen evolution during the Gucheng Period–Early Nantuo Period of Nanhua System in the Zouma area, West Hubei: Evidence from elemental geochemistry of fine clastic rocks[J]. Acta Geologica Sinica, 93(9): 2158−2170 (in Chinese with English abstract).

    Google Scholar

    [19] Li Tao. 2011. Microbially Induced Sedimentary Structures (MISS) and Their Paleoenvironmental Significance: An Example from the Meso− and Neoproterozoic of Sowthern North Vhina Platform[D]. Beijing: China University of Geosciences (Beijing), 1−69 (in Chinese with English abstract).

    Google Scholar

    [20] Li Yuejie. 2019. Microbially– Induced Sedimentary Structures and Taphonomy of Ediacaran Fossils in Zigui, West Hubei Province[D]. Wuhan: China University of Geosciences, 1−86 (in Chinese with English abstract).

    Google Scholar

    [21] Liaoning Provincial Geological Survey Institute. 2017. Regional Geology of China Liaoning Chronicles[M]. Beijing: Geological Publishing House (in Chinese with English abstract).

    Google Scholar

    [22] Lu Chonghai, Tian Dexin, Cao Yuhao. 2019. Nanhua System of Neoproterozoic in Liaoning[M]. Wuhan: China University of Geosciences Press (in Chinese).

    Google Scholar

    [23] McLennan S M, Hemming S R, Mcdaniel D K, Hanson G N. 1993. Geochemical approaches to sedimentation, provenance, and tectonics[J]. Geological Society of America Special Papers, 284: 21−40.

    Google Scholar

    [24] McLennan S M. 1989. Rare earth elements in sedimentary rocks: Influence of provenance and sedimentary process[J]. Review of Mineralogy, 21: 169−200.

    Google Scholar

    [25] McLennan S M, Hemming S R, Taylor S R, Eriksson K A. 1995. Early Proterozoic crustal evolution: Geochemical and Nd–Pb isotopic evidence from metasedimentary rocks, southwestern North America[J]. Geochimica et Cosmochimica Acta, 59(6): 1153−1177. doi: 10.1016/0016-7037(95)00032-U

    CrossRef Google Scholar

    [26] Mei Mingxiang, Gao Jinhan, Meng Qingfen. 2009. MISS in Mesoproterozoic non–stromatolitic limestones: A case study from the third member of Gaoyuzhuang Formation at Qiangou section in Beijing[J]. Earth Science Frontiers, 16(5): 207−218 (in Chinese with English abstract). doi: 10.1016/S1872-5791(08)60108-6

    CrossRef Google Scholar

    [27] Mo Yaozhi. 1984. The formation mode of different chemical types of glaucoma[J]. Northwestern Geology, (4): 64−65 (in Chinese).

    Google Scholar

    [28] Naqvi S M, Sawkar R H, Subba R D V, Govil P K, Gnaneswar R T. 1988. Geology, geochemistry and tectonic setting of archaean greywackes from karnataka nucleus, India[J]. Precambrian Research, 39(3): 193−216. doi: 10.1016/0301-9268(88)90042-3

    CrossRef Google Scholar

    [29] National Stratigraphic Commission. 2017. China Stratigraphic Table (2014) Manual[M]. 2014. Beijing: Geological Publishing House (in Chinese with English abstract).

    Google Scholar

    [30] Nesbitt H W, Young G M. 1982. Early Proterozoic climates and plate motions inferred from major element chemistry of lutites[J]. Nature, 299(5885): 715−717. doi: 10.1038/299715a0

    CrossRef Google Scholar

    [31] Pan Guitang, Xiao Qinghui, Lu Songnian, Deng Jinfu, Feng Yimin, Zhang Kexin, Zhang Zhiyong, Wang Fangguo, Xing Guangfu, Hao GuoJie, Feng Yanfang. 2009. Subdivision of tectonic units in China[J]. Geology in China, 36(1): 1−28 (in Chinese with English abstract).

    Google Scholar

    [32] Pearce J A, Harris N B W, Tindle A G. 1984. Trace element discrimination diagrams for the tectonic interpretation of granitic rocks[J]. Journal of Petrology, 25: 956−983. doi: 10.1093/petrology/25.4.956

    CrossRef Google Scholar

    [33] Qu Hongxiang, Bao Qingzhong, Dong Wande, Li Yan, Qu Ruoda, Hao Ming. 2011. Characteristics and division of the Nanhua System in Liaoning, China[J]. Geology and Resources, 20(6): 430−433 (in Chinese with English abstract).

    Google Scholar

    [34] Shen Hongjuan, Gu Shangyi, Zhao Sifan, Wu Zhongyin, Feng Yong. 2020. The sedimentary geochemical records of ocean environment during the Nantuo (Marinoan) glaciation in South China —Carbon and oxygen isotopes and trace element compositions of dolostone in Nantuo Formation, Nanhuan System, in eastern Guizhou[J]. Geological Review, 66(1): 214−228 (in Chinese with English abstract).

    Google Scholar

    [35] Tang Dongjie, Shi Xiaoying, Li Tao, Zhao Guisheng. 2011. Morphologic association of microbially induced sedimentary structures as paleoenvironment indicator: An example from Meso–to Neo–Proterozoic silici clastics of southern North China Platform[J]. Earth Science—Journal of China University of Geosciences, 20(6): 1033−1043 (in Chinese with English abstract).

    Google Scholar

    [36] Tian Dexin, Lu Chonghai, Cai Xinming, Wang Binna, Xu Song, Wang Qiang, Lu Siqiao. 2018. Sedimentary event of marine moraine of Neoproterozoic Qiaotou Formation in sourthern Liaoning[J]. Global Geology, 37(4): 104−112 (in Chinese with English abstract).

    Google Scholar

    [37] Wang Aihua. 1996. Discriminant effect of sedimentary environment by the Sr/Ba ratio of different exising forms[J]. Acta Sedimentologica Sinica, 14(4): 168−173 (in Chinese with English abstract).

    Google Scholar

    [38] Wang Dongfang, Lin Weixing. 1984. A discussion of Rb–Sr isotopic isochron age of grauconite of Qiaotou Formation and shale of Dalinzi Formation of Sinian Liaonan Group in eastern Liaoning Province[J]. Bull. Shenyang Inst. Geol. Min. Res. Chinese Acad. Geol. Sci., (9): 121−130 (in Chinese with English abstract).

    Google Scholar

    [39] Wang Yunfei. 1983. Preliminary study on the discovery and origin of glaucoma in modern lake sediments of Fuxian Lake[J]. Chinese Science Bulletin, 28(22): 1388−1392 (in Chinese). doi: 10.1360/csb1983-28-22-1388

    CrossRef Google Scholar

    [40] Wang Ziqiang, Yin Congyuu, Gao Linzhi, Tang Feng, Liu Yongqing, Liu Pengju. 2006. The character of the chemical index of alteration and discussion of subdivision and correlation of the Nanhua System in Yichang area[J]. Geological Review, 52(5): 577−585 (in Chinese With English Abstract).

    Google Scholar

    [41] Wright J, Schrader H, Holser W T. 1987. Paleoredox variations in ancient oceans recorded by rare earth elements in fossil apatite[J]. Geochimica et Cosmochimica Acta, 51(3): 631−644. doi: 10.1016/0016-7037(87)90075-5

    CrossRef Google Scholar

    [42] Wronkiewicz D J, Condie K C. 1990. Geochemistry and mineralogy of sediments from the ventersdorp and Transvaal Supergroups, South Africa: Cratonic evolution during the Early Proterozoic[J]. Geochimica et Cosmochimica Acta, 54(2): 343−354. doi: 10.1016/0016-7037(90)90323-D

    CrossRef Google Scholar

    [43] Wu Hao. 2018. The Sedimentary Characteristic and Tectonic Property of Upper Neoproterozoic at Benxi, Liaoning[D]. Beijing: Chinese Academy of Geological Sciences, 1−120 (in Chinese with English abstract).

    Google Scholar

    [44] Wu Lijun, Li Minglong, Chen Lin, Zhang Biyun, Cao Wensheng, Zhao Jun. 2019. Geochemistry characteristics of major elements and their indication to paleoclimate in the Datangpo Formation of Nanhua System of ZK701 drillcore in Zouma Area of Western Hubei Province[J]. Journal of Henan Polytechnic University (Natural Science), 38(6): 47−54 (in Chinese with English abstract).

    Google Scholar

    [45] Wu Z J, Lu C H, Qiu L W, Zhao H Q, Wang H P, Tan W G, Zhong M S. 2022. New detrital zircon geochronological results from the Meso–Neoproterozoic sandstones in the southern–eastern Liaoning region, North China craton, and their paleogeographic implications[J]. Precambrian Research, 381: 106847. doi: 10.1016/j.precamres.2022.106847

    CrossRef Google Scholar

    [46] Wu Zijie. 2023. Stratigraphic Framework and Sedimentary Filling of the Meso–Neoproterozoic Qiaotou Formation in Liaodong[D]. Qingdao: China University of Petroleum (East China), 1−211 (in Chinese with English abstract).

    Google Scholar

    [47] Wu Zijie, Zhang Deming, Fan Haibin, Zhang Guoren, Qiu Longwei, Wang Haipeng, Zhong Mishan, Geng Shufeng, Zheng Wei, Gao Fuliang, Zhao Hanqing. 2022. Discovery and significance of microbial induced sedimentary structure (MISS) from the Qiaotou Formation in eastern Liaoning[J]. Geological Review, 68(6): 2405−2408 (in Chinese with English abstract).

    Google Scholar

    [48] Xie Guangcheng, Shen Peizai. 1991. A discovery and primary study of glauconite in the Upper Triassic Yanchang oil–bearing sand stone in northern Shaanxi[J]. Scientia Geology Sinica, (2): 129−136, 204 (in Chinese with English abstract).

    Google Scholar

    [49] Yue Yong, Jiang Shu, Tian Jingchun, Lin Xin. 2024. Late Cretaceous to Early Paleocene sedimentary environment evolution: Geochemical evidences of Well PBX1 in the southwestern Tarim Basin[J]. Geology in China, 51(2): 592−605 (in Chinese with English abstract).

    Google Scholar

    [50] Zhang W, Liu F L, Liu C H. 2021. Detrital zircon U–Pb ages of the Late Mesoproterozoic–Neoproterozoic Qiaotou Formation in the Liao–Ji area of the North China Craton: Implications for Rodinia reconstruction[J]. International Geology Review, 623(11): 1311−1330.

    Google Scholar

    [51] Zhao H Q, Zhang S H, Ding J K, Chang L X, Ren Q, Li H Y, Yang T S, Wu H C. 2020. New geochronologic and paleomagnetic results from early Neoproterozoic mafic sills and Late Mesoproterozoic to Early Neoproterozoic successions in the eastern North China Craton, and implications for the reconstruction of Rodinia[J]. Geological Society of America Bulletin. 132: 739–766.

    Google Scholar

    [52] Zhao Xiaoming. 2011. The geochemical characters implication for climate and correlation of Nanhua System in Changyang, Western Hubei Province[J]. Acta Geologica Sinica, 85(4): 576−585 (in Chinese with English abstract).

    Google Scholar

    [53] Zheng Wei, Xing Zhifeng. 2015. Characteristics and geological significance of Microbially induced sedimentary structures (Miss) in Changzhougou Formation of Mesoproterozoic in Licheng County, Shanxi Province[J]. Geoscience, 29(4): 825−832 (in Chinese with English abstract).

    Google Scholar

    [54] Zheng Wei, Yuan Yuyang, Xing Zhifeng, Qi Yongan. 2016. Microbial mats and mineral microstructure features of Meso–Neoproterozoic Ruyang and Luoyu Group in Lushan Area[J]. Geological Journal of China Universities, 22(2): 385−394 (in Chinese with English abstract).

    Google Scholar

    [55] 敖光, 刘杰, 陈聪, 仲米山, 陈树良. 2016. 辽南桥头组拆分及其意义[J]. 吉林地质, 35(3): 27−30. doi: 10.3969/j.issn.1001-2427.2016.03.006

    CrossRef Google Scholar

    [56] 陈丽蓉. 1994. 早期成岩过程中自生海绿石的演变史[J]. 科学通报, 39(9): 829−831.

    Google Scholar

    [57] 陈淑慧, 李云, 胡作维, 李小平, 马永坤, 朱平, 陈安清. 2014. 海绿石的成因、指相作用及其年龄意义[J]. 岩石矿物学杂志, 33(5): 971−979.

    Google Scholar

    [58] 程成, 李双应, 王松, 彭亮, 芦艳琳, 黄家龙. 2014. 皖南南华系上溪群羊栈岭组中段细碎屑岩的地球化学特征及其地质意义[J]. 地质科学, 49(2): 651−667.

    Google Scholar

    [59] 杜晓东, 邹和平, 苏章歆, 劳妙姬, 陈诗艾, 丁汝鑫. 2013. 广西大瑶山—大明山地区寒武纪砂岩–泥岩的地球化学特征及沉积–构造环境分析[J]. 中国地质, 40(4): 1112−1128.

    Google Scholar

    [60] 段明, 张博, 汤超, 谢瑜, 滕雪明, 张祺, 徐增连, 魏安军, 蒋职权. 2024. 内蒙古额仁淖尔凹陷赛汉组砂(泥)岩地球化学特征及其对铀成矿作用的制约[J]. 中国地质. 51(3): 932–950.

    Google Scholar

    [61] 冯连君, 储雪蕾, 张启锐, 张同钢. 2003. 化学蚀变指数(CIA)及其在新元古代碎屑岩中的应用[J]. 地学前缘, 10(4): 539−544.

    Google Scholar

    [62] 高振家, 陈克强. 2003. 新疆的南华系及我国南华系的几个地质问题—纪念恩师王曰伦先生诞辰一百周年[J]. 地质调查与研究, 26(1): 8−14.

    Google Scholar

    [63] 何中波, 胡宝群, 冀华丽, 贺锋, 耿英英, 黄少华, 朱满怀. 2024. 鄂尔多斯镇原地区下白垩统砂岩地球化学特征及其对物源区、构造背景的指示[J]. 地质论评, 70(4): 1291−1313.

    Google Scholar

    [64] 胡俊杰, 马寅生, 吴祎, 李宗星, 彭博, 魏小洁, 刘大鹏. 2019. 柴达木盆地侏罗纪古气候演变过程: 来自化学风化特征的证据[J]. 高校地质学报, 25(4): 548−557.

    Google Scholar

    [65] 雷卞军, 阙洪培, 胡宁, 牛志军, 汪华. 2002. 鄂西古生代硅质岩的地球化学特征及沉积环境[J]. 沉积与特提斯地质, 22(2): 70−79.

    Google Scholar

    [66] 李东明, 孙镇城, 彭立才, 王敏, 王爱雷. 1996. 对“指相矿物”海绿石的重新认识[J]. 岩石矿物学杂志, 15(4): 379−384.

    Google Scholar

    [67] 李明龙, 陈林, 田景春, 郑德顺, 许克元, 方喜林, 曹文胜, 赵军, 冉中夏. 2019. 鄂西走马地区南华纪古城期–南沱早期古气候和古氧相演化: 来自细碎屑岩元素地球化学的证据[J]. 地质学报, 93(9): 2158−2170.

    Google Scholar

    [68] 李涛. 2011. 微生物席成因构造 (MISS) 组合及其古环境意义—以豫西华北地台南缘中—上元谷界为例[D]. 北京: 中国地质大学(北京), 1−69.

    Google Scholar

    [69] 李月洁. 2019. 鄂西秭归埃迪卡拉纪MISS与化石埋藏机制研究[D]. 武汉: 中国地质大学(武汉), 1−86.

    Google Scholar

    [70] 辽宁省地质勘查院. 2017. 中国区域地质志辽宁志[M]. 北京: 地质出版社

    Google Scholar

    [71] 卢崇海, 田德欣, 曹煜昊. 2019. 辽宁新元古界南华系[M]. 武汉: 中国地质大学出版社

    Google Scholar

    [72] 梅冥相, 高金汉, 孟庆芬. 2009. 中元古界非叠层石灰岩中的MISS: 以北京延庆千沟剖面高于庄组第三段为例[J]. 地学前缘, 16(5): 207−218.

    Google Scholar

    [73] 莫耀支. 1984. 不同化学类型海绿石的形成模式[J]. 西北地质, (4): 64−65.

    Google Scholar

    [74] 潘桂棠, 肖庆辉, 陆松年, 邓晋福, 冯益民, 张克信, 张智勇, 王方国, 邢光福, 郝国杰, 冯艳芳. 2009. 中国大地构造单元划分[J]. 中国地质, 36(1): 1−28.

    Google Scholar

    [75] 曲洪祥, 鲍庆忠, 董万德, 李艳, 曲若达, 郝明. 2011. 辽宁南华系的划分及其特征[J]. 地质与资源, 20(6): 430−433.

    Google Scholar

    [76] 全国地层委员会. 2017. 中国地层表 (2014)说明书[M]. 北京: 地质出版社.

    Google Scholar

    [77] 沈洪娟, 顾尚义, 赵思凡, 吴忠银, 冯永. 2020. 华南南华纪南沱冰期海洋环境的沉积地球化学记录—来自黔东部南华系南沱组白云岩碳氧同位素和微量元素的证据[J]. 地质论评, 66(1): 214−228.

    Google Scholar

    [78] 汤冬杰, 史晓颖, 李涛, 赵贵生. 2011. 微生物席成因构造形态组合的古环境意义: 以华北南缘中—新元古代为例[J]. 地球科学(中国地质大学学报), 20(6): 1033−1043.

    Google Scholar

    [79] 田德欣, 卢崇海, 蔡新明, 王彬娜, 徐耸, 王强, 卢思桥. 2018. 辽南新元古代桥头组海相冰碛沉积事件[J]. 世界地质, 37(4): 104−112.

    Google Scholar

    [80] 王爱华. 1996. 不同形态锶钡比的沉积环境判别效果比较[J]. 沉积学报, 14(4): 168−173.

    Google Scholar

    [81] 王东方, 林蔚兴. 1984. 关于辽东震旦系桥头组海绿石和大林子组泥页岩全岩Rb–Sr等时年龄的讨论[J]. 中国地质科学院沈阳地质矿产研究所文集, (9): 121−130.

    Google Scholar

    [82] 王云飞. 1983. 抚仙湖现代湖泊沉积物中海绿石的发现及成因的初步研究[J]. 科学通报, 28(22): 1388−1392.

    Google Scholar

    [83] 王自强, 尹崇玉, 高林志, 唐烽, 柳永清, 刘鹏举. 2006. 宜昌三斗坪地区南华系化学蚀变指数特征及南华系划分、对比的讨论[J]. 地质论评, 52(5): 577−585. doi: 10.3321/j.issn:0371-5736.2006.05.008

    CrossRef Google Scholar

    [84] 吴昊. 2018. 辽宁本溪新元古界上部沉积学特征及构造属性[D]. 北京: 中国地质科学院, 1−120.

    Google Scholar

    [85] 吴黎军, 李明龙, 陈林, 张碧云, 曹文胜, 赵军. 2019. 鄂西走马地区ZK701孔南华系大塘坡组主量元素地球化学对古气候的指示[J]. 河南理工大学学报(自然科学版), 38(6): 47−54.

    Google Scholar

    [86] 吴子杰. 2023. 辽东地区中–新元古界桥头组地层格架及其沉积充填特征研究[D]. 青岛: 中国石油大学(华东), 1−211.

    Google Scholar

    [87] 吴子杰, 张德明, 范海滨, 张国仁, 邱隆伟, 王海鹏, 仲米山, 耿树峰, 郑伟, 高福亮, 赵汉卿. 2022. 辽宁东部地区桥头组微生物诱发沉积构造(MISS)的发现及意义[J]. 地质论评, 68(6): 2405−2408.

    Google Scholar

    [88] 谢广成, 沈培斋. 1991. 陕北三叠系上统延长油层中海绿石的发现及其初步研究[J]. 地质科学, (2): 129−136, 204.

    Google Scholar

    [89] 岳勇, 蒋恕, 田景春, 林新. 2024. 塔里木盆地西南部晚白垩世—早古新世沉积环境演化: 来自皮山PBX1井的地化证据[J]. 中国地质, 51(2): 592−605. doi: 10.12029/gc20200621001

    CrossRef Google Scholar

    [90] 赵小明, 刘圣德, 张权绪, 吴健辉, 曾波夫, 廖宗明, 李方会. 2011. 鄂西长阳南华系地球化学特征的气候指示意义及地层对比[J]. 地质学报, 85(4): 576−585.

    Google Scholar

    [91] 郑伟, 邢智峰. 2015. 山西黎城中元古界常州沟组微生物成因构造(MISS)及其地质意义[J]. 现代地质, 29(4): 825−832. doi: 10.3969/j.issn.1000-8527.2015.04.011

    CrossRef Google Scholar

    [92] 郑伟, 袁余洋, 邢智峰, 齐永安. 2016. 鲁山地区中–新元古界汝阳群和洛峪群微生物席及其矿物显微构造特征[J]. 高校地质学报, 22(2): 385−394.

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(4)

Tables(1)

Article Metrics

Article views(240) PDF downloads(0) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint