2023 Vol. 50, No. 1
Article Contents

SUN Qifa, SUN Zhuoan, JIA Lingang, TIAN Hui, GUO Xiaodong, DU Jizhong, LI Xuguang, LI Xiao, JIA Liguo. 2023. Formation mechanism of strontium and metasilicic acid groundwater in the Lianhuashan area, Changchun, Jilin Province[J]. Geology in China, 50(1): 181-191. doi: 10.12029/gc20200624001
Citation: SUN Qifa, SUN Zhuoan, JIA Lingang, TIAN Hui, GUO Xiaodong, DU Jizhong, LI Xuguang, LI Xiao, JIA Liguo. 2023. Formation mechanism of strontium and metasilicic acid groundwater in the Lianhuashan area, Changchun, Jilin Province[J]. Geology in China, 50(1): 181-191. doi: 10.12029/gc20200624001

Formation mechanism of strontium and metasilicic acid groundwater in the Lianhuashan area, Changchun, Jilin Province

    Fund Project: Supported by the funding project of Northeast Geological S & T Innovatian Center of China Geological Survey(No.QCJJ2022-03); the projects of China Geological Survey (No.DD20160265, No.102228221020000009037)
More Information
  • Author Bio: SUN Qifa, male, born in 1966, doctor, professor level senior engineer, mainly engaged in hydrogeology, engineering geology and environmental geology investigation and research; E-mail: 152468435@qq.com
  • This paper is the result of geological survey engineering.

    Objective

    The groundwater in Lianhuashan area of Changchun is rich in strontium and metasilicic acid. It is important to understand the formation mechanism of strontium and metasilicic acid in groundwater.

    Methods

    The material basis, hydrodynamic conditions and hydrochemical conditions of the formation of mineral water in the study area were studied in depth by using the Piper three-line diagram method.

    Results

    It is found that the loose rock, clastic rock and igneous rock developed in Lianhuashan area of Changchun are the material basis for the enrichment of strontium and metasilicic acid in groundwater in this area; Atmospheric precipitation and infiltration recharge of surface water create conditions for the long-term hydrolysis and leaching of groundwater with surrounding rocks (minerals), and for the final enrichment of strontium and metasilicic acid in groundwater.

    Conclusions

    There is a 16.3- 80 m thick bedrock weathering zone in the regional strata, which makes the groundwater rich in strontium and metasilicic acid distributed in a plane shape. In some areas, two kinds of groundwater exist at the same time, which is different from the linear distribution of mineral water resources found in the bedrock structural belt; No one in history has found mineral water rich in strontium and metasilicic acid in this area. This discovery provides imagination space for local economic development.

  • 加载中
  • Audigane P, Gaus I, Czernichowski-Lauriol I, Karsten P, Tianfu X. 2007. Two-dimensional reactive transport modeling of CO2 injection in a saline aquifer at the Sleipner site, North Sea[J]. American Journal of Science, 307(7): 974-1008. doi: 10.2475/07.2007.02

    CrossRef Google Scholar

    Borgia A, Cattaneo L, Marconi D, Delcroix C, Rossi E, Clemente G, Amoroso C, Lo Re F, Tozzato E. 2011. Using a MODFLOW grid, generated with GMS, to solve a transport problem with TOUGH2 in complex geological environments: The intertidal deposits of the Venetian Lagoon[J]. Computers & Geosciences, 37(6): 783-790.

    Google Scholar

    Dobson P, Salah S, Spycher N, Sonnenthal, E. 2004. Simulation of water-rock interaction in the Yellowstone geothermal system using TOUGHREACT[J]. Geothermics, 33(4): 493-502. doi: 10.1016/j.geothermics.2003.10.002

    CrossRef Google Scholar

    Guo Xiaodong, Zhao Haiqing. 2014. Hydrochemical characteristics and correlation analysis of groundwater in Hunchun Basin[J]. Geology in China, 41(3): 1010-1017(in Chinese with English abstract).

    Google Scholar

    Hidalgo M C, Cruz-Sanjulián J. 2001. Groundwater composition, hydrochemical evolution and mass transfer in a regional detrital aquifer (Baza basin, southern Spain) [J]. Applied Geochemistry, 16(7): 745-758.

    Google Scholar

    Indraratna B, Pathirage P U, Rowe R K, Banasiak L. 2014. Coupled hydro-geochemical modelling of a permeable reactive barrier for treating acidic groundwater[J]. Computers and Geotechnics, 55: 429-439. doi: 10.1016/j.compgeo.2013.09.025

    CrossRef Google Scholar

    Jin Yang, Jiang Yuehua, Dong Xianzhe, Yang Guoqiang, Liu Hongying, Lei Changzheng, Zhou Quanping, Zhang Hong, Mei Shijia, Yang Hui, Lü Jinsong, Li Yun. 2022. Chemical characteristics and eco-environmental effect of groundwater in Ningbo Plain, Zhejiang Province[J]. Geology in China, 49(5): 1527-1542(in Chinese with English abstract).

    Google Scholar

    Kenoyer G J, Bowser C J. 1992a. Groundwater chemical evolution in a sandy silicate aquifer in northern Wisconsin: 1. Patterns and rates of change[J]. Water Resources Research, 28(2): 579-589. doi: 10.1029/91WR02302

    CrossRef Google Scholar

    Kenoyer G J, Bowser C J. 1992b. Groundwater chemical evolution in a sandy silicate aquifer in northern Wisconsin: 2. Reaction modeling[J]. Water Resources Research, 28(2): 591-600. doi: 10.1029/91WR02303

    CrossRef Google Scholar

    Li Zhanmin. 1993. Formation of metasilicic acid components in drinking mineral water in China[J]. Survey Science and Technology, 11(1): 41-43(in Chinese).

    Google Scholar

    Li Zhuang, Su Jingwen, Dong Changchun, Ye Yonghong, Yang Yang. 2022, Hydrochemistry characteristics and evolution mechanisms of the groundwater in Dangtu area, Ma'anshan City, Anhui Province[J]. Geology in China, 49(5): 1509-1526(in Chinese with English abstract).

    Google Scholar

    Liu Qingxuan, Wang Guiling, Zhang Fawang. 2004. Geochemical environment of strontium enrichment in mineral water[J]. Hydrogeology and Engineering Geology, 31(6): 19-23(in Chinese with English abstract).

    Google Scholar

    Matthew M U, Sharp Jr J M. 2001. Tracing regional flow paths to major springs in Trans-Pecos Texas using geochemical data and geochemical models[J]. Chemical Geology, 179(1): 53-72.

    Google Scholar

    Parisia S, Paternosterb M, Perrc F, Mongelli G. 2011. Source and mobility of minor and trace elements in a volcanic aquifer system: Mt. Vulture (southern Italy) [J]. Journal of Geochemical Exploration, 110(3): 233-244. doi: 10.1016/j.gexplo.2011.06.010

    CrossRef Google Scholar

    Plummer L N, Prestenrnon E C, Parkhurst D L. 1991. An Interactive Code (NETPATH) for Modeling NET Geochemical Reactions along a Flow Path[R]. U.S.G.S. Water Resources Investigations.

    Google Scholar

    Su Chuntian, Zhang Fawang, Xia Riyuan, Yao Xin, Zou Shengzhang, Luo Fei, Zhao Guangshuai, Yang Yang, Ba Junjie, Li Xiaopan. 2017. A study of the water-rock interaction of large rich Sr mineral spring in Xintian, Hunan Province[J]. Geology in China, 44(5): 1029-1030(in Chinese with English abstract).

    Google Scholar

    Sun Houyun, Mao Qigui, Wei Xiaofeng, Zhang Huiqiong, Xi Yuze. 2018. Hydrogeochemical characteristics and formation evolutionary mechanism of the groundwater system in the Hami basin[J]. Geology in China, 45(6): 1128-1141(in Chinese with English abstract).

    Google Scholar

    Sun Qifa, Guo Xiaodong, Tian Hui, Yu Huiming. 2019a. Comprehensive geological environment survey of Changji economic circle[R]. Shenyang: Shenyang Geological Survey Center, China Geological Survey(in Chinese).

    Google Scholar

    Sun Qifa, Tian Hui, Guo Xiaodong, Yu Huiming, Ma Shimin, Li Lijun. 2017. The discovery of silicic acid and strontium enrichment areas in groundwater of Changchun area, Jilin Province[J]. Geology in China, 44(5): 1031-1032(in Chinese with English abstract).

    Google Scholar

    Sun Qifa, Tian Hui, Guo Xiaodong, Yu Huiming. 2019b. Strontium-enriched areas discovered in Lianhuashan, Changchun[J]. Geology in China, 46(2): 430-431(in Chinese with English abstract).

    Google Scholar

    Sun Qifa, Yang Ke, Sun Zhuo'an, Jia Lin'gang, Tian Hui, Guo Xiaodong, Li Xuguang, Zhu Wei. 2022. Characteristics of groundwater quality in Changchun New Area and its evaluation on ecological health[J]. Geology in China, 49(3): 834-848(in Chinese with English abstract).

    Google Scholar

    Wang Hongwei, Gong Qinghong, Zhao Xiangdong. 2004. Main groundwater storage structure in plain area of Jilin Province [J]. Jilin Geology, 23 (4): 64-68(in Chinese with English abstract).

    Google Scholar

    Wicks C M, Herman J S. 1994. The effect of a confining unit on the geochemical evolution of ground water in the Upper Floridan aquifer system[J]. Journal of Hydrology, 153(1): 139-155.

    Google Scholar

    Xu T, Pruess K. 2001. Modeling multiphase non-isothermal fluid flow and reactive geochemical transport in variably saturated fractured rocks: 1. Methodology[J]. American Journal of Science, 301(1): 16-33. doi: 10.2475/ajs.301.1.16

    CrossRef Google Scholar

    Xu T, Sonnenthal E, Spycher N, Pruess G, BrimhallJohn A. 2001. Modeling multiphase non-isothermal fluid flow and reactive geochemical transport in variably saturated fractured rocks: 2. Applications to supergene copper enrichment and hydrothermal flows[J]. American Journal of Science, 301(1): 34-59. doi: 10.2475/ajs.301.1.34

    CrossRef Google Scholar

    Xu T, Sonnenthal E, Spycher N, Pruess K. 2004. TOUGHREACT User's Guide: A Simulation Program for Non-isothermal Multiphase Reactive Geochemical Transport in Variably Saturated Geological Media[R]. Berkeley: Lawrence Berkeley National Laboratory.

    Google Scholar

    Yan Jinxu. 1993. Analysis on the distribution and genesis of metasilicic acid type mineral water in Northern Zhejiang[J]. China Coalfield Geology, 5 (4): 47-57(in Chinese).

    Google Scholar

    Yan Ruhui, Sun Tingfang, He Ping. 1996. Basic characteristics and formation rules of drinking natural mineral water resources in Anhui Province[J]. Anhui Geology, 6(3): 63-76(in Chinese with English abstract).

    Google Scholar

    Yan Zhiwei, Wei Fucai. 2003. Summary on the genesis of CO2 in groundwater[J]. Carsologica Sinica, 22(2): 118-123(in Chinese with English abstract).

    Google Scholar

    Yang Yanlin, Shao Changsheng, Jing Jing, Chen Lide, Wang Shichang, Lu Tao, Zhang Ao, Wang Cen, Liu Guangning. 2019. Exploration of mineral water resources in city clusters along the middle reaches of the Yangtze and discoveries-A case study of the dataset of the hydrogeological survey in the 1: 50000 Tingsiqiao Map-sheet, Xianning City[J]. Geology in China, 46(S2): 74-82(in Chinese with English abstract).

    Google Scholar

    Yu Guosong. 2017. Occurrence characteristics and formation mechanism of drinking natural mineral water in Linqian mining area, Fujian Province[J]. Low Carbon World, 7(24): 78-79(in Chinese).

    Google Scholar

    Zhao Li. 2005. Chemical characteristics and genetic analysis of natural mineral water in Eastern Yanshan[J]. Water Science and Engineering Technology, (1): 24-26(in Chinese).

    Google Scholar

    郭晓东, 赵海卿. 2014. 珲春盆地地下水水化学特征分析[J]. 中国地质, 41(3): 1010-1017.

    Google Scholar

    金阳, 姜月华, 董贤哲, 杨国强, 刘红樱, 雷长征, 周权平, 张鸿, 梅世嘉, 杨辉, 吕劲松, 李云. 2022. 浙江宁波平原地下水水化学特征及其生态环境效应[J]. 中国地质, 49(5): 1527-1542.

    Google Scholar

    李占敏. 1993. 我国饮用矿泉水中偏硅酸组分的形成[J]. 勘察科学技术, 11(1): 41-43.

    Google Scholar

    李状, 苏晶文, 董长春, 叶永红, 杨洋. 2022. 安徽马鞍山市当涂地区地下水水化学特征及演化机制[J]. 中国地质, 49(5): 1509-1526.

    Google Scholar

    刘庆宣, 王贵玲, 张发旺. 2004. 矿泉水中微量元素锶富集的地球化学环境[J]. 水文地质工程地质, 31(6): 19-23.

    Google Scholar

    苏春田, 张发旺, 夏日元, 姚昕, 邹胜章, 罗飞, 赵光帅, 杨杨, 巴俊杰, 李小盼. 2017. 湖南新田发现大型富锶矿泉水及机理研究[J]. 中国地质, 44(5): 1029-1030.

    Google Scholar

    孙厚云, 毛启贵, 卫晓锋, 张会琼, 葸玉泽. 2018. 哈密盆地地下水系统水化学特征及形成演化[J]. 中国地质, 45(6): 1128-1141.

    Google Scholar

    孙岐发, 郭晓东, 田辉, 于慧明. 2019a. 长吉经济圈地质环境综合调查[R]. 中国地质调查局沈阳地质调查中心.

    Google Scholar

    孙岐发, 田辉, 郭晓东, 于慧明. 2019b. 长春莲花山发现锶富集区[J]. 中国地质, 46(2): 430-431.

    Google Scholar

    孙岐发, 田辉, 郭晓东, 于慧明, 马诗敏, 李丽君. 2017. 吉林长春地区地下水中发现偏硅酸和锶富集区[J]. 中国地质, 44(5): 1031-1032.

    Google Scholar

    孙岐发, 杨柯, 孙茁桉, 贾林刚, 田辉, 郭晓东, 李旭光, 朱巍. 2022. 长春新区地下水水质特征及其对生态健康的评价[J]. 中国地质, 49(3): 834-848.

    Google Scholar

    王宏伟, 龚庆红, 赵向东. 2004. 吉林省平原区地下水主要蓄水构造[J]. 吉林地质, 23(4): 64-68.

    Google Scholar

    严金叙. 1993. 浙北地区偏硅酸型矿泉水分布与成因分析[J]. 中国煤田地质, 5(4): 47-57.

    Google Scholar

    阎如璲, 孙庭芳, 贺平. 1996. 安徽省饮用天然矿泉水资源的基本特征与形成规律[J]. 安徽地质, 6(3): 63-76.

    Google Scholar

    闫志为, 韦复才. 2003. 地下水中CO2的成因综述[J]. 中国岩溶, 22(2): 118-123.

    Google Scholar

    杨艳林, 邵长生, 靖晶, 陈立德, 王世昌, 路韬, 张傲, 王岑, 刘广宁. 2019. 长江中游城市群矿泉水资源勘查与发现——以咸宁市汀泗桥幅1∶50 000水文地质调查数据集为例[J]. 中国地质, 46(S2): 74-82.

    Google Scholar

    余国松. 2017. 福建林前矿区饮用天然矿泉水赋存特征与形成机理[J]. 低碳世界, 7(24): 78-79.

    Google Scholar

    赵力. 2005. 燕山东部天然矿泉水化学特征及成因分析[J]. 水科学与工程技术, (1): 24-26.

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(3)

Tables(4)

Article Metrics

Article views(2327) PDF downloads(104) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint