2023 Vol. 50, No. 1
Article Contents

ZHAO Xue, CHEN Zhong, SHI Guocheng, TANG Qiliang, LI Wenxia, ZHANG Xiying. 2023. Insoluble minerals of potash deposits in Haixiafeng mining area of Vientiane, Laos: Constraints on their sedimentary environment[J]. Geology in China, 50(1): 170-180. doi: 10.12029/gc20200227001
Citation: ZHAO Xue, CHEN Zhong, SHI Guocheng, TANG Qiliang, LI Wenxia, ZHANG Xiying. 2023. Insoluble minerals of potash deposits in Haixiafeng mining area of Vientiane, Laos: Constraints on their sedimentary environment[J]. Geology in China, 50(1): 170-180. doi: 10.12029/gc20200227001

Insoluble minerals of potash deposits in Haixiafeng mining area of Vientiane, Laos: Constraints on their sedimentary environment

    Fund Project: Supported by the project of National Natural Science Foundation of China (No.41602086)
More Information
  • Author Bio: ZHAO Xue, female, born in 1993, master candidate, majors in mineralogy, petrology and mineral deposit geology; E-mail: 809304141@qq.com
  • Corresponding author: ZHANG Xiying, male, born in 1977, senior researcher, engaged in studies on potash deposits; E-mail: xyzhchina@isl.ac.cn
  • This paper is the result of mineral exploration engineering.

    Objective

    The potash deposit in Laos is one of the most important potash deposits in the world. To carry out studies of the sedimentary environment during the precipitation of potassium minerals is very significant for a deep understanding of the mineralization of potash deposits here.

    Methods

    The insoluble minerals in the potash seams, which can retain more original information than soluble salts, is an important carrier for studying the evolution of ore- forming brine. Systematic studies on insoluble minerals in borehole ZK16 from the Haixiafeng mining area of the Vientiane Basin of Laos were conducted through microscopic identification, XRD, and SEM.

    Results

    Analysis results show that the insoluble materials mainly include anhydrite, boracite, hilgardite, quartz, dolomite, magnesite, calcite, and muscovite, in which anhydrite and boracite are dominant minerals. The existence and distribution characteristics of authigenic quartz and clastic muscovite reveal that continental waters have affected potash deposits to different degrees during deposition.

    Conclusions

    Comprehensive studies show that the process of potassium salt deposition in the study area can be divided into four distinct stages: fluctuation deposition stage, shallow water deposition stage, stable deposition stage, and reworking stage.

  • 加载中
  • Cendón D I, Ayora C, Pueyo J J, Taberner C. 2003. The geochemical evolution of the Catalan potash subbasin, South Pyrenean foreland basin (Spain)[J]. Chemical Geology, 200(3/4): 339-357.

    Google Scholar

    Eastoe C J, Peryt T M, Petrychenko O Y, Geisler-Cussey. 2007. Stable chlorine isotopes in Phanerozoic evaporites[J]. Applied Geochemistry, 22(3): 575-588. doi: 10.1016/j.apgeochem.2006.12.012

    CrossRef Google Scholar

    Gao Xiang, Cai Keqin, Li Dairong, Peng Qiang, Fang Qinfang, Qin Hong. 2012. Mineralogical and geochemical characteristics and genesis of the potassium-magnesium salt deposit in Khammouan Province, Laos[J]. Acta Petrologica et Mineralogica, 31(4): 578-588 (in Chinese with English abstract). doi: 10.3969/j.issn.1000-6524.2012.04.010

    CrossRef Google Scholar

    García V J, Cendón D I, Rosell L, Ortetí F, Ruiz J T, Martín J M, Sanz E. 2013. Salt deposition and brine evolution in the Granada Basin (Late Tortonian, SE Spain)[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 369: 452-465. doi: 10.1016/j.palaeo.2012.11.010

    CrossRef Google Scholar

    Grice J D, Gault R A, Velthuizen J V. 2005. Borate minerals of the Penobsquis and Millstream Deposits, southern New Brunswick, Canada[J]. The Canadian Mineralogist, 43(5): 1496-1487.

    Google Scholar

    Guo Yuansheng, Wu Jun, Zhu Yanzhe, Yan Chengwen, Zhao Jin, Chen Wen. 2005. Potash Geology in Vientiane of Laos[M]. Kunming: Yunnan Science and Technology Press, 1-219 (in Chinese with English abstract).

    Google Scholar

    Hite R J. 1974. Evaporite deposits of the Khorat Plateau, northeastern Thailand[C]//Coogan A H (ed. ). Fourth Symposium on Salt. Cleveland: Northern Ohio Geological Society Inc: 135-146.

    Google Scholar

    Hite R J, Japakasetr T. 1979. Potash deposits of the Khorat Plateau, Thailand and Laos[J]. Economic Geology, 74(2): 448-458. doi: 10.2113/gsecongeo.74.2.448

    CrossRef Google Scholar

    Jiang Zhibin, Wang Xingzhi, Zhang Fan, Zeng Deming, Zhang Jinyou, Lu Tiemei. 2008. Distribution and controlling factors of reefs and oolitic beaches for the Changxing to Feixianguan formations in the northern Sichuan basin[J]. Geology in China, 35(5): 940-950 (in Chinese with English abstract). doi: 10.3969/j.issn.1000-3657.2008.05.014

    CrossRef Google Scholar

    Li M H, Yan M D, Fang X M, Zhang Z J, Wang Z R, Sun S R, Li J, Liu X M. 2018. Origins of the Mid-Cretaceous evaporate deposits of the Sakhon Nakhon Basin in Laos: Evidence from the stable isotopes of halite[J]. Journal of Geochemical Exploration, 184: 209-222. doi: 10.1016/j.gexplo.2017.11.001

    CrossRef Google Scholar

    Li Yanqiang. 2018. Geological Characteristics and Genesis of Potash Deposits in Haixiafeng, Laos[D]. Beijing: China University of Geosciences (Beijing): 3-54 (in Chinese with English abstract).

    Google Scholar

    Liang Guanghe. 2018. A study of the genesis of Hainan Island[J]. Geology in China, 45(4): 693-705 (in Chinese with English abstract).

    Google Scholar

    Liu Chenglin, Wang Licheng, Yan Maodu, Zhao Yanjun, Cao Yangtong, Fang Xiaomin, Shen Lijian, Wu Chihua, Lü Fenglin, Ding Ting. 2018. The Mesozoic-Cenozoic tectonic settings, paleogeography and evaporitic sedimentation of Tethyan blocks within China: Implications for potash formation[J]. Ore Geology Reviews, 102: 406-425. doi: 10.1016/j.oregeorev.2018.09.002

    CrossRef Google Scholar

    Meesook A. 2000. Cretaceous environments of northeastern Thailand[J]. Developments in Palaeontology and Stratigraphy, 17: 207-223.

    Google Scholar

    Metcalfe I. 1988. Origin and assembly of south-east Asian continental terranes[J]. Geological Society of London Special Publication, 37(1): 101-118. doi: 10.1144/GSL.SP.1988.037.01.08

    CrossRef Google Scholar

    Qian Ziqiang, Qu Yihua, Liu Qun. 1994. Potash Deposits[M]. Beijing: Geological Publishing House, 216-243 (in Chinese).

    Google Scholar

    Sato K, Liu Y, Wang Y, Yokoyama M, Yoshioka S Y, Yang Z, Otofui Y I. 2007. Paleomagnetic study of Cretaceous rocks from Pu'er, western Yunnan, China: Evidence of internal deformation of the Indochina block[J]. Earth and Planetary Science Letters, 258(1): 1-15.

    Google Scholar

    Tabakh M E, Utha-Aroon C, Schreiber B C. 1999. Sedimentology of the Cretaceous Maha Sarakham evaporites in the Khorat Plateau of northeastern Thailand[J]. Sedimentary Geology, 123(1): 31-62.

    Google Scholar

    Tan H B, Ma H Z, Li B K, Zhang X Y, Xiao Y K. 2010. Strontium and boron isotopic constraint on the marine origin of the Khammuane potash deposits in southeastern Laos[J]. Chinese Science Bulletin, 55(27/28): 3181-3188.

    Google Scholar

    Tang Qiliang, Zhang Xiying, Li Wenxia, Han Yuanhong. 2016. Boron isotope geochemical study of mudstone in Longhu mining area of Laos: A case study of ZK309[J]. Mineral Deposits, 35(1): 196-202 (in Chinese with English abstract).

    Google Scholar

    Utha-Aroon C. 1993. Continental origin of the Maha Sarakham evaporites, northeastern Thailand[J]. Journal of Asian Earth Sciences, 8(1/4): 193-203.

    Google Scholar

    Wang Chunlian, Liu Chenglin, WangLicheng, Zhang Linbing. 2013. Reviews on potash deposit metallogenic conditions[J]. Advances in Earth Science, 28(9): 976-987 (in Chinese with English abstract).

    Google Scholar

    Wang J Y, Lowenstein T K. 2017. Anomalously high Cretaceous paleobrine temperatures: Hothouse, hydrothermal or solar heating?[J]. Minerals, 7(12): 245. doi: 10.3390/min7120245

    CrossRef Google Scholar

    Warren J K. 1999. Evaporites: Their Evolution and Economics[M]. Oxford: Blackwell Science, 249-250.

    Google Scholar

    Yang Z, Besse J. 1993. Paleomagnetic study of Permian and Mesozoic sedimentary rocks from Northern Thailand supports the extrusion model for Indochina[J]. Earth and Planetary Science Letters, 117(3/4): 525-552.

    Google Scholar

    Yang Z, Besse J, Sutheetorn V, Bassoullet J P, Fontaine H, Buffetaut E. 1995. Lower-Middle Jurassic paleomagnetic data from the Mae Sot area (Thailand): Paleogeographic evolution and deformation history of Southeastern Asia[J]. Earth and Planetary Science Letters, 136(3/4): 325-341.

    Google Scholar

    Yechieli Y, Wood W W. 2002. Hydrogeologic processes in saline systems: Playas, sabkhas, and saline lakes[J]. Earth-Science Reviews, 58(3): 343-365.

    Google Scholar

    Zhang Hua, Liu Chenglin, Wang Licheng, Fang Xiaomin. 2014. Characteristics of sulfur isotopes in evaporative rocks of potash deposit in Taqu basin, Laos and its indicative significance of potassium formation[J]. Geological Review, 60(4): 851-857 (in Chinese with English abstract).

    Google Scholar

    Zhang Xiying. 2012. Constraints of the Insoluble Minerals on Formation of Tachyhydrite and Evolution of Brine in Potash Deposits of Vientiane Basin, Laos[D]. Xining: Qinghai Institute of Salt Lakes, Chinese Academy of Sciences, 59-173 (in Chinese with English abstract).

    Google Scholar

    Zhang Xiying, Cheng Huaide, Tan Hongbing, Yuan Xiaolong, Li Yongshou, Miao Weiliang, Li Tingwei, Ma Haizhou. 2015. Late Cretaceous potash evaporites in Savannakhet Basin of middle Laos: Geochemical evidences of non-marine inputs[J]. Acta Petrologica Sinica, 31(9): 2783-2793 (in Chinese with English abstract).

    Google Scholar

    Zhang X Y, Ma H Z, Ma Y Q, Tang Q L, Yuan X L. 2013. Origin of the late Cretaceous potash-bearing evaporites in the Vientiane Basin of Laos: δ11B evidence from borates[J]. Journal of Asian Earth Sciences, 62: 812-818. doi: 10.1016/j.jseaes.2012.11.036

    CrossRef Google Scholar

    高翔, 蔡克勤, 李代荣, 彭强, 方勤方, 秦红. 2012. 老挝甘蒙省钾镁盐矿床含矿段的矿物学和地球化学特征及成因[J]. 岩石矿物学杂志, 31(4): 578-588. doi: 10.3969/j.issn.1000-6524.2012.04.010

    CrossRef Google Scholar

    郭远生, 吴军, 朱延浙, 严城文, 赵劲, 陈文. 2005. 老挝万象钾盐地质[M]. 昆明: 云南科技出版社, 1-219.

    Google Scholar

    蒋志斌, 王兴志, 张帆, 曾德铭, 张金友, 鲁铁梅. 2008. 四川盆地北部长兴组—飞仙关组礁、滩分布及其控制因素[J]. 中国地质, 35(5): 940-950. doi: 10.3969/j.issn.1000-3657.2008.05.014

    CrossRef Google Scholar

    李彦强. 2018. 老挝海夏峰钾盐矿床地质特征及成因[D]. 北京: 中国地质大学, 66.

    Google Scholar

    梁光河. 2018. 海南岛的成因机制研究[J]. 中国地质, 45(4): 693-705.

    Google Scholar

    钱自强, 曲一华, 刘群. 1994. 钾盐矿床[M]. 北京: 地质出版社, 216-243.

    Google Scholar

    唐启亮, 张西营, 李雯霞, 韩元红. 2016. 老挝龙湖矿区泥岩层B同位素地球化学初步研究——以ZK309为例[J]. 矿床地质, 35(1): 196-202.

    Google Scholar

    王春连, 刘成林, 王立成, 张林兵. 2013. 钾盐矿床成矿条件研究若干进展[J]. 地球科学进展, 28(9): 976-987.

    Google Scholar

    张华, 刘成林, 王立成, 方小敏. 2014. 老挝他曲盆地钾盐矿床蒸发岩硫同位素特征及成钾指示意义[J]. 地质论评, 60(4): 851-857.

    Google Scholar

    张西营. 2012. 老挝万象盆地钾盐矿床水不溶物对溢晶石形成和卤水演化的制约[D]. 西宁: 中国科学院青海盐湖研究所, 59-173.

    Google Scholar

    张西营, 程怀德, 谭红兵, 袁小龙, 李永寿, 苗卫良, 李廷伟, 马海州. 2015. 老挝中部沙湾拿吉盆地晚白垩世钾盐蒸发岩: 非海相输入的地球化学证据[J]. 岩石学报, 31(9): 2783-2793.

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(5)

Tables(2)

Article Metrics

Article views(2668) PDF downloads(120) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint