
Citation: | GAO Hongfang, ZHONG Hexian, SUN Meijing, NIE Xin, JIANG Tao, HUANG Wenkai, DU Wenbo, CHEN Jiale. 2020. The large deep-water turbidity fan system in southeastern South China Sea Basin: Formation and tectonic constraint[J]. Geology in China, 47(5): 1395-1406. doi: 10.12029/gc20200507 |
A large turbidite fan system was found from southeastern South China Sea basin through the latest multi-channel seismic profiles in the regional geological and geophysical measurement data set. This fan system occurred in the water depth from 2000 m to 3800 m of the present sea level, with forward northwest direction to the central basin edge 150-260 km in length. The fan system was interpreted to have been formed from middle Miocene to Quaternary with series of turbidite fan sequences, mainly composed of sediment waves, channel filling, submarine fans, and mass flows. In time scale, from the early to late stage, the size and architecture of fan system were constantly changing, underlying valuable information of sea level change, depositional process and tectonic evolution. In spatial scale, the turbidite sand bodies were formed by the superimposed layers of turbidite flow sediments. The channels were well developed on the seabed within this fan system. The bottom of the channel sand bodies are distributed on "V" shape in panel, extending from south to north, revealing mainly sources from Liyue Bank and north Palawan Island area. The turbidite fan's formation was obviously controlled by tectonic movement, on the one hand related to the uplift of Liyue Bank-Palawan Island since the middle Miocene and, and on the other hand related to magmatic activity since the late Miocene. The turbidite current mechanism occurred in the transition of continental margin to abyssal plain in the southeast of the South China Sea, driving particles transportation from shallow sea to deep basin. This new interpreted large turbidite fan system presents an important linkage of "source-to-sink" sedimentary system, and benefits to revealing deep-sea sedimentary evolution process in the South China Sea.
深水浊积扇沉积是发育在大陆坡和深海盆地平原间、由再沉积作用形成的锥状和扇状堆积体,主要由浊流沉积、块体流和深海远洋沉积组成。浊流沉积是浊流沉积作用形成的沉积物,浊流多发生于大陆边缘地区,是将陆源物质由浅海输送到深海的重要机制(Shanmugam,2000;Stow,2000),可在大陆边缘或洋盆区形成浊流沉积。强大的浊流可折断海底电缆而造成危害(Anthony et al., 1999),近数十年来,人们广泛运用浊流理论解释海底峡谷、海底扇和深海砂质沉积物的成因。地质时期形成的古浊流沉积物常成为石油的储集层(Moore,1969;Shanmugam,2006;林畅松,2015)。因此,浊流沉积作为一种独特的沉积类型受到广泛重视。
目前对南海海盆北部和西北部的深水沉积体系研究比较深入(林畅松等,2001;彭大均等,2006;庞雄等,2007;苏明等,2014;王亚辉等,2016),对海盆南部尤其是东南部深水沉积的研究基本处于空白状态。本文运用近年来采集的地质地球物理数据,分析南海海盆东南部浊积扇体系的发育演化、空间结构、控制因素等,对研究海盆的物源、浊流沉积作用和构造对沉积活动的控制等有重要的科学意义。
南海海盆处于南海中部,可分为西北次海盆、东部次海盆、西南次海盆三部分,为广阔的深海平原,其间发育有众多海山和海丘。海盆水深一般为3500~4200 m,东部海沟区水深可超过4800 m(杨胜雄等,2015)。研究区位于南海海盆东南部(图 1),处于东部次海盆及其东南边下陆坡上,其东部为马尼拉海沟,南部为巴拉望岛架。南海海盆为海底扩张形成,海盆磁条带对比(Briais et al., 1993)和IODP349航次钻探结果(Li,2014)表明,海盆在早渐新世早期(34~32 Ma)开始扩张,早中新世末期到中中新世早期停止扩张(16 Ma左右)。早中新世开始,吕宋—菲律宾岛弧向南海仰冲,南海海盆向东俯冲,马尼拉海沟开始形成。地层主要包括渐新统到第四系,厚度为1000~4500 m。从地震剖面上识别出了T0、T1、T2、T3、T5、T6、Tg七个地震反射界面(表 1),依次分别代表海底、第四纪底部、上新世底部、晚中新世底部、中中新世底部、早中新世底部和海盆沉积基底面(即渐新世早期)。研究区断层和火成岩体发育,断层包括正断层、逆冲断层和走滑断层3种类型,火成岩以中新世中晚期到第四纪的喷发岩和浅层侵入岩为主。
![]() |
近10年来,在南海海盆的西北部、东北部都发现了大型浊积扇体系的存在。其中,西北次海盆发育晚中新世—第四系浊积扇体系,物源来自青藏高原和华南陆地,沉积物从西部西沙海槽和北部陆坡峡谷输送入海盆中,埋藏古水道、朵叶体叠置发育(林畅松等,2001;彭大均等,2006;庞雄等,2007;刘睿等,2013;苏明等,2014;王亚辉等,2016)。东部次海盆东北部发育大型第四系浊积扇,物源主要来自台湾岛及其西部陆架,陆源物质从台湾峡谷、澎湖峡谷群输送入海盆中,下切水道、沉积物波十分发育(王海荣,2008;钟广见,2008;Li et al., 2018;李梦君等,2018)。同时,IODP349航次U1431、U1433、U1434钻井也证实了南海海盆中部浊流沉积物的发育(Expedition 349 Scientists,2014),东部次海盆U1431钻井岩心非常清晰地揭示了中中新世到上新世浊流沉积物和火山碎屑角砾岩为主组成的碎屑流沉积体,可见交错层理,粉砂岩、砂岩和黏土的互层组成的深水浊积层序;西南次海盆U1433、U1434钻井发现多层厚—巨厚层状钙质超微化石软泥,最大单层厚度可达8 m左右,每个单层钙质超微化石软泥具有底部冲刷接触的特征,冲刷面之上发育有有孔虫软泥,具正粒序特征,其顶部生物扰动发育,渐变过渡到远洋黏土岩沉积中,反映了这些钙质超微化石软泥并不是原地沉积的,而是经过了浊流搬运异地沉积形成。这些前人成果和钻井资料揭示了南海海盆大范围发育浊流沉积体。
根据高分辨率地震剖面解译的结果,南海海盆东南部的浊积扇从中中新世开始,一直到第四纪都有发育,各时期浊积扇的特征和空间结构都有所不同,现分述如下:
中中新世海盆总体沉积环境稳定,沉积基底起伏较小,海盆已经基本形成深海平原的地形地貌。东部次海盆南部水动力条件异常,块体流发育。
块体流是东部次海盆南部重要的沉积特色,主要发育在东南部的斜坡区。在地震剖面上表现为变振幅、连续性中—差的杂乱反射特征,该层序组发育于T3和T5两个强振幅高连续性的反射界面之间(图 2)。在结构上,该块体流呈楔形,并发生了明显的变形,靠近陆坡的上斜坡部分,在沉积过程中受到张性应力作用,在层内发育许多小型阶梯状正断层,断层倾向为海盆方向;块体流中部发生褶皱变形,发育层内小型逆断层;下斜坡部分在沉积过程中,由于坡度变得平缓,受到重力滑脱形成的挤压应力的作用,发育一系列的小型逆冲构造,可见微挤压褶皱和一系列向海盆中央逆冲的叠瓦状逆断层。根据块体流变形特征,可以划分为上斜坡伸展段、中部滑脱褶皱段和下斜坡挤压段三部分。此外,块体流沉积前端厚度逐渐减薄,地震相则由杂乱反射逐渐过渡为平行、连续反射的深海远洋沉积,由此可以判断出块体流的运动方向为从东部和南部向西部和北部延伸。
中中新世海盆块体流沉积体分布在南海南部陆坡和海盆的转换带上,主体发育在海盆内(图 3),长约170 km,宽约80 km,总体展布格局为从东南到西北方向延伸。
晚中新世,南海海盆的沉积古地理环境已经完全演化为深海平原沉积地貌,其海平面处于一个相对低的水平面上,海盆处于欠补偿沉积阶段。在这种沉积背景下,水动力条件相对活跃,浊流非常发育,东部次海盆东南部发育海底扇、沉积物波等多种浊流沉积体系。
海底扇主要分布在靠近东部次海盆中央的区域,水道不太发育。在地震剖面上,以前积结构地震相为主,显示为“S”形前积反射结构,局部显示为高角度叠瓦状,斜交结构;以中—强振幅、中—低频、中—高连续性为主,成组出现(图 3),总体反射特征显示出局部区域水动力条件较强。同相轴组合表现为多个下超反射层的叠合,显示为退积现象,揭示出相对低海平面的逐步上升。
沉积物波主要发育在靠近陆坡的区域,以中部的低隆起隔开,分东西两侧发育,西侧规模大,东侧规模很小(图 4)。在地震剖面上表现为波状亚平行结构地震相,多组同相轴互相平行并呈波浪状起伏,波形起伏较小,不对称,波脊向东南部地形高方向迁移(图 5);为中等振幅,局部强振幅,中—高频,中—高连续,反映水动力条件较强。对于沉积物波的形成机制,很多学者提出了多种观点(Shanmugam,2006;王海荣,2008;苏明等,2014),主要包括浊流成因、峡谷水道成因、内波成因、滑塌成因和等深流成因等,由于在上中新统沉积物波周缘未发现大型水道,推测可能为等深流和浊流共同作用的结果。
平面图上,晚中新世沉积物波和海底扇组成的浊流沉积体,分东、西两部分。东部浊积体规模较小,延伸约50 km,宽约20 km;西部浊积体规模较大,呈扇形向海盆中部伸展,伸展长度约210 km,宽约130 km(图 4)。浊积体呈透镜状展布,叠层发育,形成了厚层的砂体,可作为良好的储层(彭勇民等,2011;Lei et al., 2019)。物源来自于南部礼乐滩及北巴拉望区域,沉积物质供应量较充足,浊积体呈现出向海盆中部延伸的趋势。
上新世时期,浊积扇发育依然是南海海盆东南部的重要沉积特色,主要包括海底扇、水道、天然堤、沉积物波等沉积体(图 2,图 3)。
水道和天然堤在上新世十分发育,两者往往相伴发育,主要分布在海盆东南部斜坡上。水道地震剖面上显示为谷形充填状变振幅地震相,为谷状外形,充填状结构;底部振幅强,往上逐渐变弱;中频、中连续反射为主。水道下切深度可超过200 m,以“V”形下切为主。从巴拉望岛向海盆方向延伸,趋势为南东到北西方向,长度可超过200 km。水道砂体和天然堤相伴生发育,成群展布,相互叠置,形成了厚层水道砂体,可作为良好的储层(Liang et al 2020)。
沉积物波在该时期非常发育。上新世和晚中新世发育的沉积物波的共同点是分布位置都位于南海海盆东南部的斜坡区,并且以地形隆起为界,分别在东、西两侧各自发育,但发育规模明显比晚中新世大。从地震剖面上可以看出,隆起西部发育的沉积物波在形态上近似为正弦曲线,呈波浪状起伏,起伏幅度较晚中新世时期更大,不对称发育,波脊向上坡方向迁移(图 5)。地震同相轴连续性较好,向海盆方向逐渐过渡为平行反射的深海远洋沉积。该沉积体下部表现为弱振幅特征,而上部具有强振幅反射特征,反映了沉积物类型发生了改变。东部沉积物波也具有似正弦曲线并向上坡迁移的特征(图 6),但是其波长明显大于西侧沉积物波,同相轴连续性较好,具有强、弱振幅上下交替出现的特征,这反映了该时期沉积物波的物源不稳定,或者为多物源供给。根据沉积物波地震剖面特征分析,结合该时期下切水道十分发育,认为上新世沉积物波的形成应该是浊流作用的结果。
该时期海底扇发育于上新统下部(图 3),可见“S”型高角度前积层发育,地震剖面上显示为前积结构地震相,以中等振幅、中—低频、中—高连续性为主。前积层成组出现,表现为多个下超反射层的叠合,显示出退积现象,震相组合结构揭示出物源来自东南方向。
平面上,上新世浊积体在地层中下部垂向上层层叠置,成群发育,形成厚层的浊积砂体,可作为良好的储层。物源主要来自南吕宋岛弧、北巴拉望及礼乐滩局部区域。东南部沉积体总体上由南向北、由海盆边部向海盆中央,呈扇形推进,推进距离约为240 km(图 4)。
该时期海盆为深海平原沉积背景,以深水沉积为主。东南部沉积作用活跃,依旧是水道、沉积物波、海底扇等浊流沉积体的频繁发育区域。
第四系浊积扇由沉积物波、海底扇、水道和天然堤组成,主要以沉积物波和水道为主,海底扇在浊积扇体周缘发育。
在海盆东南部的大部分区域,第四系中上部都有沉积物波沉积体发育(图 5,图 6),大多呈披覆状,覆盖在底部浊积体和水道之上。海底扇的结构与早期完全不同,显示为低角度扁平叠瓦状结构,显示出沉积环境水动力条件的变化。第四系下部浊积体一般为透镜状,在垂向上层层叠置发育,形成厚层的浊积体。水道十分发育,底部呈“V”型展布(图 2),边部有天然堤伴生发育。在海底地形图上(图 1)可见明显的下切水道,由南向北延伸,揭示出主物源来自南部礼乐滩及北巴拉望区域。东南部沉积体继承上新世的沉积格局,总体上由南向北、由海盆边部向海盆中央,呈扇形推进,推进距离为200~260 km(图 3)。
海底柱状样测站的沉积物粒度分析结果证实了海盆东南部浊流沉积体的存在。
柱状样1位于海盆东南部下陆坡上,水深2695 m,柱长865 cm。岩性为土黄色、灰色、灰白色、青灰色、灰黑色、褐灰色粉砂、泥夹薄层砂质粉砂、砂质泥和含砾泥等(图 7),根据沉积物岩性和粒度垂向变化特征可分为A、B、C、D、E共5层,颜色多变,相互过渡和渗透,粒级以粉砂组分占明显优势,其次为黏土组分,且以细粉砂和粗黏土为主。频率曲线多次出现双峰或多峰,概率累积曲线由多段悬浮组分组成,表明其物质组成和来源较为复杂;中间多处出现薄层状和团块状砂质沉积物,说明其沉积环境并不稳定,多次出现了水动力较强的沉积环境(蔡观强等,2018)。揭示了该柱状样在沉积时期内多次出现非正常浊流沉积。
柱状样2位于海盆中,水深3733 m,柱长420 cm。岩性为黄褐色、灰黄色、灰色、灰黑色、深灰色、青灰色砂质粉砂、硅质黏土、含硅质含钙质黏土、含硅质钙质黏土、含钙质硅质黏土、硅质钙质黏土等。根据沉积物岩性和粒度以及CaCO3和硅质生物含量的垂向变化特征可分为A、B、C共3层(图 8)。A层从上往下岩性无明显变化,粒度普遍较粗,以砂质粉砂为主,跳跃组分相对较高,水动力较强,其颜色极为杂乱,变化较大,多次出现颜色界线明显的现象;B层岩性为细粒的硅质钙质黏土夹薄层砂质粉砂,颜色杂乱多变,A、B层均见有较硬的半固结的泥砾出现;C层为较粗的砂质粉砂,跳跃组分亦相对较多,水动力较强。表明A、B、C层在沉积过程中其沉积环境较为动荡,A、C层水动力相对较强,B层相对较弱,总体为非正常的浊流沉积所致。
该柱状样3位于海盆中,采样点水深4149 m,共取样790 cm。岩性为黄灰色、灰黄色、黄褐色、灰色和青灰色砂质粉砂、砂质泥、含硅质黏土、硅质黏土、含硅质含钙质黏土、含硅质钙质黏土等(图 9)。根据沉积物岩性和粒度以及CaCO3和硅质生物含量的垂向变化特征可将该柱状样分为A、B、C共3层。A层粒度普遍较粗,以砂质粉砂为主,跳跃组分相对较高,水动力较强,其颜色极为杂乱,多次出现颜色界线明显的现象;B层岩性为粗粒的砂质粉砂和细粒的含硅质含钙质黏土互为交错出现,A、B层均见有较硬的半固结的泥砾出现,表明A、B两层在沉积过程中水动力较强,其沉积环境多次发生改变,较为动荡,为非正常的浊流沉积所致。
由陆坡到海盆的3个柱状样测站,描述了浊积扇不同位置的浊流沉积物特征,证实了浊积扇沉积体系的存在,显示了从南海海盆东南部陆坡到海盆浊积扇发育的轨迹,很好地揭示了研究区的沉积环境演变,为海盆沉积充填序列研究提供了直接的证据。
构造隆升和岩浆活动控制了南海海盆东南部浊积扇体系的发育。
早中新世晚期到中中新世早期,南部礼乐滩和巴拉望岛持续上升,菲律宾岛弧逐渐向北移动(Briais et al., 1993),南海海盆开始向东南部菲律宾岛弧发生俯冲活动,致使马尼拉海沟开始形成,海盆东南部形成NNW-SSE方向的低隆起(图 10),南部陆架-陆坡与海盆的高差加大,阶梯状正断层发育。该构造活动极大改变了原有平缓的沉积古地理环境,水动力条件发生变化(姚伯初等,2004;钟广见等,2008;Qin et al., 2019),对深水扇影响很大,中中新世到上新世的断层为同沉积断裂,控制了洼陷,诱发了浊流等的发育(Li et al., 2018)。因而,中中新世块体流开始发育,形成快速堆积的块体流沉积,物源来自东部低隆起带和南部巴拉望岛方向。
晚中新世到上新世,南海海盆向东持续俯冲,东南部地壳发生明显的变形挠曲(图 11),NNW-SSE向低隆起继续发育,隆起带两侧岩体发育,同时南部还存在持续上升的礼乐滩—巴拉望岛架(许淑梅等,2013),引发该区域水动力异常,浊流发育,以低隆起带为界,东、西两侧发育大规模浊积扇沉积体。
上新世到第四纪,南海海盆向东俯冲活动加强,地壳的变形挠曲持续增加,南部和东部岛弧继续抬升,浊流继续发育。同时,海盆东南部的岩浆作用开始沿着低隆起带活动(图 11),加剧了区域构造隆升作用,使得从上新世开始,研究区水道、天然堤十分发育,水道作为物质运输的通道,将陆源物质从较远的巴拉望岛等物源区,搬运至海盆中汇集起来。
由以上分析可知,在南海海盆深水沉积环境下,受到早中新世到第四纪礼乐滩—巴拉望岛架抬升、南海海盆向东俯冲活动的影响,致使海盆东南部低隆起形成、火成岩体发育,触发了块体流和浊流等异常水动力的发生,形成深水动荡环境。
中中新统—第四系发育多期大型浊积扇沉积体系,揭示了南海南部深海沉积作用及沉积演化过程。该浊积扇体系以沉积物波、水道充填、海底扇、块体流等沉积体为主,总体上由海盆东南部向海盆中央呈扇形推进,推进距离一般为150~260 km。早期以近源、快速堆积的块体流沉积为主;晚期以水道为“渠”,以远源沉积物为主。从老到新浊积扇的规模和结构不断变化,显示出海平面总体上升的趋势,揭示了丰富的海平面变化信息。垂向上浊流沉积层层叠置发育,形成厚层的浊积砂体,可作为良好储集层。上新世—第四纪水道十分发育,水道砂体底部呈“V”型展布,由南向北延伸,揭示出物源主要来自礼乐滩及北巴拉望区域。
研究区浊流发育位置处于南海东南部陆缘和深海平原之间,将物质从隆起区向海盆区运移,是陆源物质由浅海输送到深海平原的重要机制(Reading,1994;Sømme,2013)。该浊积扇体系的发育演化,再现了物质从陆地到最终汇集地—海盆的全过程和动力机制,构成了南海南部“源-汇”沉积体系的重要环节。
Anthony E J, Julian M. 1999. Source- to- sink sediment transfers, environmental engineering and hazard mitigation in the steep Var River catchment, French Riviera, southeastern France[J]. Geomorphology, 31(1): 337-354. |
Briais A, Patriat P, Tapponnier P. 1993. Updated interpretation of magnetic anomalies and seafloor spreading stages in the South China Sea: Implications for the Tertiary tectonics of Southeast Asia[J]. J. Geophys. Res., 98(B4): 6299-6328. doi: 10.1029/92JB02280 |
Cai Guanqiang, Li Shun, Zhao Li, Gao Hongfang, Zhong Hexian. 2018. Geochemical characteristics of surface sediments from the middle deep-sea basin of South China Sea[J]. Marine Geology and Quaternary Geology, 39(4): 23- 33(in Chinese with English abstract). |
Expedition 349 Scientists. 2014. South China Sea tectonics: Opening of the South China Sea and its implications for southeast Asian tectonis, climates, and deep mantle processes since the Late Mesozoic[R]. International Ocean Discovery Program Preliminary Report, 349. http://dx.doi.org/10.14379/iodp.pr.349.2014. |
Lei Zhenyu, Zhang Li, Su Ming, Luo Shuaibing, Qian Xing, Zhang Boda. 2019. Types, characteristics and implication for hydrocarbon exploration of the Middle Miocene deep- water sediments in Beikang Basin, southern South China Sea[J]. China Geology, 2(1): 85-93. doi: 10.31035/cg2018094 |
Li C F, Xu X, Lin J, Sun Z, Zhu J, Yao Y, Zhao X, Liu Q S, Kulhanek D K, Wang J, Song T R, Zhao J F, Qiu N, Guan Y X, Zhou Z Y, Williams T, Bao R, Briais A, Brown E A, Chen Y F, Clift P D, Colwell F S, Dadd K A, Ding W W, Almeida I H, Huang X, Hyun S, Jiang T, Koppers A A P, Li Q Y, Liu C L, Liu Z F, Nagai R H, Peleoalampay A, Su X, Tejada M L G, Trinh H S, Yeh Y C, Zhang C L, Zhang F, Zhang G L. 2014. Ages and magnetic structures of the South China Sea constrained by deep tow magnetic surveys and IODP Expedition 349[J]. Geochem. Geophys. Geosyst., 15(12):4958-4983. doi: 10.1002/2014GC005567 |
Li Mengjun, Bi Naishuang, Hu Lisha, Liu Xiaohang, Xu Jingping. 2018. Sedimentary characteristics and processes revealed by the push cores of the 140th dive of DSV"Jiaolong"in the Taiwan Submarine Canyon, Northern South China Sea[J]. Marine Geology and Quaternary Geology, 39(4): 23 − 33(in Chinese with English abstract). |
Li Ruimin, Yin Zhiqiang, Wang Yi, Li Xiaolei, Liu Qiong, Gao Mengmeng. 2018. Geological resources and environmental carrying capacity evaluation review, theory and practice in China[J]. China Geology, 1(4): 556-565. doi: 10.31035/cg2018050 |
Li Yangchun, Zhang Kexin, He Weihong, Xu Yadong, Song Bowen, Yu Yang, Ke Xue, Kou Xiaohu, Luo Mansheng, Xin Houtian, Fu Junyu, Yang Zhuliang, Zhao Xiaoming, Yin Fuguang, Li Zhipei. 2018. Division of tectonic-strata superregions in China[J]. China Geology, l(2): 236-256. |
Lin Changsong, Xia Qinglong, Shi Hesheng, Zhou Xinhuai. 2015. Geomorphological evolution, source to sink system and basin analysis[J]. Earth Science Frontiers, 22(1): 9-20(in Chinese with English abstract). |
Lin Changsong, Liu Jingyan, Cai Shixiang, Zhang Yanmei, Lü Ming, Li Jie. 2001. Sedimentation and evolution background of large incised channel and submarine gravity flow system in Yingqiong basin[J]. Chinese Science Bulletin, 46(1): 69-72 (in Chinese with English abstract). doi: 10.1007/BF03183213 |
Liang Jinqiang, Deng Wei, Lu Jingan, Kuang Zenggui, He Yulin, Zhang Wei, Gong Yuehua, Liang Jin, Meng Miaomiao. 2020. A fast identification method based on the typical geophysical differences between submarine shallow carbonates and hydrate bearing sediments in the northern South China Sea[J]. China Geology, 3(1): 16-27. doi: 10.31035/cg2020021 |
Liu Rui, Zhou Jiangyu, Zhang Li, Liu Xiaofeng, Wei Zhenquan, Qian Xing, Shuai Qingwei, Liao Jinfang. 2013. Depositional architecture and evolution of deep water fan system in the northwestern Subbasin, South China Sea[J]. Acta Sedimentologica Sinica, 31(4): 706-716(in Chinese with English abstract). |
Moore G T. 1969. Interaction of rivers and oceans: Pleistocene petroleum potential[J]. AAPG Bulletin, 53(12): 2421-2430. |
Pang Xiong, Peng Dajun, Chen Changmin, Zhu Ming, He Min, Shen Jun, Liu Baojun. 2007. Three hierarchies"Source-Conduit-Sink" coupling analysis of the Pearl River deep- water fan system[J]. Acta Geologica Sinica, 81(6): 857- 864(in Chinese with English abstract). |
Peng Dajun, Pang Xiong, Chen Changmin, Zhu ming, Huang Xianlv, Shu Yu. 2006. The characteristics and controlling factors for the formation of deep-water fan system in South China Sea[J]. Acta Sedimentologica Sinica, 24(1): 10- 19(in Chinese with English abstract). |
Peng Yongmin, Song Chuanchun, Wang Dengwen, Luo Qun, Huang Handong. 2011. Turbidity fans and hydrocarbon prospecting of lower 3rd Member of Shahejie Formation from well Che15, Jiyang depression[J]. Geology in China, 38(5): 1289- 1297(in Chinese with English abstract). |
Qin Xuwen, Zhao Bin, Li Fuyuan, Zhang Baojin, Wang Houjin, Zhang Ruwei, He Jiaxiong, Chen Xi. 2019. Deep structural research of the South China Sea: Progresses and directions[J]. China Geology, 2 (4): 530-540. |
Reading H G, Richards M. 1994. Turbidite systems in deep- water basin margins classified by grain-size and feeder system[J]. AAPG Bulletin, 78(5): 792-822. |
Shanmugam G. 2000. 50 years of the turbidite paradigm (1950s1990s): deep- water processes and facies models: A critical perspective[J]. Marine and Petroleum Geology, 17(2): 285-342. doi: 10.1016/S0264-8172(99)00011-2 |
Shanmugam G. 2006. Deep- water Processes and Facies Models: Implications for Sandstone Petroleum Reservoirs[M]. Elsevier Science, 191-236. |
Sømme T O, Jackson C A L, Vaksdal M. 2013. Source- to- sink analysis of ancient sedimentary systems using a subsurface case study from the Mør-Trøndelag area of southern Norway: Part 1depositional setting and fan evolution[J]. Basin Research, 25(5): 489-511. doi: 10.1111/bre.12013 |
Stow D A V, Johansson M. 2000. Deep-water massive sands: nature, origin and hydrocarbon implications[J]. Marine and Petroleum Geology, 17(2): 145-174. doi: 10.1016/S0264-8172(99)00051-3 |
Su Ming, Zhang Cheng, Xie Xinong, Wang Zhenfeng, Jiang Tao, He Yunlong, Zhang Cuimei. 2000. Controlling factors on the submarine canyon system: A case study of the Central Canyon System in the Qiongdongnan Basin, northern South China Sea[J]. Science China: Earth Sciences, 44(8): 1807-1820(in Chinese with English abstract). |
Wang Hairong, Wang Yingmin, Qiu Yan, Peng Xuechao, Li Wencheng. 2008. Development and its tectonic activity´s origin of turbidity current sediment wave in Taiwan bank, northeastern South China Sea[J]. Acta Sedimentologica Sinica, 26(1): 39−45(in Chinese with English abstract). |
Wang Yahui, Zhang Daojun, Zhao Pengxiao, Chen Yang, Huang Can, Su Yufeng. 2016. A new consideration on the genetic mechanism of the central canyon in the Qiongdongnan Basin, the northern South China Sea[J]. Acta Oceanologica Sinica, 38(11): 97- 124(in Chinese with English abstract). |
Xu Shumei, Peng W U, Zhang Wei, Zhang Haiyang, Liu Zhi, Dai Liming, Li Jianwei, Li Lingbo. 2013. Paleo-coastline changes in South China Sea in some critical times[J]. Marine Geology and Quaternary Geology, 33(1): 1-10(in Chinese with English abstract). |
Yang Shengxiong, Qiu Yan, Zhu Benduo. 2015. Atlas of Geology and Geophysics of South China Sea(1:2000000)[M]. Tianjing: China Navigation Publications (in Chinese with English abstract). |
Yao Bochu, Wang Ling, Wu Nengyou. 2004. Cenozoic plate tectonic activities in the Great South China Sea area[J]. Geology in China, 31(2):113-122(in Chinese with English abstract). |
Zhong Guangjian, Wu Nengyou, Lin Zhen, Yao Yongjian, Yi Hai.2008. Characteristics of faults on the northeastern continental slope of the South China Sea and their controls on basin evolution[J]. Geology in China, 35(3): 456- 462 (in Chinese with English abstract). |
蔡观强, 李顺, 赵利, 高红芳, 钟和贤. 2018.南海海盆中部表层沉积物地球化学特征[J].海洋地质与第四纪地质, 38(5): 90−101. |
李梦君, 毕乃双, 胡丽沙, 刘晓航, 徐景平. 2018.南海北部台湾峡谷"蛟龙号"第140潜次沉积物特征及其沉积过程指示意义[J].海洋地质与第四纪地质, 39(4): 23−33. |
林畅松, 刘景彦, 蔡世祥, 张艳梅, 吕明, 李杰. 2001.莺琼盆地大型下切谷和海底重力流体系的沉积构成和发育背景[J].科学通报, 46(1): 69−72. |
林畅松, 夏庆龙, 施和生, 周心怀. 2015.地貌演化、源-汇过程与盆地分析[J].地学前缘, 22(1): 9−20. doi: 10.13745/j.esf.2015.01.002 |
刘睿, 周江羽, 张莉, 刘小峰, 韦振权, 钱星, 帅庆伟, 廖锦芳. 2013.南海西北次海盆深水扇系统沉积演化特征[J].沉积学报, 31(4): 706−716. |
庞雄, 彭大钧, 陈长民, 朱明, 何敏, 申俊, 柳保军. 2007.三级"源-渠-汇"耦合研究珠江深水扇系统[J].地质学报, 81(6): 857−864. |
彭大均, 庞雄, 陈长民, 朱明, 黄先律, 舒誉.2006.南海珠江深水扇系统的形成特征与控制因素[J].沉积学报, 24 (1): 10−19. |
彭勇民, 宋传春, 王登稳, 罗群, 黄捍东. 2011.济阳坳陷车15井区浊积扇沉积及油气勘探意义[J].中国地质, 38(5): 1289−1297. |
苏明, 张成, 解习农, 王振峰, 姜涛, 何云龙, 张翠梅. 2014.深水峡谷体系控制因素分析——以南海北部琼东南盆地中央峡谷体系为例[J].中国科学:地球科学, 44(8): 1807−1820. |
王海荣, 王英民, 邱燕, 彭学超, 李文成. 2008.南海东北部台湾浅滩陆坡的浊流沉积物波的发育及其成因的构造控制[J].沉积学报, 26(1): 39−45. |
王亚辉, 张道军, 赵鹏肖, 陈扬, 黄灿, 苏榆丰. 2016.南海北部琼东南盆地中央峡谷成因新认识[J].海洋学报, 38(11): 97−124. |
许淑梅, 吴鹏, 张威, 张海洋, 刘智, 戴黎明, 李健伟, 李灵波. 2013.南海关键地质历史时期的古海岸线变化[J].海洋地质与第四纪地质, 33(1): 1−10. |
杨胜雄, 邱燕, 朱本铎. 2015.南海地质地球物理图系(1:2000000)[M].天津:中国航海图书出版社. |
姚伯初, 万玲, 吴能有. 2004.大南海地区新生代板块构造活动[J].中国地质, 31(2): 113−122. |
钟广见, 吴能有, 林珍, 姚永坚, 易海. 2008.南海东北部断裂特征及其对盆地演化的控制作用[J].中国地质, 35(3): 456−462. |
![]() |
Location of the study area (blue line range) and simplified regional geological map (The base map is a shaded-relief topographic map, (after Yang Shengxiong et al., 2016)
Seismic facies and large interpretation map of mass-flow deposit about the middle Miocene in southeastern sea basin of South China Sea(the section location shown in Fig. 1)
Development characteristics of submarine fans since late Miocene(the section location shown in Fig. 1)
Turbidite fan distribution in middle Miocene-Quaternary (The base map is a shaded-relief map)
Development characteristics of western sediment waves since late Miocene(section position shown in Fig. 1)
Development characteristics of eastern sediment waves since Pliocene(the section location shown in Fig. 1)
Granularity analysis results of the columnar sample 1 (location shown in Fig. 1 and Fig. 4)
Granularity analysis results of the columnar sample 2 (location shown in Fig. 1 and Fig. 4)
Granularity analysis results of the columnar sample 3 (location shown in Fig. 1 and Fig. 4)
Control of turbidite development by tectonic uplift (the section location shown in Fig. 1)
Control of turbidite development by tectonic deflection and magmatism (the section location shown in Fig. 1)