2020 Vol. 47, No. 5
Article Contents

GAO Hongfang, ZHONG Hexian, SUN Meijing, NIE Xin, JIANG Tao, HUANG Wenkai, DU Wenbo, CHEN Jiale. 2020. The large deep-water turbidity fan system in southeastern South China Sea Basin: Formation and tectonic constraint[J]. Geology in China, 47(5): 1395-1406. doi: 10.12029/gc20200507
Citation: GAO Hongfang, ZHONG Hexian, SUN Meijing, NIE Xin, JIANG Tao, HUANG Wenkai, DU Wenbo, CHEN Jiale. 2020. The large deep-water turbidity fan system in southeastern South China Sea Basin: Formation and tectonic constraint[J]. Geology in China, 47(5): 1395-1406. doi: 10.12029/gc20200507

The large deep-water turbidity fan system in southeastern South China Sea Basin: Formation and tectonic constraint

    Fund Project: Supported by the Project of China Geological Survey(No. 1212011220117, No. DD20160138)and the National Natural Science foundation of China(No. U1901214)
More Information
  • Author Bio: GAO Hongfang, female, born in 1971, doctor and professor, mainly engages in marine regional geology and sedimentary basin analysis;E-mail:promap@163.com.
  • A large turbidite fan system was found from southeastern South China Sea basin through the latest multi-channel seismic profiles in the regional geological and geophysical measurement data set. This fan system occurred in the water depth from 2000 m to 3800 m of the present sea level, with forward northwest direction to the central basin edge 150-260 km in length. The fan system was interpreted to have been formed from middle Miocene to Quaternary with series of turbidite fan sequences, mainly composed of sediment waves, channel filling, submarine fans, and mass flows. In time scale, from the early to late stage, the size and architecture of fan system were constantly changing, underlying valuable information of sea level change, depositional process and tectonic evolution. In spatial scale, the turbidite sand bodies were formed by the superimposed layers of turbidite flow sediments. The channels were well developed on the seabed within this fan system. The bottom of the channel sand bodies are distributed on "V" shape in panel, extending from south to north, revealing mainly sources from Liyue Bank and north Palawan Island area. The turbidite fan's formation was obviously controlled by tectonic movement, on the one hand related to the uplift of Liyue Bank-Palawan Island since the middle Miocene and, and on the other hand related to magmatic activity since the late Miocene. The turbidite current mechanism occurred in the transition of continental margin to abyssal plain in the southeast of the South China Sea, driving particles transportation from shallow sea to deep basin. This new interpreted large turbidite fan system presents an important linkage of "source-to-sink" sedimentary system, and benefits to revealing deep-sea sedimentary evolution process in the South China Sea.

  • 加载中
  • Anthony E J, Julian M. 1999. Source- to- sink sediment transfers, environmental engineering and hazard mitigation in the steep Var River catchment, French Riviera, southeastern France[J]. Geomorphology, 31(1): 337-354.

    Google Scholar

    Briais A, Patriat P, Tapponnier P. 1993. Updated interpretation of magnetic anomalies and seafloor spreading stages in the South China Sea: Implications for the Tertiary tectonics of Southeast Asia[J]. J. Geophys. Res., 98(B4): 6299-6328. doi: 10.1029/92JB02280

    CrossRef Google Scholar

    Cai Guanqiang, Li Shun, Zhao Li, Gao Hongfang, Zhong Hexian. 2018. Geochemical characteristics of surface sediments from the middle deep-sea basin of South China Sea[J]. Marine Geology and Quaternary Geology, 39(4): 23- 33(in Chinese with English abstract).

    Google Scholar

    Expedition 349 Scientists. 2014. South China Sea tectonics: Opening of the South China Sea and its implications for southeast Asian tectonis, climates, and deep mantle processes since the Late Mesozoic[R]. International Ocean Discovery Program Preliminary Report, 349. http://dx.doi.org/10.14379/iodp.pr.349.2014.

    Google Scholar

    Lei Zhenyu, Zhang Li, Su Ming, Luo Shuaibing, Qian Xing, Zhang Boda. 2019. Types, characteristics and implication for hydrocarbon exploration of the Middle Miocene deep- water sediments in Beikang Basin, southern South China Sea[J]. China Geology, 2(1): 85-93. doi: 10.31035/cg2018094

    CrossRef Google Scholar

    Li C F, Xu X, Lin J, Sun Z, Zhu J, Yao Y, Zhao X, Liu Q S, Kulhanek D K, Wang J, Song T R, Zhao J F, Qiu N, Guan Y X, Zhou Z Y, Williams T, Bao R, Briais A, Brown E A, Chen Y F, Clift P D, Colwell F S, Dadd K A, Ding W W, Almeida I H, Huang X, Hyun S, Jiang T, Koppers A A P, Li Q Y, Liu C L, Liu Z F, Nagai R H, Peleoalampay A, Su X, Tejada M L G, Trinh H S, Yeh Y C, Zhang C L, Zhang F, Zhang G L. 2014. Ages and magnetic structures of the South China Sea constrained by deep tow magnetic surveys and IODP Expedition 349[J]. Geochem. Geophys. Geosyst., 15(12):4958-4983. doi: 10.1002/2014GC005567

    CrossRef Google Scholar

    Li Mengjun, Bi Naishuang, Hu Lisha, Liu Xiaohang, Xu Jingping. 2018. Sedimentary characteristics and processes revealed by the push cores of the 140th dive of DSV"Jiaolong"in the Taiwan Submarine Canyon, Northern South China Sea[J]. Marine Geology and Quaternary Geology, 39(4): 23 − 33(in Chinese with English abstract).

    Google Scholar

    Li Ruimin, Yin Zhiqiang, Wang Yi, Li Xiaolei, Liu Qiong, Gao Mengmeng. 2018. Geological resources and environmental carrying capacity evaluation review, theory and practice in China[J]. China Geology, 1(4): 556-565. doi: 10.31035/cg2018050

    CrossRef Google Scholar

    Li Yangchun, Zhang Kexin, He Weihong, Xu Yadong, Song Bowen, Yu Yang, Ke Xue, Kou Xiaohu, Luo Mansheng, Xin Houtian, Fu Junyu, Yang Zhuliang, Zhao Xiaoming, Yin Fuguang, Li Zhipei. 2018. Division of tectonic-strata superregions in China[J]. China Geology, l(2): 236-256.

    Google Scholar

    Lin Changsong, Xia Qinglong, Shi Hesheng, Zhou Xinhuai. 2015. Geomorphological evolution, source to sink system and basin analysis[J]. Earth Science Frontiers, 22(1): 9-20(in Chinese with English abstract).

    Google Scholar

    Lin Changsong, Liu Jingyan, Cai Shixiang, Zhang Yanmei, Lü Ming, Li Jie. 2001. Sedimentation and evolution background of large incised channel and submarine gravity flow system in Yingqiong basin[J]. Chinese Science Bulletin, 46(1): 69-72 (in Chinese with English abstract). doi: 10.1007/BF03183213

    CrossRef Google Scholar

    Liang Jinqiang, Deng Wei, Lu Jingan, Kuang Zenggui, He Yulin, Zhang Wei, Gong Yuehua, Liang Jin, Meng Miaomiao. 2020. A fast identification method based on the typical geophysical differences between submarine shallow carbonates and hydrate bearing sediments in the northern South China Sea[J]. China Geology, 3(1): 16-27. doi: 10.31035/cg2020021

    CrossRef Google Scholar

    Liu Rui, Zhou Jiangyu, Zhang Li, Liu Xiaofeng, Wei Zhenquan, Qian Xing, Shuai Qingwei, Liao Jinfang. 2013. Depositional architecture and evolution of deep water fan system in the northwestern Subbasin, South China Sea[J]. Acta Sedimentologica Sinica, 31(4): 706-716(in Chinese with English abstract).

    Google Scholar

    Moore G T. 1969. Interaction of rivers and oceans: Pleistocene petroleum potential[J]. AAPG Bulletin, 53(12): 2421-2430.

    Google Scholar

    Pang Xiong, Peng Dajun, Chen Changmin, Zhu Ming, He Min, Shen Jun, Liu Baojun. 2007. Three hierarchies"Source-Conduit-Sink" coupling analysis of the Pearl River deep- water fan system[J]. Acta Geologica Sinica, 81(6): 857- 864(in Chinese with English abstract).

    Google Scholar

    Peng Dajun, Pang Xiong, Chen Changmin, Zhu ming, Huang Xianlv, Shu Yu. 2006. The characteristics and controlling factors for the formation of deep-water fan system in South China Sea[J]. Acta Sedimentologica Sinica, 24(1): 10- 19(in Chinese with English abstract).

    Google Scholar

    Peng Yongmin, Song Chuanchun, Wang Dengwen, Luo Qun, Huang Handong. 2011. Turbidity fans and hydrocarbon prospecting of lower 3rd Member of Shahejie Formation from well Che15, Jiyang depression[J]. Geology in China, 38(5): 1289- 1297(in Chinese with English abstract).

    Google Scholar

    Qin Xuwen, Zhao Bin, Li Fuyuan, Zhang Baojin, Wang Houjin, Zhang Ruwei, He Jiaxiong, Chen Xi. 2019. Deep structural research of the South China Sea: Progresses and directions[J]. China Geology, 2 (4): 530-540.

    Google Scholar

    Reading H G, Richards M. 1994. Turbidite systems in deep- water basin margins classified by grain-size and feeder system[J]. AAPG Bulletin, 78(5): 792-822.

    Google Scholar

    Shanmugam G. 2000. 50 years of the turbidite paradigm (1950s1990s): deep- water processes and facies models: A critical perspective[J]. Marine and Petroleum Geology, 17(2): 285-342. doi: 10.1016/S0264-8172(99)00011-2

    CrossRef Google Scholar

    Shanmugam G. 2006. Deep- water Processes and Facies Models: Implications for Sandstone Petroleum Reservoirs[M]. Elsevier Science, 191-236.

    Google Scholar

    Sømme T O, Jackson C A L, Vaksdal M. 2013. Source- to- sink analysis of ancient sedimentary systems using a subsurface case study from the Mør-Trøndelag area of southern Norway: Part 1depositional setting and fan evolution[J]. Basin Research, 25(5): 489-511. doi: 10.1111/bre.12013

    CrossRef Google Scholar

    Stow D A V, Johansson M. 2000. Deep-water massive sands: nature, origin and hydrocarbon implications[J]. Marine and Petroleum Geology, 17(2): 145-174. doi: 10.1016/S0264-8172(99)00051-3

    CrossRef Google Scholar

    Su Ming, Zhang Cheng, Xie Xinong, Wang Zhenfeng, Jiang Tao, He Yunlong, Zhang Cuimei. 2000. Controlling factors on the submarine canyon system: A case study of the Central Canyon System in the Qiongdongnan Basin, northern South China Sea[J]. Science China: Earth Sciences, 44(8): 1807-1820(in Chinese with English abstract).

    Google Scholar

    Wang Hairong, Wang Yingmin, Qiu Yan, Peng Xuechao, Li Wencheng. 2008. Development and its tectonic activity´s origin of turbidity current sediment wave in Taiwan bank, northeastern South China Sea[J]. Acta Sedimentologica Sinica, 26(1): 39−45(in Chinese with English abstract).

    Google Scholar

    Wang Yahui, Zhang Daojun, Zhao Pengxiao, Chen Yang, Huang Can, Su Yufeng. 2016. A new consideration on the genetic mechanism of the central canyon in the Qiongdongnan Basin, the northern South China Sea[J]. Acta Oceanologica Sinica, 38(11): 97- 124(in Chinese with English abstract).

    Google Scholar

    Xu Shumei, Peng W U, Zhang Wei, Zhang Haiyang, Liu Zhi, Dai Liming, Li Jianwei, Li Lingbo. 2013. Paleo-coastline changes in South China Sea in some critical times[J]. Marine Geology and Quaternary Geology, 33(1): 1-10(in Chinese with English abstract).

    Google Scholar

    Yang Shengxiong, Qiu Yan, Zhu Benduo. 2015. Atlas of Geology and Geophysics of South China Sea(1:2000000)[M]. Tianjing: China Navigation Publications (in Chinese with English abstract).

    Google Scholar

    Yao Bochu, Wang Ling, Wu Nengyou. 2004. Cenozoic plate tectonic activities in the Great South China Sea area[J]. Geology in China, 31(2):113-122(in Chinese with English abstract).

    Google Scholar

    Zhong Guangjian, Wu Nengyou, Lin Zhen, Yao Yongjian, Yi Hai.2008. Characteristics of faults on the northeastern continental slope of the South China Sea and their controls on basin evolution[J]. Geology in China, 35(3): 456- 462 (in Chinese with English abstract).

    Google Scholar

    蔡观强, 李顺, 赵利, 高红芳, 钟和贤. 2018.南海海盆中部表层沉积物地球化学特征[J].海洋地质与第四纪地质, 38(5): 90−101.

    Google Scholar

    李梦君, 毕乃双, 胡丽沙, 刘晓航, 徐景平. 2018.南海北部台湾峡谷"蛟龙号"第140潜次沉积物特征及其沉积过程指示意义[J].海洋地质与第四纪地质, 39(4): 23−33.

    Google Scholar

    林畅松, 刘景彦, 蔡世祥, 张艳梅, 吕明, 李杰. 2001.莺琼盆地大型下切谷和海底重力流体系的沉积构成和发育背景[J].科学通报, 46(1): 69−72.

    Google Scholar

    林畅松, 夏庆龙, 施和生, 周心怀. 2015.地貌演化、源-汇过程与盆地分析[J].地学前缘, 22(1): 9−20. doi: 10.13745/j.esf.2015.01.002

    CrossRef Google Scholar

    刘睿, 周江羽, 张莉, 刘小峰, 韦振权, 钱星, 帅庆伟, 廖锦芳. 2013.南海西北次海盆深水扇系统沉积演化特征[J].沉积学报, 31(4): 706−716.

    Google Scholar

    庞雄, 彭大钧, 陈长民, 朱明, 何敏, 申俊, 柳保军. 2007.三级"源-渠-汇"耦合研究珠江深水扇系统[J].地质学报, 81(6): 857−864.

    Google Scholar

    彭大均, 庞雄, 陈长民, 朱明, 黄先律, 舒誉.2006.南海珠江深水扇系统的形成特征与控制因素[J].沉积学报, 24 (1): 10−19.

    Google Scholar

    彭勇民, 宋传春, 王登稳, 罗群, 黄捍东. 2011.济阳坳陷车15井区浊积扇沉积及油气勘探意义[J].中国地质, 38(5): 1289−1297.

    Google Scholar

    苏明, 张成, 解习农, 王振峰, 姜涛, 何云龙, 张翠梅. 2014.深水峡谷体系控制因素分析——以南海北部琼东南盆地中央峡谷体系为例[J].中国科学:地球科学, 44(8): 1807−1820.

    Google Scholar

    王海荣, 王英民, 邱燕, 彭学超, 李文成. 2008.南海东北部台湾浅滩陆坡的浊流沉积物波的发育及其成因的构造控制[J].沉积学报, 26(1): 39−45.

    Google Scholar

    王亚辉, 张道军, 赵鹏肖, 陈扬, 黄灿, 苏榆丰. 2016.南海北部琼东南盆地中央峡谷成因新认识[J].海洋学报, 38(11): 97−124.

    Google Scholar

    许淑梅, 吴鹏, 张威, 张海洋, 刘智, 戴黎明, 李健伟, 李灵波. 2013.南海关键地质历史时期的古海岸线变化[J].海洋地质与第四纪地质, 33(1): 1−10.

    Google Scholar

    杨胜雄, 邱燕, 朱本铎. 2015.南海地质地球物理图系(1:2000000)[M].天津:中国航海图书出版社.

    Google Scholar

    姚伯初, 万玲, 吴能有. 2004.大南海地区新生代板块构造活动[J].中国地质, 31(2): 113−122.

    Google Scholar

    钟广见, 吴能有, 林珍, 姚永坚, 易海. 2008.南海东北部断裂特征及其对盆地演化的控制作用[J].中国地质, 35(3): 456−462.

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(11)

Tables(1)

Article Metrics

Article views(2916) PDF downloads(241) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint