2020 Vol. 47, No. 4
Article Contents

KE Changhui, WANG Xiaoxia, NIE Zhengrong, YANG Yang, Lü Xingqiu, WANG Shun'an, LI Jinbao. 2020. Age, geochemistry, Nd-Hf isotopes and relationship between granite and gold mineralization of Zhongchuan granitoid pluton in West Qinling[J]. Geology in China, 47(4): 1127-1154. doi: 10.12029/gc20200415
Citation: KE Changhui, WANG Xiaoxia, NIE Zhengrong, YANG Yang, Lü Xingqiu, WANG Shun'an, LI Jinbao. 2020. Age, geochemistry, Nd-Hf isotopes and relationship between granite and gold mineralization of Zhongchuan granitoid pluton in West Qinling[J]. Geology in China, 47(4): 1127-1154. doi: 10.12029/gc20200415

Age, geochemistry, Nd-Hf isotopes and relationship between granite and gold mineralization of Zhongchuan granitoid pluton in West Qinling

    Fund Project: Supported by National Key R & D Plan (No. 2017YFC0601403), National Natural Science Foundation of China(No.41502075, No.41572052) and the Basic R & D Special Fund for Scientific Research Institutes(No.KK1406)
More Information
  • Author Bio: KE Changhui, male, born in 1987, assistant professor, engages in the study of geological prospecting and ore deposits; E-mail:kechanghuicags@126.com
  • Corresponding author: WANG Xiaoxia, female, born in 1960, supervisor of doctor candidate, senior researcher, engages in the study of geological prospecting and ore deposits; E-mail:xiaoxiawang@hotmail.com 
  • The Zhongchuan granitoid pluton is located in the east of the Western Qinling. Zircon LA-ICPMS dating for the porphyritic monzogranite from the Zhongchuan pluton yielded an age of (221±1)Ma (MSWD=0.26), the age of fine-grained monzogranite is (217±1)Ma(MSWD=0.107), that of magmatic enclave include phenocryst is (220±1)Ma(MSWD=0.107), that of magmatic enclave is (216±1)Ma (MSWD=0.26) and that of fine-grained granite vein is 207±1Ma(MSDW=0.29). Magmatic enclave and rock mass have the same age, and the age of granite vein is the youngest, indicating that the ages gradually become younger from the edge to the center. The rock mass and magmatic enclave are respectively of meta-aluminous or weakly peraluminous, high-K calc-alkaline and high-K calc-alkaline or shoshonite series with the Litman index(σ) being 2.20-3.85, 2.24-9.22 and A/CNK being 0.99-1.15, 0.75-1.08. Their REE and trace elements are enriched in large ion lithophile elements (LREE, Rb, Ba, K) and depleted in high-field strength elements(HREE, Zr, Hf, Ta, Nb, P, Ti), with slightly negative to positive anomalies of Eu (δEu=0.29-0.91) and no anomalies of Ce. These characteristics suggest that the granitoids have I type granite features, and the fine-grained monzogranite is located in the center with some highly fractionated I type granite features. The main oxides of rock mass and MME have a good linear relationship in Harker diagram. Nd isotopic compositions of the rock mass and MME are mainly characterized by εNd(t) values of -7.31--8.73 and-5.32--5.69, and TDM2 of 1.59-1.71 Ga and 1.43-1.46 Ga. Zircon Hf isotopic compositions of the rock mass and MME are mainly characterized by εHf(t) values of-7.02--0.31 and -3.0-0, TDM2 of 1.27-1.70 Ga and 1.2-1.5 Ga. These characteristics suggest that the rock mass was derived from partial melting of ancient crustal material and magmatic enclave was derived from the lithospheric mantle, with some mixture. The formation of gold deposits was closely related to Zhongchuan granitoid pluton in time and space, and the age of the gold deposit are slightly later than that of Zhongchuan granitoid pluton and close to that of granite vein. Mineralization data indicate that ore-forming material and lithogenous material were similar to each other. These data indicate that magmatism not only provided a thermal source for the mineralization but also offered ore-forming material.

  • 加载中
  • Andersen T. 2002. Correction of common lead in U-Pb analyses that donot report 204Pb[J]. Chemical Geology, 192(1/2):59-79.

    Google Scholar

    Barbarin B, Didier J. 1992. Genesis and evolution of mafic microgranular enclaves through various types of interaction between coexisting felsic and mafic magmas Transactions of the Royal Soeiety of Edinburgh[J]. Earth Sciences, 83:145-153.

    Google Scholar

    Chappell B. 1999. Aluminium saturation in I-and S-type granites and the characterization of fractionated haplogranites[J]. Lithos, 46(3):535-551.

    Google Scholar

    Chen Yanjing, Zhang Jing, Zhang Fuxin, Pirajno F, Li Chao. 2004. Carlin and carlin-like gold deposits in western Qinling Mountains and their metallogenic time, tectonic setting and model[J]. Geological Review, 50(2):134-152(in Chinese with English abstract).

    Google Scholar

    Chen Yuan. 1994. Mineral source of the Li Ba gold deposit in West Qinling[J]. Northwestern Geology, (2):5-9(in Chinese).

    Google Scholar

    Donaire T, Pascual E, Pin C, Duthou JL. 2005. Microgranular enclaves as evidence of rapid cooling in granitoid rocks:The case of the Los Pedroches granodiorite, Iberian Massif, Spain[J]. Contributions to Mineralogy and Petrology, 149(3):247-265. doi: 10.1007/s00410-005-0652-0

    CrossRef Google Scholar

    Feng Jianzhong, Wang Dongbo, Wang Xueming, Shao Shicai, Lin Guofang, Shi Jianjun. 2003. Geology and metallogenesis of Liba large-size gold deposit in Lixian, Gansu Province[J]. Mineral Deposits, 22(3):257-263(in Chinese with English abstract).

    Google Scholar

    Feng Yimin, Cao Xuanyi, Zhang Erpeng, Hu Yunxu, Pan Xiaoping, Yang Junlu. 2003. Tectonic evolution framework and nature of the West Qinling orogenic belt[J]. Northwestern Geology, 36(1):1-10(in Chinese with English abstract).

    Google Scholar

    Griffin W L, Belousova E A, Shee S R, Pearson N J, O'Reilly S Y. 2004. Archean crustal evolution in the northern Yilgarn Craton:U-Pb and Hf-isotope evidence from detrital zircons[J]. Precambrian Research, 131(3):231-282.

    Google Scholar

    Han Yaoquan. 2004. Mineralization Model and Prospecting Proposal of Gold Deposits in East Qingling[D]. Changsha: Central South University(in Chinese).

    Google Scholar

    Hibbard MJ. 1991. Textural anatomy of twelve magma-mixed granitoid systems[C]//Didier J and Barbarin B(eds.). Enclaves and Granite Petrology. Developments in Petrology. Elsevier, Amsterdam, 431-444.

    Google Scholar

    Hou Kejun, Li Yanhe, Zou Tianren, Qu Xiaoming, Shi Yuruo, Xie Guiqing. 2007. Laser ablation-MC-ICP-MS technique for Hf isotope microanalysis of zircon and its geological applications[J]. Acta Petrologica Sinica, 23(10):2595-2604(in Chinese with English abstract).

    Google Scholar

    Li Hongwei, Lou Feng, Xu Guanjun, Chen Zhen, Chen Xiaoyue. 2011. Mineralization relevant to repeated crustal melting:An example from the ZCGB, Gansu Province[J]. Earth Science Frontiers, 18(1):126-132(in Chinese with English abstract).

    Google Scholar

    Mao Jingwen, Zhou Zhenhua, Feng Chengyou, Wang Yitian, Zhang Changqing, Peng Huijuan, Yu Miao. 2012. A preliminary study of the Triassic large-scale mineralization in China and its geodynamic setting[J]. Geology in China, 39(6):1437-1471(in Chinese with English abstract).

    Google Scholar

    Mao Jingwen, Zhang Zuoheng, Yu Jinjie, Wang Yitian, Niu Baogui. 2003. Geodynamic settings of Mesozoic large-scale mineralization in North China and adjacent areas——Implication from the highly precise and accurate ages of metal deposits[J]. Chinese Science:Earth Science, 33(4):289-299(in Chinese with English abstract).

    Google Scholar

    Nie Zhengrong. 2015. Age, Geochemistry, Magma Mixing of Zhongchuan Granitoid Pluton in the Western Qinling[D]. Beijing: China University of Geosciences (Beijing)(in Chinese with English abstract).

    Google Scholar

    Perugini Diego, Poli Giampiero. 2000. Chaotic dynamics and fractals in magmatic interaction processes:A different approach to the interpretation of mafic microgranular enclaves[J]. Earth and Planetary Science Letters, 177 (1/2):93-103.

    Google Scholar

    Qin Jiangfeng. 2010. Petrogenesis and Geodynamic Implications of the Late-triassic Granitoids from the Qinling Orogenic Belt[D]. Xi'an: Northwest University(in Chinese with English abstract).

    Google Scholar

    Rollinson H. 1993. Using Geoehemieal Data: Evaluation, Presentation, Interpretation[M]. Longman Group UK Ltd. Oxford, 352.

    Google Scholar

    Song Zhongbao, Feng Yimin, He Shiping. 1997. Charateristics of tectono-magmatism of Zhongchuan granite and its ore-forming process[J]. Journal of Xi'an College Geology, (4):48-52(in Chinese with English abstract).

    Google Scholar

    Vernon RH. 1991. Interpretation of microstructures of microgranitoid enelaves[C]//Didier J, Barbarin B(eds.). Enelaves and Granite Petrology. Developments in Petrology. Amsterdam: Elsevier, 277-291.

    Google Scholar

    Wang Xiang, Griffin W L, Wang Zhicheng, Zhou Xinmin, Wang Chuansheng. 2003. Hf isotope composition of zircons and implication for the petrogenesis of Yajiangqiao granite, Hunan Province, China[J]. Chinese Science Bulletin 48(4):379-382(in Chinese). doi: 10.1007/BF03183234

    CrossRef Google Scholar

    Wang Xiaoxia, Wang Tao, Zhang Chengli. 2013. Neoproterozoic, Paleozoic, and Mesozoic granitoid magmatism in the Qinling Orogen, China:Constraints on orogenic process[J]. Journal of Asian Earth Sciences, 72:129-151. doi: 10.1016/j.jseaes.2012.11.037

    CrossRef Google Scholar

    Wang Yinxi, Gu Lianxing, Zhang Zunzhong, Wu Changzhi, Li Huimin, Yang Jiedong. 2007. Sr-Nd-Pb isotope geochemistry of Rhyolite of the Late Carboniferous Dashitou group in eastern Tianshan[J]. Acta Petrologica Sinica, 23(7):1749-1755(in Chinese with English abstract).

    Google Scholar

    Wen Zhiliang. 2008. A new recognition of magma mixing process about jiaochangba rock body, Western Qinling[J]. J. Mineral Petrol., 28(3):29-36(in Chinese with English abstract).

    Google Scholar

    Whalen J B, Currie K L, Chappell B W. 1987. A-type granites:Geochemical characteristics, discrimination and petrogenesis[J]. Contributions to Mineralogy and Petrology, 95(4):407-419. doi: 10.1007/BF00402202

    CrossRef Google Scholar

    Wiebe RA, Smith D, Sturm M, King E M, Seckler M S. 1997. Enelaves in the Cadillac Mountain Granite (Coastal Maine)samples of hybrid magma from the base of the chamber[J]. Journal of Petrology, 38:393-423. doi: 10.1093/petroj/38.3.393

    CrossRef Google Scholar

    Wu Fuyuan, LI Xianhua, Zheng Yongfei, Gao Shan. 2007a. Lu-Hf isotopic systematics and their applications in petrology[J]. Acta Petrologica Sinica, 23(2):185-220(in Chinese with English abstract).

    Google Scholar

    Wu Fuyuan, Li Xianhua, Yang Jinhui, Zheng Yongfei. 2007b. Discussions on the petrogenesis of granites[J]. Acta Petrologica Sinica, 2007, 23(6):1217-1238(in Chinese with English abstract).

    Google Scholar

    Wyllie P J, Cox K G, Biggar G M. 1962. The habit of apatite in synthetic systems and igneous rocks[J]. Journal of Petrology, 3(2):238-243. doi: 10.1093/petrology/3.2.238

    CrossRef Google Scholar

    Xiao Qinghui, Deng Jinfu, Qiu Ruizhao, Liu Yong, Feng Yanfang. 2009. A preliminary study of the relationship between granitoids and the growth of continental crust:a case study of the formation of key orogen granitoids in China[J]. Geology in China, 36(3):594-622(in Chinese with English abstract).

    Google Scholar

    Xiao Qinghui, Qiu Ruizhao, Xing Zuoyun, Zhang Yu, Wu Guangying, Tong Jinsong. 2007. Major frontiers on studies of granite formation[J]. Geological Review, 53(s1):17-27(in Chinese with English abstract).

    Google Scholar

    Xu Xueyi, Chen Juanlu, Gao Ting, Li Ping, Li Ting. 2014. Granitoid magmatism and tectonic evolution in northern edge of the Western Qinling terrane, NW China[J]. Acta Petrologica Sinica, 30(2):371-389 (in Chinese with English abstract).

    Google Scholar

    Yang Jinhui, Wu Fuyuan, Wilde Simon A, Xie Liewen, Yang Yueheng, Liu Xiaoming. 2007. Tracing magma mixing in granite genesis:in situ U-Pb dating and Hf-isotopes analysis of zircons[J]. Contributions to Mineralogy and Petrology, 153(2):177-190.

    Google Scholar

    Yang Yang, Wang Xiaoxia, Ke Changhui, Wang Shuna, Li Jinba, Nie Zhengrong, Lü Xingqi. 2015. Zircon U-Pb ages, petrogenesis of the Luchuba pluton in West Qinling, and its geological significance[J]. Acta Geologica Sinica, 89(10):1735-1761(in Chinese with English abstract).

    Google Scholar

    Yin Yong, Zhao Yanqing. 2006. Relationgship between granite and goldminerallzation in the gold enrichment[J]. Gansu Geology, 15(1):36-41(in Chinese with English abstract).

    Google Scholar

    Yin Yong. 2006. Relation of Dike rock and gold mineralization in West Qinling Region[J]. Gansu Geology, 20(1):28-37(in Chinese with English abstract).

    Google Scholar

    Yuan Honglin, Gao Shan, Liu Xiaoming, Li Huiming, Detlef Günther, Wu Fuyuan. 2004. Accurate U-Pb age and trace element determinations of zircon bylaser ablation-inductively coupled plasma-mass spectrometry[J]. Geostandards and Geoanalytical Research, 28(3):353-370. doi: 10.1111/j.1751-908X.2004.tb00755.x

    CrossRef Google Scholar

    Zeng Lingsen, Gao Rui, Gao Li'e, Wang Haiyan, He Rizheng, Jin Sheng, Hou Hesheng, Xue Aimin, Xiong Xiaosong, Li Wenhui, Ye Gaofeng. 2017. Geochemical dataset of magmatic Rocks along the deep seismic reflection profile of a typical basin-range junction belt in Western China:the Western Qinling-Linxia Basin[J]. Geology in China, 44(Supp.1):56-63(in Chinese with English abstract).

    Google Scholar

    Zeng Qingtao, Campbell M, Hart C J R, Jourdan F, Muhling J, Bagas L. 2012. Structural and geochronological studies on the Liba gold filed of the West Qinling orogen belt, central China[J]. Mineralium Deposita, 47:799-819. doi: 10.1007/s00126-011-0398-8

    CrossRef Google Scholar

    Zeng Qingtao, T. Campbell Mccuaig, Eric Tohver, Leon Bagas, Lu Y J. 2014. Episodic Triassic magmatism in the western South Qinling Orogen, central China, and its implications[J]. Geological Journal, 49.10.1002/gj.2571.

    Google Scholar

    Zhang Chengli, Wang Tao, Wang Xiaoxia. 2008. Origin and tectonic setting of the Early Mesozoic granitoids in Qinling Orogenic Belt[J]. Geological Journal of China Universities, 14(3):304-316(in Chinese with English abstract).

    Google Scholar

    Zhang Hongfei, Jin Lanlan, Zhang Li, Nigel Harri, Zhou Lian, Hu Shenghong, Zhang Benren. 2005. Geochemical and Pb-Sr-Nd isotopic compositions of granitoids from western Qinling belt:Constraints on basement nature and tectonic affinity[J]. Chinese Science:Earth Science, 35(10):914-926(in Chinese).

    Google Scholar

    Zhang Zongqing, Zhang Guowei, Tang Suohan. 2002. Isotopic Chronology of Metamorphic Strata in South Qinling[M]. Beijing:Geological Publishing House(in Chinese).

    Google Scholar

    Zhang Zuoheng, Mao Jingwen, Wang Yong. 2004. Characteristics of fluid inclusions in the gold deposits within Zhongchuan area, western Qinling and their geological significance[J]. Acta Petrologica et Mineralogica, 23(2):147-157(in Chinese with English abstract).

    Google Scholar

    Zheng Yongfei, Zhao Zifu, Wu Yuanbao, Zhang Shaobing, Liu Xiaoming, Wu Fuyuan. 2006. Zircon U-Pb age, Hf and O isotope constraints on protolith origin of ultrahigh-pressure eclogite and gneiss in the Dabie orogen[J]. Chemical Geology, 231(1/2):135-158.

    Google Scholar

    Zheng Yongfei, Zhang Shaobing, Zhao Zifu, Wu Yuanbao, Li Xianhua, Li Zhengxiang, Wu Fuyuan. 2007. Contrasting zircon Hf and O isotopes in the two episodes of Neoproterozoic granitoids in South China:Implications for growth and reworking of continental crust[J]. Lithos, 96(1/2):127-150.

    Google Scholar

    陈衍景, 张静, 张复新, Pirajno F., 李超.2004.西秦岭地区卡林-类卡林型金矿床及其成矿时间、构造背景和模式[J].地质论评, 50(2):134-152. doi: 10.3321/j.issn:0371-5736.2004.02.004

    CrossRef Google Scholar

    陈源. 1994.西秦岭李坝金矿床成矿物质来源探讨[J].西北地质, (2):5-9.

    Google Scholar

    冯建忠, 汪东波, 王学明, 邵世才, 林国芳, 史建军. 2003.甘肃礼县李坝大型金矿床成矿地质特征及成因[J].矿床地质, 22(3):257-263. doi: 10.3969/j.issn.0258-7106.2003.03.006

    CrossRef Google Scholar

    冯益民, 曹宣铎, 张二朋, 胡云绪, 潘晓萍, 杨军录. 2003.西秦岭造山带的演化、构造格局和性质[J].西北地质, 36(1):1-10. doi: 10.3969/j.issn.1009-6248.2003.01.001

    CrossRef Google Scholar

    韩要权. 2004.西秦岭东部金矿成矿模式和找矿方向[D].长沙: 中南大学.http://cdmd.cnki.com.cn/Article/CDMD-10533-2004093637.htm

    Google Scholar

    侯可军, 李延河, 邹天人, 曲晓明, 石玉若, 谢桂青. 2007. LA-MC-ICP-MS锆石Hf同位素的分析方法及地质应用[J].岩石学报, 23(10):2595-2604. doi: 10.3969/j.issn.1000-0569.2007.10.025

    CrossRef Google Scholar

    李宏卫, 娄峰, 许冠军, 陈震, 陈小月. 2011.多次重熔的成矿作用:对甘肃中川岩体成岩成矿过程的再认识[J].地学前缘, 18(1):126-132.

    Google Scholar

    毛景文, 张作衡, 余金杰, 王义天, 牛宝贵. 2003.华北及邻区中生代大规模成矿的地球动力学背景:从金属矿床年龄精测得到启示[J].中国科学:地球科学, 33(4):289-299.

    Google Scholar

    毛景文, 周振华, 丰成友, 王义天, 张长青, 彭惠娟, 于淼. 2012.初论中国三叠纪大规模成矿作用及其动力学背景[J].中国地质, 39(6):1437-1471. doi: 10.3969/j.issn.1000-3657.2012.06.001

    CrossRef Google Scholar

    聂政融. 2015.西秦岭中川花岗岩体年代学、地球化学、岩浆混合成因[D].北京: 中国地质大学(北京).http://cdmd.cnki.com.cn/Article/CDMD-11415-1015391567.htm

    Google Scholar

    秦江锋. 2010.秦岭造山带晚三叠世花岗岩类成因机制及深部动力学背景[D].西北大学.http://cdmd.cnki.com.cn/Article/CDMD-10697-2010115961.htm

    Google Scholar

    宋忠宝, 冯益民, 何世平. 1997.中川花岗岩构造岩浆活动特征与成矿作用[J].西安地质学院学报, (4):48-52.

    Google Scholar

    汪相, Griffin W L, 王志成, 周新民, 汪传胜. 2003.湖南丫江桥花岗岩中锆石的Hf同位素地球化学[J].科学通报, 48(4):379-382. doi: 10.3321/j.issn:0023-074X.2003.04.016

    CrossRef Google Scholar

    王银喜, 顾连兴, 张遵忠, 吴昌志, 李惠民, 杨杰东. 2007.东天山晚石炭世大石头群流纹岩Sr-Nd-Pb同位素地球化学研究[J].岩石学报, 23(7):1749-1755. doi: 10.3969/j.issn.1000-0569.2007.07.020

    CrossRef Google Scholar

    温志亮. 2008.西秦岭教场坝岩体岩浆混合成因的新认识[J].矿物岩石, 28(3):29-36. doi: 10.3969/j.issn.1001-6872.2008.03.006

    CrossRef Google Scholar

    吴福元, 李献华, 郑永飞, 高山. 2007a. Lu-Hf同位素体系及其岩石学应用[J].岩石学报, 23(2):185-220.

    Google Scholar

    吴福元, 李献华, 杨进辉, 郑永飞. 2007b.花岗岩成因研究的若干问题[J].岩石学报, 23(6):1217-1238.

    Google Scholar

    肖庆辉, 邓晋福, 邱瑞照, 刘勇, 冯艳芳. 2009.花岗岩类与大陆地壳生长初探——以中国典型造山带花岗岩类岩石的形成为例[J].中国地质, 36(3):594-622. doi: 10.3969/j.issn.1000-3657.2009.03.008

    CrossRef Google Scholar

    肖庆辉, 邱瑞照, 邢作云, 张昱, 伍光英, 童劲松. 2007.花岗岩成因研究前沿的认识[J].地质论评, 53(s1):17-27.

    Google Scholar

    徐学义, 陈隽璐, 高婷, 李平, 李婷. 2014.西秦岭北缘花岗质岩浆作用及构造演化[J].岩石学报, 30(2):371-389.

    Google Scholar

    杨阳, 王晓霞, 柯昌辉, 王顺安, 李金宝, 聂政融, 吕星球. 2015.西秦岭碌础坝岩体的锆石U-Pb年龄、成因及其地质意义[J].地质学报, 89(10):1735-1761. doi: 10.3969/j.issn.0001-5717.2015.10.003

    CrossRef Google Scholar

    殷勇, 赵彦庆. 2006甘肃西秦岭金矿富集区花岗岩与金成矿作用的关系[J].甘肃地质, 15(1):36-41.

    Google Scholar

    殷勇. 2011.西秦岭地区脉岩与金矿化的关系[J].甘肃地质, 20(1):28-37.

    Google Scholar

    曾令森, 高锐, 高利娥, 王海燕, 贺日政, 金胜, 侯贺晟, 薛爱民, 熊小松, 李文辉, 叶高峰. 2017.中国西部典型盆山结合带:西秦岭-临夏盆地深地震反射剖面沿线岩浆岩岩石地球化学测试数据集[J].中国地质, 44(增刊1):56-63.

    Google Scholar

    张成立, 王涛, 王晓霞. 2008.秦岭造山带早中生代花岗岩成因及其构造环境[J].高校地质学报, 14(3):304-316. doi: 10.3969/j.issn.1006-7493.2008.03.003

    CrossRef Google Scholar

    张宏飞, 靳兰兰, 张利, Nigel Harri, 周炼, 胡圣虹, 张本仁. 2005.西秦岭花岗岩类地球化学和Pb-Sr-Nd同位素组成对基底性质及其构造属性的限制[J].中国科学:地球科学, 35(10):914-926.

    Google Scholar

    张宗清, 张国伟, 唐索寒. 2002.南秦岭变质地层同位素年代学[M].北京:地质出版社.

    Google Scholar

    张作衡, 毛景文, 王勇. 2004.西秦岭中川地区金矿床流体包裹体特征及地质意义[J].岩石矿物学杂志, 23(2):147-157. doi: 10.3969/j.issn.1000-6524.2004.02.006

    CrossRef Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(12)

Tables(5)

Article Metrics

Article views(2833) PDF downloads(334) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint