2020 Vol. 47, No. 2
Article Contents

JIANG Haoyuan, ZHAO Zhidan, ZHU Xinyou, YANG Shangsong, JIANG Binbin, YANG Chaolei, MAO Chunwei. 2020. Characteristics and metallogenic significance of granite porphyry and pyroxene diorite in the Bianjiadayuan Pb-Zn-Ag polymetallic deposit, Inner Mongolia[J]. Geology in China, 47(2): 450-471. doi: 10.12029/gc20200213
Citation: JIANG Haoyuan, ZHAO Zhidan, ZHU Xinyou, YANG Shangsong, JIANG Binbin, YANG Chaolei, MAO Chunwei. 2020. Characteristics and metallogenic significance of granite porphyry and pyroxene diorite in the Bianjiadayuan Pb-Zn-Ag polymetallic deposit, Inner Mongolia[J]. Geology in China, 47(2): 450-471. doi: 10.12029/gc20200213

Characteristics and metallogenic significance of granite porphyry and pyroxene diorite in the Bianjiadayuan Pb-Zn-Ag polymetallic deposit, Inner Mongolia

    Fund Project: Supported by China National Geological Survey National Secondary Project Inner Mongolia Chifeng Nonferrous Metals Base Comprehensive Geological Survey (No. DD20160072) and National Natural Science Fund (No. 41602098)
More Information
  • Author Bio: JIANG Haoyuan, male, born in 1995, doctor candidate, mainly engages in the study of geochemistry; Email:janghaoyuan@outlook.com
  • Corresponding author: ZHU Xinyou, male, born in 1965, doctor, engages in the study of mineral deposits; E- mail:zhuxinyou@outlook.com 
  • Located in the southern section of the CAOB (Central Asian Orogenic Belt), the Bianjiadayuan Pb-Zn-Ag polymetallic deposit belongs to the Sn-Cu-Zn-Pb metallogenic belt of Da Hinggan Mountains. In this study, a series of analyses, such as LAICP-MS zircon U-Pb isotopic dating, major element and trace elements testing and electron microprobe analysis of albite, were performed for the granite porphyry and augite diorite. The results show that the age of granite porphyry and pyroxene diorite are ca. 138 Ma and ca.137 Ma respectively, indicating that the intrusive rocks are products of the magmatic activities in the Early Cretaceous. The pyroxene diorite belongs to high K calc-alkaline series and calc-alkaline series with SiO2 (50.99%-52.89%), CaO (7.4%7-7.51%), MgO (3.64%-4.68%), and alkali (Na2O+K2O) 4.91%-5.36%. Granitic porphyry with miarolitic structure and microscopic identification shows that feldspar is all alkaline feldspar. Non-mineralized granite porphyry is characterized by high SiO2 (50.99%-52.89%), alkali (Na2O+K2O=4.83%-9.42%), A/CNK (1.13-2.40), LREE enrichment, strong negative Eu anomalies (δEu=0.12-0.32), enrichment of LILE such as Rb, Th, U and K, depletion of HFSE such as Ta, Nb, P and Ti and transition elements such as Sr and Ba. According to the electron microprobe analyses, the An values of the albite in granite porphyry are by far lower than 10 (0.03-4.64). These features are similar to the features of typical highly evolved A2 post-orogenic alkali feldspar granite pluton, suggesting that the magma was derived from the lithospheric mantle and formed in the tensional setting. Combined with the geological characteristics and previous research results, the authors hold hat the metallogenic geological body of the Bianjiadayuan area is the granite porphyry pluton, and there is still a great potential for mineralization in the deep part of western mining area.

  • 加载中
  • Ballouard Christophe, Poujol Marc, Boulvais Philippe, Branquet Yannick, Tartèse Romain, Vigneresse Jean Louis. 2016. Nb-Ta fractionation in peraluminous granites:A marker of the magmatic-hydrothermal transition[J]. Geology, 44:231-234. doi: 10.1130/G37475.1

    CrossRef Google Scholar

    Bonin Bernard. 2007. A-type granites and related rocks:Evolution of a concept, problems and prospects[J]. Lithos, 97:1-29. doi: 10.1016/j.lithos.2006.12.007

    CrossRef Google Scholar

    Breiter Karel, Lamarão Claudio Nery, Borges Régis Munhoz Krás, Dall'Agnol Roberto. 2014. Chemical characteristics of zircon from A-type granites and comparison to zircon of S-type granites[J]. Lithos, s 192-195:208-225.

    Google Scholar

    Brown G C. 1982. Calc-alkaline intrusive rocks: their diversity, evolution, and relation to volcanic arcs[C]//Thorpe R S (ed.).Andesites-Orogenic Andesites and Related Rocks. New York, John Wiley&. Sons: 437-464.

    Google Scholar

    Collins W J, Beams S D, White A J R, Chappell B W. 1982. Nature and origin of A-type granites with particular reference to southeastern Australia[J]. Contributions to Mineralogy & Petrology, 80:189-200.

    Google Scholar

    Chen Gongzheng, Wu Guan, Li Tiegang, Liu Ruilin, Wu Liwen, Zhang Peichun, Zhang Tong, Chen Yuchuan. 2018. LA-ICP-MS zircon and cassiterite U-Pb ages of Daolundaba copper-tungstentin deposit in Inner Mongolia and their geological significance[J]. Mineral Deposits, 37(2):225-245(in Chinese with English abstract).

    Google Scholar

    Dingwell D B, Virgo D. 1988. Viscosities of melts in Na2O-FeO-Fe2O3-SiO2 system and factors controlling relative viscosities of fully polymerized silicate melts[J]. Geochimica et Cosmochimica Acta, 52:395-403. doi: 10.1016/0016-7037(88)90095-6

    CrossRef Google Scholar

    Eby G Nelson. 1990. The A-type granitoids:A review of their occurrence and chemical characteristics and speculations on their petrogenesis[J]. Lithos, 26:115-134. doi: 10.1016/0024-4937(90)90043-Z

    CrossRef Google Scholar

    Eby G Nelson. 1992. Chemical subdivision of the A-type granitoids:Petrogenetic and tectonic implications[J]. Geology, 20:641. doi: 10.1130/0091-7613(1992)020<0641:CSOTAT>2.3.CO;2

    CrossRef Google Scholar

    Gu Yuchao, Chen Renyi, Jia Bin, Song Wanbing, Yu Changtao, Ju Nan. 2017. Zircon U-Pb dating and geochemistry of the syenogranite from the Bianjiadayuan Pb-Zn-Ag deposit of Inner Mongolia and its tectonic implications[J]. Geology in China, 44(1):101-117(in Chinese with English abstract).

    Google Scholar

    Guan Xunfan, Zhou Yonging, Xiao Jinghua, Liang Shuzhao, Li Jinmao. 1985. Yinyan porphyry tin deposit-A new type of tin deposits in China[J]. Acta Geologica Sinica, 2:73-107(in Chinese with English abstract).

    Google Scholar

    Heinrich C A. 1986. Thermodynamic predictions of hydrothermal chemistry of arsenic and their significance for the paragenic sequence of some cassiterite-arsenopyrite-base metal sulfide deposits[J]. Economic Geology, 81:511-529. doi: 10.2113/gsecongeo.81.3.511

    CrossRef Google Scholar

    Hong Dawei, Wang Shi, Xie Xilin, Zhang Jisheng. 2000. Gnesis of positive ε(Nd, t) granitoids in the DaHingGanMTS-Mongolia orogenic belt and growth continental crust[J]. Earth Science Frontiers, 7(2):441-456(in Chinese with English abstract).

    Google Scholar

    Hoskin Paul W O, Schaltegger Urs. 2003. The composition of zircon and igneous and metamorphic petrogenesis[J]. Rev. Miner.Geochem., 53:27-62. doi: 10.2113/0530027

    CrossRef Google Scholar

    Hou Zengqian, Yan Zhiming. 2009. Porphyry deposits in continental settings of China:Geological characteristics, magmatic-hydrothermal system, and metallogenic model[J]. Acta Geologica Sinica, 83(12):1779-1817(in Chinese with English abstract).

    Google Scholar

    Huang Huiqing, Li Xianhua, Li Wuxian., Li Zhengxiang. 2011.Formation of high 18O fayalite-bearing A-type granite by high-temperature melting of granulitic metasedimentary rocks, southern China:REPLY[J]. Geology, 39:903-906. doi: 10.1130/G32080.1

    CrossRef Google Scholar

    Irvine T N, Baragar W R A. 1971. A Guide to the chemical classification of the common volcanic rocks[J]. Revue Canadienne Des Sciences De La Terre, 8:523-548.

    Google Scholar

    Jahn Bor Ming, Wu Fuyuan, Capdevila R, Martineau F, Zhao Zhenhua, Wang Yixian. 2001. Highly evolved juvenile granites with tetrad REE patterns:The Woduhe and Baerzhe granites from the Great Xing'an Mountains in NE China[J]. Lithos, 59:171-198. doi: 10.1016/S0024-4937(01)00066-4

    CrossRef Google Scholar

    Kerr Andrew, Fryer Brian J. 1993. Nd isotope evidence for crust-mantle interaction in the generation of A-type granitoid suites in Labrador, Canada[J]. Chemical Geology, 104:39-60. doi: 10.1016/0009-2541(93)90141-5

    CrossRef Google Scholar

    King P L, White A J R, Chappell B W, Allen C M. 1997.Characterization and origin of aluminous A-type granites from the Lachlan Fold Belt, Southeastern Australia[J]. Journal of Petrology, 38:371-391. doi: 10.1093/petroj/38.3.371

    CrossRef Google Scholar

    Liao Zhen, Wang Yuwang, Wang Jingbin, Long Liling, Zou Tao, Zhang Huiqiong, Li Dedong. 2012. LA-ICP-MS zircon U-Pb dating of dykes of Dajing tin-polymetallic deposit, Inner Mongolia, China, and its geological significance[J]. Acta Petrologica Sinica, 28(7):2292-2306 (in Chinese with English abstract).

    Google Scholar

    Liu Huaijin, Yang Yongqiang, Sun Yinqiang, Xin Jiang, Wen Haicheng, Li Hao. 2016. The primary halo characteristics of Bianjiadayuan Pb-Zn-Ag polymetllic deposit in Inner Mongolia China and ore prediction to depth[J]. Contributions to Geology and Mineral Resources Research, 31(2):245-252 (in Chinese with English abstract).

    Google Scholar

    Liu Xin, Wan Jingbin, Zhu Xinyou, Sun Yalin, Jiang Haoyuan, Jiang Binbin, Wang Hai, Cheng Xiyin. 2017. Mineralization of the Baiyinchagan tin polymetallic deposit in Inner Mongolia Ⅰ:Metallic mineral assemblage and metallogenic mechanism[J]. Mineral Exploration, 8(6):967-980 (in Chinese with English abstract).

    Google Scholar

    Liu Yifei, Jiang Sihong, Bagas Leon. 2016a. The genesis of metal zonation in the Weilasituo and Bairendaba Ag-Zn-Pb-Cu-(Sn-W)deposits in the shallow part of a porphyry Sn-W-Rb system, Inner Mongolia, China[J]. Ore Geology Reviews, 75:150-173. doi: 10.1016/j.oregeorev.2015.12.006

    CrossRef Google Scholar

    Liu Yongjiang, Li Weimin, Feng Zhiqiang, Wen Quanbo, Neubauer Franz, Liang Chenyue. 2016b. A review of the Paleozoic tectonics in the eastern part of Central Asian Orogenic Belt[J]. Gondwana Research, 43.

    Google Scholar

    Mei Wei. 2014. Mesozoic Magamatism and Mineralization in Northern Chifeng, Inner Mongolia[D]. China University of Geology (in Chinese with English abstract).

    Google Scholar

    Middlemost Eric A K. 1994. Naming materials in the magma/igneous rock system[J]. Annual Review of Earth & Planetary Sciences, 37:215-224.

    Google Scholar

    Ouyang Hegen, Mao Jingwen, Zhou Zhenhua, Su Huiming. 2015. Late Mesozoic metallogeny and intracontinental magmatism, southern Great Xing'an Range, Northeastern China[J]. Gondwana Research, 27:1153-1172. doi: 10.1016/j.gr.2014.08.010

    CrossRef Google Scholar

    Pearce Julian A, Harris Nigel B W, Tindle Andrew G. 1984. Trace Element Discrimination Diagrams for the Tectonic Interpretation of Granitic Rocks[J]. Jour. Petrol., 25:956-983. doi: 10.1093/petrology/25.4.956

    CrossRef Google Scholar

    Peccerillo Angelo, Taylor S. R. 1976. Geochemistry of eocene calcalkaline volcanic rocks from the Kastamonu area, Northern Turkey[J]. Contributions to Mineralogy & Petrology, 58:63-81.

    Google Scholar

    Ruan Banxiao, Lü Xinbiao, Liu Shentai, Yang Wu. 2013. Genesis of Bianjiadayuan Pb-Zn-Ag deposit in Inner Mongolia:Constraints from U-Pb dating of zircon and multi-isotope geochemistry[J]. Mineral Deposits, 32:501-514(in Chinese with English abstract).

    Google Scholar

    Ruan Banxiao, Lü Xinbiao, Yang Wu, Liu Shentai, Yu Yingmin, Wu Chunming, Adam Munir Mohammed Abdalla. 2015. Geology, geochemistry and fluid inclusions of the Bianjiadayuan Pb-Zn-Ag deposit, Inner Mongolia, NE China:Implications for tectonic setting and metallogeny[J]. Ore Geology Reviews, 71:121-137. doi: 10.1016/j.oregeorev.2015.05.004

    CrossRef Google Scholar

    Shao Jian, Zhang Lüqiao, Mou Baolei. 2015. Magmatism in the Mesozoic extending orogenic process of DaHinggan MTS[J]. Earth Science Frontiers, 6(4):339-346 (in Chinese with English abstract).

    Google Scholar

    Sun S S, Mcdonough W F. 1989. Chemical and isotopic systematics of oceanic basalts:Implications for mantle composition and processes[J]. Geological Society London Special Publications, 42:313-345. doi: 10.1144/GSL.SP.1989.042.01.19

    CrossRef Google Scholar

    Sun Yang, Ma Changqian, Liu Yuanyuan, She Zhenbing. 2011.Geochronological and geochemical constraints on the petrogenesis of late Triassic aluminous A-type granites in southeast China[J]. Journal of Asian Earth Sciences, 42:1117-1131. doi: 10.1016/j.jseaes.2011.06.007

    CrossRef Google Scholar

    Turner S P, Foden J D, Morrison R S. 1992. Derivation of some A-type magmas by fractionation of basaltic magma:An example from the Padthaway Ridge, South Australia[J]. Lithos, 28:151-179. doi: 10.1016/0024-4937(92)90029-X

    CrossRef Google Scholar

    Wang Changming, Zhang Shouting, Deng Jun. 2006. The metallogenic space-time structure of copper-polymetallic deposits in the southern segment of Da Hinggan Mountains, China[J]. Journal of Chengdu University of Technology, 33(5):478-484(in Chinese with English abstract).

    Google Scholar

    Wang Guozheng. 2002. Baogaigou tin deposit-A higher temperature hydrothermal deposit of albitite and biotite quartzite types[J]. Geology and Prospecing, 38(2):42-45 (in Chinese with English abstract).

    Google Scholar

    Wang Qiang, Wyman Derek A, Li Zheng Xiang, Bao Zhi Wei, Zhao Zhen Hua, Wang Yi Xian, Jian Ping, Yang Yue Heng, Chen Lin Li. 2010. Petrology, geochronology and geochemistry of ca. 780 Ma A-type granites in South China:Petrogenesis and implications for crustal growth during the breakup of the supercontinent Rodinia[J]. Precambrian Research, 178:185-208. doi: 10.1016/j.precamres.2010.02.004

    CrossRef Google Scholar

    Wang Tao, Guo Lei, Zhang Lei, Yang Qidi, Zhang Jianjun, Tong Ying, Ye Ke. 2015. Timing and evolution of Jurassic-Cretaceous granitoid magmatisms in the Mongol-Okhotsk belt and adjacent areas, NE Asia:Implications for transition from contractional crustal thickening to extensional thinning and geodynamic settings[J]. Journal of Asian Earth Sciences, 97:365-392. doi: 10.1016/j.jseaes.2014.10.005

    CrossRef Google Scholar

    Wang Xilong, Liu Jiajun, Zhai Degao, Yang Yongqiang, Wang Jianping, Zhang Qibin, Zhang Anli, Wang Xiaoliang. 2013. LA-ICP-MS Zircon U-Pb Dating, Geochemistry of the Intrusive Rocks from the Bianjiadayuan Pb-Zn-Ag Deposit, Inner Mongolia, China and Tectonic Implications[J]. Geotectonica et Metallogenia, 37(4):730-742(in Chinese with English abstract).

    Google Scholar

    Wang Xilong, Liu Jiajun, Zhai Degao, Yang Yongqiang, Wang Jianping, Zhang Qibin, Zhang Anli. 2014. A study of isotope geochemistry and sources of ore-forming materials of the Bianiiadayuan silver polymetallic deposit in Linxi, Inner Mongolia[J]. Geology in China, 41(4):1288-1303(in Chinese with English abstract).

    Google Scholar

    Wang Xilong, Liu Jiajun, Zhai Degao, Yang Yongqiang, Wang Jianping, Zhang Qibin, Zhang Anli. 2014. U-Pb dating, geocchemistry and tectonic implications of Bianjiadayuan quartz, prophyry, Inner Mongolia, China[J]. Bulletin of Mineralogy, Petrology and Geochemistry, 33(5):654-665(in Chinese with English abstract).

    Google Scholar

    Wang Yu, Cai Tong, Baonaizhu, Li Wei, Nie Tao, Da Chaoyuan, Sun Yinqiang. 2014. Geological characteristic and control factors in Bianjiadayuan Pb-Zn-Ag deposit, Inner Mongolia[J]. Journal of East China Institute of Technology, 37(2):212-219(in Chinese with English abstract).

    Google Scholar

    Weidner Jerry R, Martin Robert F. 1987. Phase equilibria of a fluorinerich leucogranite from the St. Austell pluton, Cornwall[J]. Geochimica et Cosmochimica Acta, 51:1591-1597. doi: 10.1016/0016-7037(87)90340-1

    CrossRef Google Scholar

    Whalen Joseph B, Currie Kenneth L, Chappell Bruce W. 1987. A-type granites:Geochemical characteristics, discrimination and petrogenesis[J]. Contributions to Mineralogy & Petrology, 95:407-419.

    Google Scholar

    Wong Jean, Sun Min, Xing Guangfu, Li Xian Hua, Zhao Guochun, Wong Kenny, Yuan Chao, Xia Xiaoping, Li Longming, Wu Fuyuan. 2009. Geochemical and zircon U-Pb and Hf isotopic study of the Baijuhuajian metaluminous A-type granite:Extension at 125-100 Ma and its tectonic significance for South China[J]. Lithos, 112:289-305. doi: 10.1016/j.lithos.2009.03.009

    CrossRef Google Scholar

    Wu Fuyuan, Sun Deyou, Lin Qiang. 1999. Petrogenesis of the Phanerozoic granites and crustal growth inNortheast China[J]. Acta Petrologica Sinica, 15(2):181-189(in Chinese with English abstract).

    Google Scholar

    Wu Fuyuan, Sun Deyou, Ge Wenchun, Zhang Yanbin, Grant Matthew L, Wilde Simon A, Jahn Bor Ming. 2011. Geochronology of the Phanerozoic granitoids in northeastern China[J]. Journal of Asian Earth Sciences, 41:1-30. doi: 10.1016/j.jseaes.2010.11.014

    CrossRef Google Scholar

    Wu Yuanbao, Zheng Yongfei, Gong Bing, Tang Jun, Zhao Zifu, Cha Xiangping. 2004. Zircon U-Pb ages and oxygen isotope compositions of the Luzhenguan magmatic complex in the Beihuaiyan zone[J]. Acta Petrologica Sinica, 20(5):1007-1024(in Chinese with English abstract).

    Google Scholar

    Yang Jin Hui, Wu Fu Yuan, Chung Sun Lin, Wilde Simon A, Chu Mei Fei. 2006. A hybrid origin for the Qianshan A-type granite, northeast China:Geochemical and Sr-Nd-Hf isotopic evidence[J]. Lithos, 89:89-106. doi: 10.1016/j.lithos.2005.10.002

    CrossRef Google Scholar

    Zeng Weishun, Zhou Jianbo, Dong Ce, Cao Jialin, Wang Bin. 2014.Subduction record of Mongol-Okhotsk Ocean:Constrains from Badaguan metamorphic complexes in the Erguna massif, NE China[J]. Acta Petrologica Sinica, 30(7):1948-1960(in Chinese with English abstract).

    Google Scholar

    Zhai Degao, Liu Jiajun, Yang Yongqiang, Wang Jianping, Ding Li, Liu Xingwang, Zhang Mei, Yao Meijuan, Su Li, Zhang Hongyu. 2012.Petrogenetic and metallogentic ages and tectonic setting of the Huanggangliang Fe-Sn deposit, Inner Mongolia[J]. Acta Petrologica et Mineralogica, 31(4):513-523(in Chinese with English abstract).

    Google Scholar

    Zhai Degao, Liu Jiajun, Cook Nigel J, Wang Xilong, Yang Yongqiang, Zhang Anli, Jiao Yingchun. 2018. Mineralogical, textural, sulfur and lead isotope constraints on the origin of Ag-Pb-Zn mineralization at Bianjiadayuan, Inner Mongolia, NE China[J]. Mineralium Deposita:1-20.

    Google Scholar

    Zhai Degao, Liu Jiajun, Zhang Anli, Sun Yinqiang. 2017. U-Pb, Re-Os, and 40Ar/39Ar geochronology of porphyry Sn ±Cu ±Mo an polymetallic (Ag-Pb-Zn-Cu) vein mineralization at bianjiadayuan, inner mongolia, northeast China:Implications for discrete mineralization events[J]. Economic Geology, 112:2041-2059. doi: 10.5382/econgeo.2017.4540

    CrossRef Google Scholar

    Zhang Qi. 2013. The criteria and discrimination for A-type granites:A reply to the question put forward by Wang Yang and some other persons for A-type granite:What is the essence?[J]. Acta Petrologica et Mineralogica, 32(2):267-274(in Chinese with English abstract).

    Google Scholar

    Zhang Qi, Ran Gao, Li Chengdong. 2012. A-type granite:What is the essence?[J]. Acta Petrologica et Mineralogica, 31(4):621-626(in Chinese with English abstract).

    Google Scholar

    Zhang Qi, Wan Yan, Li Chengdong, Wang Yuanlong, Jin Weijun, Jia Xiuqin. 2006. Granite classification on the basis of Sr and Yb contents and its implications[J]. Acta Petrologica Sinica, 22(9):2249-2269(in Chinese with English abstract).

    Google Scholar

    Zhang Xizhou, Zhang Zhenbang. 2003. Geological Structure and Metrallogeny in the Southern section of DaXing'AnLing, Inner Mongolia[J]. Mineral Resources and Geology, 17(s1):298-301(in Chinese with English abstract).

    Google Scholar

    Zhou Jianbo, Cao Jialin, Wilde Simon A, Zhao Guochun, Zhang Jinjiang, Wang Bin. 2015. Paleo-Pacific subduction-accretion:Evidence from Geochemical and U-Pb zircon dating of the Nadanhada accretionary complex, NE China[J]. Tectonics, 33:2444-2466.

    Google Scholar

    Zhou, Zhenhua, Mao, Jingwen, Lyckberg, Peter. 2012. Geochronology and isotopic geochemistry of the A-type granites from the Huanggang Sn-Fe deposit, southern Great Hinggan Range, NE China:Implication for their origin and tectonic setting[J]. Journal of Asian Earth Sciences, 49:272-286. doi: 10.1016/j.jseaes.2012.01.015

    CrossRef Google Scholar

    Zhou Zhenhua, Ouyang Hegen, Wu Xinli, Liu Jun, Che Hewei. 2014.Geochronology and geochemistry study of the biotite granite from the Daolundaba Cu-W polymetallic deposit in the Inner Mogolia and its gelogical significance[J]. Acta Petrologica Sinica, 30(1):79-94(in Chinese with English abstract).

    Google Scholar

    Zhou Zhenhua, Wu Xinli, Ouyan Hegen. 2012. LA-ICP-MS zircon U-Pb dating and Hf isotope study of the plagioclase granite porphyry in the Lianhuashan Cu-Ag deposit of Inner Mongolia and its geological significance[J]. Geology in China, 39(6):1472-1485(in Chinese with English abstract).

    Google Scholar

    Zhu Xinyou, Wang Jingbin, Wang Yanli, Cheng Xiyin, He Peng, Fu Qibin, Li Shunting. 2012. Characteristics of alkali feldspar granite in tungsten (tin) deposits of Nanling region[J]. Geology in China, 39(2):359-381(in Chinese with English abstract).

    Google Scholar

    Zhu Xinyou, Zhang Zhihui, Fu Xu, Li Boyang, Wang Yanli, Jiao Shoutao, Sun Yalin. 2016. Geological and geochemical characteristics of the Weilasito Sn-Zn deposit, Inner Mongolia[J]. Geology in China, 43(1):188-208 (in Chinese with English abstract).

    Google Scholar

    陈公正, 武广, 李铁刚, 刘瑞麟, 武利文, 章培春, 张彤, 陈毓川. 2018.内蒙古道伦达坝铜钨锡矿床LA-ICP-MS锆石和锡石U-Pb年龄及其地质意义[J].矿床地质, 37(2):225-245.

    Google Scholar

    顾玉超, 陈仁义, 贾斌, 宋万兵, 余昌涛, 鞠楠. 2017.内蒙古边家大院铅锌银矿床深部正长花岗岩年代学与形成环境研究[J].中国地质, 44:101-117.

    Google Scholar

    关勋凡, 周永清, 肖敬华, 梁树钊, 李金茂. 1985.银岩斑岩锡矿——中国锡矿床的一种新类型[J].地质学报:73-107.

    Google Scholar

    洪大卫, 王式, 谢锡林, 张季生. 2000.兴蒙造山带正ε(Nd, t)值花岗岩的成因和大陆地壳生长[J].地学前缘:441-456.

    Google Scholar

    侯增谦, 杨志明. 2009.中国大陆环境斑岩型矿床:基本地质特征、岩浆热液系统和成矿概念模型[J].地质学报, 83:1779-1817. doi: 10.3321/j.issn:0001-5717.2009.12.002

    CrossRef Google Scholar

    廖震, 王玉往, 王京彬, 龙灵利, 邹滔, 张会琼, 李德东. 2012.内蒙古大井锡多金属矿床岩脉LA-ICP-MS锆石U-Pb定年及其地质意义[J].岩石学报, 28:348-362.

    Google Scholar

    刘怀金, 杨永强, 孙引强, 辛江, 温海成, 李浩. 2016.内蒙古边家大院铅锌银多金属矿床原生晕地球化学特征及深部找矿预测[J].地质找矿论丛, 31:245-252. doi: 10.6053/j.issn.1001-1412.2016.02.012

    CrossRef Google Scholar

    刘新, 王京彬, 祝新友, 孙雅琳, 蒋昊原, 蒋斌斌, 王海, 程细音. 2017.内蒙古白音查干锡多金属矿床成矿作用研究Ⅰ:金属矿物组合及其成因机制[J].矿产勘查, 8:967-980. doi: 10.3969/j.issn.1674-7801.2017.06.007

    CrossRef Google Scholar

    梅微. 2014.内蒙古赤峰北部地区中生代岩浆作用与成矿研究[D].中国地质大学.http://cdmd.cnki.com.cn/Article/CDMD-10491-1015661070.htm

    Google Scholar

    阮班晓, 吕新彪, 刘申态, 杨梧. 2013.内蒙古边家大院铅锌银矿床成因——来自锆石U-Pb年龄和多元同位素的制约[J].矿床地质, 32:501-514. doi: 10.3969/j.issn.0258-7106.2013.03.004

    CrossRef Google Scholar

    邵济安, 张履桥, 牟保磊. 2015.大兴安岭中生代伸展造山过程中的岩浆作用[J].地学前缘, 6:339-346.

    Google Scholar

    王国政. 2002.宝盖沟锡矿-黑英岩钠长岩型高温热液矿床[J].地质与勘探, 38:42-45.

    Google Scholar

    王喜龙, 刘家军, 翟德高, 王建平, 张琪彬, 张安立. 2014a.内蒙古林西边家大院银多金属矿床同位素地球化学特征及成矿物质来源探讨[J].中国地质, 41:1288-1303.

    Google Scholar

    王喜龙, 刘家军, 翟德高, 杨永强, 王建平, 张琪彬, 张安立. 2014b.内蒙古边家大院矿区石英斑岩U-Pb年代学、岩石地球化学特征及其地质意义[J].矿物岩石地球化学通报, 33:654-665.

    Google Scholar

    王喜龙, 刘家军, 翟德高, 杨永强, 王建平, 张琪彬, 张安立, 王晓亮. 2013.内蒙古边家大院铅锌银矿区侵入岩LA-ICP-MS锆石UPb年龄、地球化学特征及其地质意义[J].大地构造与成矿学, 37:730-742.

    Google Scholar

    王宇, 蔡彤, 包乃柱, 黎伟, 聂涛, 达朝元, 孙引强. 2014.内蒙古边家大院铅锌银矿地质特征和控矿因素[J].东华理工大学学报(自然科学版), 37:212-219. doi: 10.3969/j.issn.1674-3504.2014.02.016

    CrossRef Google Scholar

    王长明, 张寿庭, 邓军. 2006.大兴安岭南段铜多金属矿成矿时空结构[J].成都理工大学学报(自然科学版), 33:478-484. doi: 10.3969/j.issn.1671-9727.2006.05.008

    CrossRef Google Scholar

    吴福元, 孙德有, 林强. 1999.东北地区显生宙花岗岩的成因与地壳增生[J].岩石学报, 15:181-189.

    Google Scholar

    吴元保, 郑永飞, 龚冰, 唐俊, 赵子福, 查向平. 2004.北淮阳庐镇关岩浆岩锆石U-Pb年龄和氧同位素组成[J].岩石学报, 20:1007-1024.

    Google Scholar

    曾维顺, 周建波, 董策, 曹嘉麟, 王斌. 2014.蒙古-鄂霍茨克洋俯冲的记录:额尔古纳地区八大关变质杂岩的证据[J].岩石学报, 30:1948-1960.

    Google Scholar

    翟德高, 刘家军, 杨永强, 王建平, 定立, 刘星旺, 张梅, 要梅娟, 苏犁, 张红雨. 2012.内蒙古黄岗梁铁锡矿床成岩、成矿时代与构造背景[J].岩石矿物学杂志, 31:513-523. doi: 10.3969/j.issn.1000-6524.2012.04.004

    CrossRef Google Scholar

    张旗. 2013. A型花岗岩的标志和判别——兼答汪洋等对"A型花岗岩的实质是什么"的质疑[J].岩石矿物学杂志, 32:267-274. doi: 10.3969/j.issn.1000-6524.2013.02.014

    CrossRef Google Scholar

    张旗, 冉皞, 李承东. 2012. A型花岗岩的实质是什么?[J].岩石矿物学杂志, 31:621-626. doi: 10.3969/j.issn.1000-6524.2012.04.014

    CrossRef Google Scholar

    张旗, 王焰, 李承东, 王元龙, 金惟俊, 贾秀勤. 2006.花岗岩的Sr-Yb分类及其地质意义[J].岩石学报, 22:2249-2269.

    Google Scholar

    张喜周, 张振邦. 2003.内蒙大兴安岭南段地质构造与成矿[J].矿产与地质, 17:298-301. doi: 10.3969/j.issn.1001-5663.2003.z1.011

    CrossRef Google Scholar

    周振华, 欧阳荷根, 武新丽, 刘军, 车合伟. 2014.内蒙古道伦达坝铜钨多金属矿黑云母花岗岩年代学、地球化学特征及其地质意义[J].岩石学报, 30:79-94.

    Google Scholar

    周振华, 武新丽, 欧阳荷根. 2012.内蒙古莲花山铜银矿斜长花岗斑岩LA-MC-ICP-MS锆石U-Pb测年、Hf同位素研究及其地质意义[J].中国地质, 39:1472-1485. doi: 10.3969/j.issn.1000-3657.2012.06.002

    CrossRef Google Scholar

    祝新友, 王京彬, 王艳丽, 程细音, 何鹏, 傅其斌, 李顺庭. 2012.南岭锡钨多金属矿区碱长花岗岩的厘定及其意义[J].中国地质, 39:359-381. doi: 10.3969/j.issn.1000-3657.2012.02.009

    CrossRef Google Scholar

    祝新友, 张志辉, 付旭, 李柏阳, 王艳丽, 焦守涛, 孙雅琳. 2016.内蒙古赤峰维拉斯托大型锡多金属矿的地质地球化学特征[J].中国地质:188-208.

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(15)

Tables(3)

Article Metrics

Article views(2507) PDF downloads(394) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint