2020 Vol. 47, No. 2
Article Contents

AI Jiang, LÜ Xinbiao, LI Zuowu, WU Yalun. 2020. Geological characteristics and diagenetic geochronology of the Huangyangshan graphite deposit, Xinjiang[J]. Geology in China, 47(2): 334-347. doi: 10.12029/gc20200205
Citation: AI Jiang, LÜ Xinbiao, LI Zuowu, WU Yalun. 2020. Geological characteristics and diagenetic geochronology of the Huangyangshan graphite deposit, Xinjiang[J]. Geology in China, 47(2): 334-347. doi: 10.12029/gc20200205

Geological characteristics and diagenetic geochronology of the Huangyangshan graphite deposit, Xinjiang

    Fund Project: Supported by the project of"Investigation and evaluation of graphite ore in Huangyangshan area, Qitai County, Xinjiang"from China Geological Survey(No. DD20160058-01)
More Information
  • Author Bio: AI Jiang, male, born in 1988, doctor candidate, majors in mineral prospecting and exploration; E-mail: jiangai@cug.edu.cn
  • Corresponding author: LÜ Xinbiao, male, born in 1962, professor, supervisor of doctor candidates, mainly engages in research on mineral deposits and prediction and evaluation of mineral resources; E-mail: Lvxb_01@163.com 
  • The Huangyangshan deposit is a superlarge crystalline graphite deposit recently discovered in Xinjiang. The reserves of crystalline graphite in the deposit are estimated at least 72.64 Mt. The deposit is hosted in granite, and 90% of graphite is of spherulitic structure. The longest diameter of the spherulite can reach 20 cm. It is extremely rare in the world. Through drill core logging, prospecting trench logging and petrographic and zircon U-Pb geochronologic studies, the authors investigated mineralization, mineral assemblage and diagenetic age of the deposit, and discussed its ore genesis. The results reveal that the diagenetic age of the deposit is (306±4) Ma, which is Late Carboniferous. Graphite spherulite and matrix have the same lithology of alkali-feldspar granite. However, biotite, hornblende and clinopyroxene are relatively more concentrated in the spherulite. Metallic minerals associated with graphite are pyrrhotite, chalcopyrite, ilmenite and hematite. Due to strong reducibility of graphite, these metallic minerals are mainly distributed within graphite spherulite, forming typical zoning texture. Graphitization could be divided into two periods, namely magmatic hydrothermal period and hydrothermal superimposition period. The former was the principal oreforming period, producing spherulitic and disseminated graphite, while the latter produced vein graphite. Crystals of graphite are of flaky and colloform texture. The flaky graphite is in acicular form along the section and has preferred orientations. Graphite ores have low negative bulk-rock carbon isotopic composition, which implies that the carbon consisting of graphite was derived from organic matters in strata. Magma assimilated organic matters in strata during its ascending. At the late stage of magma evolution, with the separation of the melt and liquid phase, carbonaceous matters were incorporated into the liquid phase. When the temperature and pressure decreased, carbon precipitated from the magmatic hydrothermal to form graphite. Medium-grained arfvedsonite granite and fine and medium grained biotite granite contain graphite spherulites, and hence Huangyangshan pluton has considerable ore-prospecting potential.

  • 加载中
  • Abdallah Nachida, Liegeois Jean-Paul, De Waele Bert, Fezaa Nassima, Ouabadi Aziouz. 2007. The Temaguessine Fe-cordierite orbicular granite (Central Hoggar, Algeria):U-Pb SHRIMP age, petrology, origin and geodynamical consequences for the late Pan-African magmatism of the Tuareg shield[J]. Journal of African Earth Sciences, 49(4/5):153-178.

    Google Scholar

    Ai Jiang, Lu Xinbiao, Li Zuowu, Wu Yalun. 2018. A super-large graphite deposit discovered in granite rocks at Huangyangshan, Xinjiang, China[J]. China Geology, 1(1):164-166.

    Google Scholar

    Ballhaus Chris, Fonseca Raul O C, Munker Carsten, Kirchenbaur Maria, Zirner Aurelia. 2015. Spheroidal textures in igneous rocks-Textural consequences of H2O saturation in basaltic melts[J]. Geochimica et Cosmochimica Acta, 167:241-252. doi: 10.1016/j.gca.2015.07.029

    CrossRef Google Scholar

    Best Myron G. 1982. Igneous and Metamorphic Petrology[M]. San Francisco:W.H. Freeman and Company, 630.

    Google Scholar

    Bi Chengsi, Shen Xiangyuan, Xu Qinsheng, Ming Kuihai, Sun Huili, Zhang Chensheng. 1993. Geological characteristics of stanniferous granites in the Beilekuduk Tin metallogenic belt, Xinjiang[J]. Acta Petrologica et Mineralogica, 12(3):213-223(in Chinese with English abstract).

    Google Scholar

    Corfu Fernando, Hanchar John M, Hoskin Paul W O, Kinny Peter. 2003. Atlas of zircon textures[J]. Reviews in Mineralogy and Geochemistry, 53(1):469-500.

    Google Scholar

    Crespo Elena, Luque Javier, Femandez-Rodriguez Carlos. 2004.Significance of graphite occurrences in the Aracena Metamorphic Belt, Iberian Massif[J]. Geological Magazine, 141(6):687-697.

    Google Scholar

    Decrite Sylvie, Gasquet Dominique, Marignac Christian. 2002.Genesis of orbicular granitic rocks from the Ploumanac\″h Plutonic Complex (Brittany, France):Petrographical, mineralogical and geochemical constraints[J]. European Journal of Mineralogy, 14(4):715-731.

    Google Scholar

    Diaz-Alvarado J, Rodriguez N, Rodriguez C, Fernandez C, Constanzo I. 2017. Petrology and geochemistry of the orbicular granitoid of Caldera, northern Chile. Models and hypotheses on the formation of radial orbicular textures[J]. Lithos, 284-285:327-346. doi: 10.1016/j.lithos.2017.04.017

    CrossRef Google Scholar

    Doroshkevich A G, Wall F, Ripp G S. 2007. Magmatic graphite in dolomite carbonatite at Pogranichnoe, North Transbaikalia, Russia[J]. Contribution to Mineralogy and Petrology, 153(3):339-353. doi: 10.1007/s00410-006-0150-z

    CrossRef Google Scholar

    Elliston John N. 1984. Orbicules:an indication of the crystallization of hydrosilicates, Ⅰ[J]. Earth Science Reviews, 20(4):265-344. doi: 10.1016/0012-8252(84)90021-7

    CrossRef Google Scholar

    Fernandez C, Castro A. 1999. Brittle behavior of granitic magma:the example of Puente del congosto, Iberian massif, Spain[J]. Geological Society, London, Special Publications, 168(1):191-206. doi: 10.1144/GSL.SP.1999.168.01.13

    CrossRef Google Scholar

    Gao Huaizhong, Zhang Wangsheng, Sun Huashan. 2000. A product of plate collision-metallogenic control of highly strained structural belt to Eastern Junggar gold deposit[J]. Geology and Prospecting, 36(3):15-21(in Chinese with English abstract).

    Google Scholar

    Grosse Pablo, Toselli Alejandro J, Rossi Juana N. 2010. Petrology and geochemistry of the orbicular granitoid of Sierra de Velasco (NW Argentina) and implications for the origin of orbicular rocks[J]. Geological Magzine, 147(3):451-468.

    Google Scholar

    Hao Ziguo, Fei Hongcai, Hao Qingqing, Liu Lian. 2016."Three Rare Mineral Resources" and crystalline graphite have become prospecting focuses in China[J]. Acta Geologica Sinica, 90(5):1905-1906. doi: 10.1111/1755-6724.12825

    CrossRef Google Scholar

    Huang Gang, Niu Guangzhi, Wang Xinlu, Guo Jun, Yu Feng. 2017.The discovery of the amphibolite in the Kalamaili ophiolitic mélange formed in mid-oceanic ridge setting[J]. Geology in China, 44(2):358-370(in Chinese with English abstract).

    Google Scholar

    Huang Gang, Niu Guangzhi, Zhang Zhanwu, Wang Xinlu, Xu Xueyi, Guo Jun, Yu Feng. 2013. Discovery of ~4.0 Ga detrital zircons in the Aermantai ophiolitic mélange, East Junggar, northwest China[J]. Chinese Science Bulletin, 58(30):3645-3663. doi: 10.1007/s11434-013-5842-y

    CrossRef Google Scholar

    Huizenga J M. 2011. Thermodynamic modeling of a cooling C-O-H fluid-graphite system:implications for hydrothermal graphite precipitation[J]. Mineralium Deposita, 46:23-33. doi: 10.1007/s00126-010-0310-y

    CrossRef Google Scholar

    Jewell S, Kimball S M. 2017. Mineral Commodity Summaries 2017[R]. U.S. Geological Survey, 201. https://minerals.usgs.gov/minerals/pubs/mcs/2017/mcs2017.pdf

    Google Scholar

    Jiang Gaozhen. 2016. Gold and Graphite Deposits Prospecting in Bayan Obo Rift, Inner Mongolia[D]. Beijing: China University of Geosciences, 163(in Chinese with English abstract).

    Google Scholar

    Li Chao, Wang Denghong, Zhao Hong, Pei Haoxiang, Li Xinwei, Zhou Limin, Du Andao, Qu Wenjun. 2015. Minerogenetic regularity of graphite deposits in China[J]. Mineral Deposits, 34(6):1223-1236(in Chinese with English abstract).

    Google Scholar

    Li Jinyi. 2004. Late Neoproterozoic and Paleozoic tectonic framework and evolution of Eastern Xinjiang, NW China[J]. Geological Review, 50(3):304-322(in Chinese with English abstract).

    Google Scholar

    Li Jinyi, Xiao Xuchang, Tang Yaoqing, Zhao Min, Zhu Baoqing, Feng Yimin. 1990. Main characteristics of Late Paleozoic plate tectonics in the southern part of East Junggar, Xinjiang[J]. Geological Review, 36(4):305-316(in Chinese with English abstract).

    Google Scholar

    Lin Jinfu, Yu Hengxiang, Yu Xinqi, Di Yongjun, Tian Jiantao. 2007.Zircon SHRIMP U-Pb dating and geological implication of the Sabei alkali-rich granite from Eastern Junggar of Xinjiang, NW China[J]. Acta Petrologica Sinica, 23(8):1876-1884(in Chinese with English abstract).

    Google Scholar

    Lindh Anders, Nasstrom Helena. 2006. Crystallization of orbicular rocks exemplified by the Slattemossa occurrence, southeastern Sweden[J]. Geological Magazine, 143(5):713-722. doi: 10.1017/S001675680600210X

    CrossRef Google Scholar

    Liu Guanghai, Chen Renyi, Bai Daming, Dong Yingjun, Xue Guangqi, Wang Junheng, Xiong Shouqing, Mao Yuyuan. 1995. Metallogenic Features and General Prospecting Approaches on Cu-Au Mines in East Junggar[M]. Beijing:Geological Publishing House, 190(in Chinese).

    Google Scholar

    Liu Jiayuan, Yu Hengxiang, Lin Jinfu. 1998. Two kinds of granitic metallogenetic magmatic formations and their deposit series of East Junggar, Xinjiang[J]. Journal of Guilin Institute of Technology, 18(3):205-214(in Chinese with English abstract).

    Google Scholar

    Liu Jiayuan, Yu Hengxiang, Wu Guoquan. 1997. Alkali granites and tin deposits of the Kalamiali area, Northern Xinjiang[J]. Geological Exploration for Non-Ferrous Metals, 6(3):129-135(in Chinese with English abstract).

    Google Scholar

    Liu Jiayuan, Yu Hengxiang, Wu Guoquan. 1999. Two kinds of alkaline granites in Eastern Junggar, Xinjiang and their geological significance[J]. Bulletin of Mineralogy, Petrology and Geochemistry, 18(2):89-94(in Chinese with English abstract).

    Google Scholar

    Liu Songbai, Yang Meizhen, Wu Hong'en, Zhao Wenping, Zhang Lianlian. 2011. Metallogenic model of graphite deposit from Sujiquan, Eastern Junggar[J]. Xinjiang Geology, 29(2):178-182(in Chinese with English abstract).

    Google Scholar

    Luque F J, Pasteris Jill D, Wopenka B. 1998. Natural fluid-deposited graphite:Mineralogical characteristics and mechanisms of formation[J]. American Journal of Science, 298(6):471-498.

    Google Scholar

    Luque F J, Crespo Elena, Barrenechea J F, Ortega L. 2012. Carbon isotopes of graphite:Implications on fluid history[J]. Geoscience Frontiers, 3(2):197-207.

    Google Scholar

    Luque F J, Huizenga J-M, Crespo-Feo E, Wada H, Ortega L, Barrenechea J F. 2014. Vein grahite deposits:Geological settings, origin, and economic significance[J]. Mineralium Deposita, 49(2):261-277.

    Google Scholar

    Meyer H P, Alther R. 1991. A model for the genesis of orbicular granitoid rocks[J]. Terra Abstracts, 3:426.

    Google Scholar

    Mo Rujue, Liu Shaobing, Huang Cuirong, Zhang Guangrong, Tan Guanmin, Wang Baoxian, Xiao Xiangzhang. 1989. Geology of Graphite Deposits in China[M]. Beijing:China Architecture and Building Press, 290(in Chinese).

    Google Scholar

    Neef G. 1991. Rod-like and orbicular structure in mid Devonian feldspar porphyries, New South Wales, Australia[J]. Lithos, 27(3):205-212.

    Google Scholar

    Nie Feng, Tian Xiaoli, Li Zhensheng. 2014. Age and provenance of the original Devonian in the eastern Junggar orogenic belt:The evidence of detrital zircon U-Pb geochronology[J]. Chinese Journal of Geology, 49(2):695-717(in Chinese with English abstract).

    Google Scholar

    Nie Xiaoyong, Liu Jiajun, Su Dayong, Zhang Xiangyun. 2016. Zircon U-Pb age of the east Qingshui plagiogranite in Kalamaili belt of Xinjiang and its geological implications[J]. Geology in China, (5):1729-1736(in Chinese with English abstract).

    Google Scholar

    Ortega L, Millward D, Luque F J, Barrenechea J F, Beyssac O, Huizenga J M, Rodas M, Clarke S M. 2010. The graphite deposit at Borrowdale (UK):A catastrophic mineralizing event associated with Ordovician magmatism[J]. Geochimica Cosmochimica Acta, 74(8):2429-2449. doi: 10.1016/j.gca.2010.01.020

    CrossRef Google Scholar

    Qin Xueqing, Liu Yuanzhen. 1986. Discussion on the genesis of Sujiquan graphite deposit in Xinjiang[J]. Building Materials Geology, 2:13-17(in Chinese with English abstract).

    Google Scholar

    Rosing-Schow Nanna, Bagas Leon, Kolb Jochen, Balic-Zunic Tonci, Korte Christoph, Fiorentini Marco L. 2017. Hydrothermal flake graphite mineralization in Paleoproterozoic rocks of south-east Greenland[J]. Mineralium Deposita, 52(5):769-789.

    Google Scholar

    Rumble D. 2014. Hydrothermal graphitic carbon[J]. Elements, 10(6):427-433. doi: 10.2113/gselements.10.6.427

    CrossRef Google Scholar

    Sen Yuanwang, Chuan Xiuyun, Bao Ying, Wei ChunJing. 2012.Orbicular graphite from Oshirabetsu, Hokkaido, Japan[J]. Bulletin of Mineralogy, Petrology and Geochemistry, 26:143-144(in Chinese with English abstract).

    Google Scholar

    Smillie Robert W, Turbull Rose E. 2014. Field and petrographical insight into the formation of orbicular granitoids from the Bonney Pluton, southern Vectoria Land, Antarctica[J]. Geological Magazine, 151(2):534-549.

    Google Scholar

    Song Lihong, Zhu Guang, Gu Chengchuan, Zhai Mingjian. 2015.Orogeny-related activities of Kalamaili fault zone and their indications to the orogenic processes[J]. Geological Review, 61(1):79-94(in Chinese with English abstract).

    Google Scholar

    Su Yuping, Tang Hongfeng, Liu Congqiang, Hou Guangshun, Liang Lili. 2006. The determination and a preliminary study of Sujiquan aluminous A-type granites in East Junggar, Xinjiang[J]. Acta Petrologica et Mineralogica, 25(3):175-184(in Chinese with English abstract).

    Google Scholar

    Taylor R P, Ikingura J R, Fallick A E, Huang Y, Watkinson D H. 1992.Stable isotope compositions of tourmalines from granites and related hydrothermal rocks of the Karagwe-Ankolean Belt, Northwest Tanzanian[J]. Chemical Geology, 94:215-227.

    Google Scholar

    Tang Hongfeng, Qu Wenjun, Su Yuping, Hou Guangshun, Du Andao, Cong Feng. 2007. Genetic connection of Sareshike tin deposit with the alkaline A-type granites of Sabei body in Xinjiang:constraint from isotopic ages[J]. Acta Petrologica Sinica, 23(8):1989-1997(in Chinese with English abstract).

    Google Scholar

    Tang Yanling, Mei Houjun, Pan Keyue, Liu Dequan, Zhou Ruhong, Xin Hongguang. 2005. Non-metallic Ore Deposits in Xinjiang, China[M]. Beijing:Geological Publishing House, 313(in Chinese).

    Google Scholar

    Vernon Ron H. 1985. Possible role of superheated magma in the formation of orbicular granitoids[J]. Geology, 13(12):843-845.

    Google Scholar

    Wang Jingbing, Xu Xin. 2006. Post-collisional tectonic evolution and metallogenensis in northern Xinjiang, China[J]. Acta Geologica Sinica, 80(1):23-31(in Chinese with English abstract).

    Google Scholar

    Wu Guoquan, Liu Jiayuan, Yuan Kuirong. 1997. The composition of the Kelameili high-alkaline granite belt, Xinjiang[J]. Journal of Guilin Institute of Technology, 17(1):18-25(in Chinese with English abstract).

    Google Scholar

    Xiao Wenjiao, Windley B F, Yan Quanren, Qin Kezhang, Chen Hanlin, Yuan Chao, Sun Min, Li Jiliang, Sun Shu. 2006. SHRIMP Zircon age of the Aermantai ophiolite in the North Xinjiang area, China and its tectonic implications[J]. Acta Geologica Sinica, 80(1):32-37(in Chinese with English abstract).

    Google Scholar

    Yan Zhengfu, Yang Hao, Gu Lianxing, Guo Jichun. 1990. Geology and genesis of the Sujiquan Graphite deposit, Xinjiang[J]. Jiangsu Geology, (3):21-24(in Chinese with English abstract).

    Google Scholar

    Yang Baokai, Li Yongjun, Wu Hong'en, Yan Jing, Tian Zhixian, Liu Zhenwei, Wang Yabing. 2010. Discussion on genesis of graphite deposits in Sujiquan area, Kalamely, East Junggar[J]. Journal of Earth Sciences and Environment, 32:194-195(in Chinese).

    Google Scholar

    Yang Gaoxue, Li Yongjun, Si Guohui, Wu Hong'en, Zhang Yongzhi, Jing Zhao. 2009a. Petrological characteristic of the Huangyangshan intrusion in Kalamaili area, East Junggar, Xinjiang[J]. Journal of Earth Sciences and Environment, 31(1):34-41(in Chinese with English abstract).

    Google Scholar

    Yang Gaoxue, Li Yongjun, Wu Hong'en, Si Guohui, Jin Zhao, Zhang Yongzhi. 2009b. LA-ICP-MS zircon U-Pb dating of the Huangyangshan pluton and its enclaves from Kalamaili area eastern Junggar, Xinjiang, and geological implications[J]. Acta Petrologica Sinica, 25(12):3197-3207(in Chinese with English abstract).

    Google Scholar

    Yang Gaoxue, Li Yongjun, Wu Hong'en, Si Guohui, Zhang Yongzhi, Jin Zhao. 2010. A tentative discussion on the genesis of Huangyangshan granite body in Kalamaili orogen, East Junggar[J]. Acta Geoscientica Sinica, 31(2):170-182(in Chinese with English abstract).

    Google Scholar

    Yang Gaoxue, Li Yongjun, Wu Hong'en, Zhong Xing, Yang Baokai, Yan Cunxing, Yan Jing, Si Guohui. 2011. Geochronological and geochemical constrains on petrogenesis of the Huangyangshan A-type granite from the East Junggar, Xinjiang, NW China[J]. Journal of Asian Earth Sciences, 40:722-736.

    Google Scholar

    Yu Hengxiang, Wu Guoquan, Liu Jiayuan. 1998. The two ore-forming metals series closely related to the two granitoid series in Eastern Junggar, Xinjiang[J]. Geotectonica et Metallogenia, 22(2):119-127(in Chinese with English abstract).

    Google Scholar

    Zhang Dong, Lu Yanming, Fan Junjie, Pan Aijun, Zhang Yujie, Chao Yinyin. 2011. Two types of granitoid rocks in the northern margin of the Eastern Junggar area and their geological implications[J]. Geology and Exploration, 47(4):577-592(in Chinese with English abstract).

    Google Scholar

    Zhang Guoxin, Hu Aiqin, Zhang Hongbin, Zhang Qianfeng, Shen Youlin. 1996. Carbon isotopic evidence for the origin of the spherical graphite in a granite-hosted graphite deposit, Sujiquan, Xinjiang, China[J]. Geochimica, 25(4):379-386(in Chinese with English abstract).

    Google Scholar

    Zhang Xiaolin, Fan Wenjun, Li Zuowo, Chen Zhengguo, Chen Junyuan. 2017. The discovery of a superlarge magmatic graphite deposit in Huangyangshan area, Qitai Country, Xinjiang[J]. Geology in China, 44(5):1033-1034(in Chinese).

    Google Scholar

    Zhang Yujie, Zhang Dong, Lu Yanming, Fan Junjie, Pan Aijun, Zhang Feng. 2013. Multi-stage tectonic deformation and superimposed gold mineralization in the Karamaili structural belt of Eastern Junggar, Xinjiang[J]. Geology and Exploration, 49(5):797-812(in Chinese with English abstract).

    Google Scholar

    Zhao Lei, Niu Baogui, Xu Qinqin, Yang Yaqi. 2019. An analysis of Silurian-Carboniferous sedimentary and structural characteristics on both sides of Karamaili ophiolitic belt of Xinjiang and its significance[J]. Geology in China, 46(3):615-628(in Chinese with English abstract).

    Google Scholar

    Zuilen Mark A, Lepland Aivo, Teranes Jane, Finarelli John, Wahlen Martin, Arrhenius Gustaf. 2003. Graphite and carbonates in the 3.8 Ga old Isua Supracrustal Belt, southern West Greenland[J]. Precambrian Research, 126(3):331-348.

    Google Scholar

    Zurevinski Shannon E, Mitchell Roger H. 2015. Petrogenesis of orbicular ijolites from the Prairie Lake complex, Marathon, Ontario:Textural evidence from rare processes of carbonatitic magmatism[J]. Lithos, 239:234-244.

    Google Scholar

    毕承思, 沈湘元, 徐庆生, 明奎海, 孙惠礼, 张春生. 1993.新疆贝勒库都克锡矿带含锡花岗岩地质特征[J].岩石矿物学杂志, 12(3):213-223.

    Google Scholar

    高怀忠, 张旺生, 孙华山. 2000.板块碰撞产物——强应变构造带对东准噶尔金矿的控制[J].地质与勘探, 36(3):15-21.

    Google Scholar

    黄岗, 牛广智, 王新录, 郭俊, 宇峰. 2017.东准噶尔卡拉麦里蛇绿混杂岩中斜长角闪岩的发现与洋中脊构造环境的确认[J].中国地质, 44(2):358-370.

    Google Scholar

    姜高珍. 2016.内蒙古白云鄂博裂谷系金矿石墨矿成矿预测综合研究[D].北京: 中国地质大学, 163.

    Google Scholar

    李超, 王登红, 赵鸿, 裴浩翔, 李欣尉, 周利敏, 杜安道, 屈文俊. 2015.中国石墨矿床成矿规律概要[J].矿床地质, 34(6):1223-1236.

    Google Scholar

    李锦轶. 2004.新疆东部新元古代晚期和古生代构造格局及其演变[J].地质论评, 50(3):304-322.

    Google Scholar

    李锦轶, 肖序常, 汤耀庆, 赵民, 朱宝清, 冯益民. 1990.新疆东准噶尔卡拉麦里地区晚石生代板块构造的基本特征[J].地质论评, 36(4):305-316.

    Google Scholar

    林锦富, 喻亨祥, 余心起, 狄永军, 田建涛. 2007.新疆东准噶尔萨北富碱花岗岩SHRIMP锆石U-Pb测年及其地质意义[J].岩石学报, 23(8):1876-1884.

    Google Scholar

    刘光海, 陈仁义, 白大明, 董英君, 薛光琦, 王君恒, 熊寿庆, 毛玉元. 1995.东准噶尔铜金矿成矿特征及综合评价方法[M].北京:地质出版社, 149.

    Google Scholar

    刘家远, 喻亨祥, 林锦富. 1998.新疆东准噶尔两类花岗质成矿岩浆建造及其矿床系列[J].桂林工学院学报, 18(3):205-214.

    Google Scholar

    刘家远, 喻亨祥, 吴郭泉. 1997.新疆北部卡拉麦里富碱花岗岩带的碱性花岗岩与锡矿[J].有色金属矿产与勘查, 6(3):129-135.

    Google Scholar

    刘家远, 喻亨祥, 吴郭泉. 1999.新疆东准噶尔两类碱性花岗岩及其地质意义[J].矿物岩石地球化学通报, 18(2):89-94.

    Google Scholar

    刘松柏, 杨梅珍, 吴洪恩, 赵文平, 张练练. 2011.新疆苏吉泉球状石墨矿床成矿模式[J].新疆地质, 29(2):178-182.

    Google Scholar

    莫如爵, 刘绍斌, 黄翠蓉, 张光荣, 谭冠民, 王宝娴, 肖祥章. 1989.中国石墨矿床地质[M].北京:中国建筑工业出版社, 290.

    Google Scholar

    聂峰, 田晓丽, 李振生. 2014.东准造山带原泥盆系的形成时代及源区:碎屑锆石U-Pb年代学证据[J].地质科学, 49(2):695-717.

    Google Scholar

    聂晓勇, 刘家军, 苏大勇, 章享云. 2016.新疆卡拉麦里清水东斜长花岗岩的锆石U-Pb年龄及地质意义[J].中国地质, (5):1729-1736.

    Google Scholar

    秦学庆, 刘远珍. 1986.新疆苏吉泉石墨矿床成因探讨[J].建材地质, 2:13-17.

    Google Scholar

    森原望, 传秀云, 鲍莹, 魏春景. 2012.日本北海道音调津的球状石墨[J].矿物岩石地球化学通报, 26:143-144.

    Google Scholar

    宋利宏, 朱光, 顾承串, 翟明见. 2015.卡拉麦里断裂带造山期活动规律及其对造山过程的指示[J].地质论评, 61(1):79-94.

    Google Scholar

    苏玉平, 唐红峰, 刘丛强, 侯广顺, 梁莉莉. 2006.新疆东准噶尔苏吉泉铝质A型花岗岩的确立及其初步研究[J].岩石矿物学杂志, 25(3):175-184.

    Google Scholar

    唐红峰, 屈文俊, 苏玉平, 侯广顺, 杜安道, 丛峰. 2007.新疆萨惹什克锡矿与萨北碱性A型花岗岩成因关系的年代学制约[J].岩石学报, 23(8):1989-1997.

    Google Scholar

    唐延龄, 梅厚钧, 潘克跃, 刘德权, 周汝洪, 辛恒广. 2005.中国新疆非金属矿床[M].北京:地质出版社, 313.

    Google Scholar

    王京彬, 徐新. 2006.新疆北部后碰撞构造演化与成矿[J].地质学报, 80(1):23-31.

    Google Scholar

    吴郭泉, 刘家远, 袁奎荣. 1997.新疆卡拉麦里富碱花岗岩带组成[J].桂林工学院学报, 17(1):18-25.

    Google Scholar

    肖文交, B F Windley, 阎全人, 秦克章, 陈汉林, 袁超, 孙敏, 李继亮, 孙枢. 2006.北疆地区阿尔曼太蛇绿岩锆石SHRIMP年龄及其大地构造意义[J].地质学报, 80(1):32-37.

    Google Scholar

    严正富, 杨浩, 顾连兴, 郭继春. 1990.新疆苏吉泉石墨矿床地质特征及其成因[J].江苏地质, (3):21-24.

    Google Scholar

    杨宝凯, 李永军, 吴宏恩, 严镜, 田陟贤, 刘振伟, 汪雅兵. 2010.东准卡拉麦里地区苏吉泉一带石墨矿床成因探讨[J].地球科学与环境学报, 32:194-195.

    Google Scholar

    杨高学, 李永军, 司国辉, 吴宏恩, 张永智, 金朝. 2009a.东准噶尔卡拉麦里地区黄羊山岩体岩石学特征[J].地球科学与环境学报, 31(1):34-41.

    Google Scholar

    杨高学, 李永军, 吴宏恩, 司国辉, 金朝, 张永智. 2009b.东准噶尔卡拉麦里地区黄羊山花岗岩和包体LA-ICP-MS锆石U-Pb测年及地质意义[J].岩石学报, 25(12):3197-3207.

    Google Scholar

    杨高学, 李永军, 吴宏恩, 司国辉, 张永智, 金朝. 2010.东准噶尔卡拉麦里黄羊山花岗岩岩石成因探讨[J].地球学报, 31(2):170-182.

    Google Scholar

    喻亨祥, 吴郭泉, 刘家远. 1998.新疆东准噶尔地区两类花岗岩与两个成矿系列[J].大地构造成矿学, 22(2):119-127.

    Google Scholar

    张栋, 路彦明, 范俊杰, 潘爱军, 张玉杰, 朝银银. 2011.东准噶尔北缘两类花岗质岩石及其地质意义[J].地质与勘探, 47(4):577-592.

    Google Scholar

    张国新, 胡霭琴, 张鸿斌, 张前锋, 申佑林. 1996.新疆苏吉泉石墨矿床成因的碳同位素证据[J].地球化学, 25(4):379-386.

    Google Scholar

    张小林, 樊文军, 李作武, 陈正国, 陈军元. 2017.新疆奇台县黄羊山发现超大型晶质石墨矿床[J].中国地质, 44(5):1033-1034.

    Google Scholar

    张玉杰, 张栋, 路彦明, 范俊杰, 潘爱军, 张峰. 2013.新疆东准噶尔卡拉麦里构造带多期变形和金叠加成矿[J].地质与勘探, 49(5):797-812.

    Google Scholar

    赵磊, 牛宝贵, 徐芹芹, 杨亚琦. 2019.新疆东准噶尔卡拉麦里蛇绿岩带两侧志留系-石炭系沉积和构造特征分析及其意义[J].中国地质, 46(3):615-628.

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(6)

Tables(2)

Article Metrics

Article views(2787) PDF downloads(1005) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint