2020 Vol. 47, No. 2
Article Contents

DU Yulong, FANG Weixuan, LU Jia. 2020. Lithofacies geochemistry characteristics of alkali volcanic rocks and prospecting prediction in Tupiza copper deposit, Bolivia[J]. Geology in China, 47(2): 315-333. doi: 10.12029/gc20200204
Citation: DU Yulong, FANG Weixuan, LU Jia. 2020. Lithofacies geochemistry characteristics of alkali volcanic rocks and prospecting prediction in Tupiza copper deposit, Bolivia[J]. Geology in China, 47(2): 315-333. doi: 10.12029/gc20200204

Lithofacies geochemistry characteristics of alkali volcanic rocks and prospecting prediction in Tupiza copper deposit, Bolivia

    Fund Project: Supported by Industry Research Fund from Ministry of Land and Resources of the People's Republic of China (No. 201511016-1); China Institute of Strategy & Management (Beijing) Mining Technology Co., Ltd (No. 2014-032); Yunnan Provincial Mineral Resources Evaluation Engineering Laboratory (2010) and Yunnan Provincial Geological Process and Mineral Resources Innovation Team (2012)
More Information
  • Author Bio: DU Yulong, male, born in 1984, senior engineer, doctor candidate, mainly engages in the study of mineral survey and exploration abroad; E-mail: sunnyman0511@163.com
  • Corresponding author: FANG Weixuan, male, born in 1961, senior researcher, supervisor of doctor candidates, mainly engages in the study of mineral survey; E-mail: 569026971@qq.com 
  • In sediment-hosted copper deposits, altered volcanic rocks have special significance for diagenesis and mineralization. Based on the methods of tectonic lithofacies mapping, volcanic lithofacies classification, and electron microprobe analysis (EPMA), the authors studied lithofacies types of volcanic rocks, their geochemical characteristics, physical-chemical conditions of magmatic evolution and their relationship with copper (silver) enrichment. The following results show that mesogenetic intrusive facies, subvolcanic intrusive facies (sub-volcanic neck facies), volcanic overflow facies, pyroclastic facies and sink volcanic rocks are developed in the Tupiza copper deposit. The assemblage of rock types is diabase, gabbro, alkaline basalt, potash-trachybasalt, olivine basalt trachyandesite, and latite. In this area, alkaline basaltic magmatic emplacement has multiple stages and phases. In the Tupiza copper mining area, mineral geothermometer-geobarometer was used to do estimation. When the formation temperature and pressure of hornblende respectively are 630.97-748.43℃ and 55-251 MPa, the depth of diagenetic formation is estimated to be 2.04-9.27 km, revealing that the diagenesis evolution process under decreasing pressure-increasing temperature (decompression melting) and decreasing pressure-decreasing temperature had a high-temperature and high-oxidation diagenetic environment during magmatic decompression and emplacement, suggesting a multi-stage emplacement. Chlorite formation temperature is 112-305℃, lgf(O2)=-45.03—-56.68, lgf(S2)=-4.46—-18.07, suggesting a low temperature reduced diagenesis mineralization environment representing the main copper (silver) ore formation period. The Tupiza copper (silver) deposit was formed by the subvolcanic hydrothermal alteration diagenetic mineralization. Altered volcanic rock is a metallogenic material supply system for copper deposits. Copper (silver) orebody is concentrated in altered volcanic lithosphere and structural superposition, particularly concentrated in the intersection of NNE and NW-trending structures. In the pyrite glutenite at the top of the second lithologic section below the third lithologic alteration volcanic rock in the Upper Cretaceous Aroifilla Formation, the verifying drilling revealed a copper (cobalt) mineralized body, which was the sign of deep prospecting for hidden sedimentary rock type copper (cobalt) orebodies. In this paper, it is believed that, in the Tupiza copper deposit, the central phase of the sub-volcanic hydrothermal metallogenic system is distributed in the altered secondary volcanic neck phases, enriching the copper (silver) orebody. Peripheral veinlet vein-fractured-alteration zone is the transitional facies zone of the copper-lead-zinc metallogenic system, while the glutenite-type copper (cobalt) ore and Cu-Pb-Zn anomaly in the second lithologic zone of the Aroifilla Formation is the outer fringe facies zone of the copper (cobalt) lead-zinc metallogenic system. It has the prospecting potential for copper (silver), copper (cobalt) and copper-lead-zinc orebodies in the deep surrounding altered subvolcanic facies.

  • 加载中
  • Anders E, Greresse N. 1989. Abundances of the elements:Meteoritic and solar[J]. Geochimical et Cosmochimica Acta, 53:197-214. doi: 10.1016/0016-7037(89)90286-X

    CrossRef Google Scholar

    Anderson J L, Barth A P, Wooden J L, Mazdab F. 2008. Thermometers and thermobarometers in granitic systems[J]. Reviews in Mineralogy and Geochemistry, 69:121-142. doi: 10.2138/rmg.2008.69.4

    CrossRef Google Scholar

    Anderson J L, Smith D R. 1995.The effect of temperature and oxygen fugacity on Al-in-hornblende barometry[J]. American Mineralogist, 80:549-559. doi: 10.2138/am-1995-5-614

    CrossRef Google Scholar

    Anderson J L. 1996. Status of Thermobarometry in Granitic Batholiths[J]. Geological Society of America Special Papers, 315:125-138.

    Google Scholar

    Benavides J, Kyser T K, Clark A H, Oates C J, Zamora R, Tarnovschi R, Castillo B. 2007. The Mantoverde iron oxide-copper-gold district, Ⅲ region, Chile:The role of regionally derived, nonmagmatic fluids in chalcopyrite mineralization[J]. Economic Geology, 102(3):415-440. doi: 10.2113/gsecongeo.102.3.415

    CrossRef Google Scholar

    Blundy J D, Holland T J B. 1990. Calcic amphibole equilibria and a new amphibole-plagioclase geothermometer[J]. Contributions to Mineralogy and Petrology, 104:208-224. doi: 10.1007/BF00306444

    CrossRef Google Scholar

    Deer W A, Howie R A, Iussman J. 1962. Rock-forming Minerals:Sheet Silicates[M]. London:Longman, 1-270.

    Google Scholar

    Du Yulong, Fang Weixuan. 2017. Discussion on metallogenic belt and strategic selection direction in the Bolivian section of Andes[C]//Proceedings of the 8th National Conference on Mineralization Theory and Prospecting Methods. Acta Mineralogica Sinica, 37(S): 876-877.

    Google Scholar

    Fang Weixuan. 2017a. Mesozoic-Cenozoic basin-mountain-original mosaic structure area and the continental dynamic metallogenic system in Taxi[C]//Proceedings of the China Earth Science Joint Academic Annual Conference, 104.

    Google Scholar

    Fang Weixuan, Jia Runxing, Wang Lei. 2017b. Types of basin fluids, mechanism of discolored alterations and metal mneralizations of Glutenite-type Cu-Pb-Zu-U deposits in intercontinental redbed basin of the western Tarim basin[J]. Journal of Earth Sciences and Environment, 39(5):585-619 (in Chinese with English abstract).

    Google Scholar

    Fang Weixuan, Liu Yulong, Zhang Shoulin, Guo Maohua. 2017. Three types of continental geodyhnamics and metallogenic models for IOCG (Iron-Oxigen Copper Gold Deposit) from the global view[J]. Journal of northwest University (Natural Science Edition), 39(3):404-413 (in Chinese with English abstract).

    Google Scholar

    Fang Weixuan, Wang Lei, Jia Runxing. 2018. Mosaic Tectonics of Mesozoic to Cenozoic Basin-mountain-plateau in the Western Tarim Basin, China:Glutenite-type Cu-Pb-Zn-celesite-U-coal Metallogenic System[J]. Journal of Earth Sciences and Environment, 40(6):663-705.

    Google Scholar

    Fontboté L. 1990. Stratabound Ore Deposits in the Andes: A review and a Classification According to their Geotectonic Setting[M]//Fonbote L, Amstutz G C, Cardozo M(ed.). Stratabound ore Deposits in the Andes. Berlin: Special Publication No.8 of the Society for Geology Applied to Mineral Deposits: 79-110.

    Google Scholar

    Foster M D. 1960. Interpretation of the Composition of Trioctahedral Micas[R]. New York: US Government Printing Office, 354B: 1-49.

    Google Scholar

    Frey F A, Roden M F. 1987. The mantle source for the Hawaiian islands: Constrains from the lavas and ultramafic inclusions[C]//Menzies M A, Hawkes Worth C J (ed.). Mantle Metasomatism.Academic Press, 423-464.

    Google Scholar

    Friedrich Lucassen, Gerhard Franz, Rolf L, Romer, Frank Schultz, Peter Dulski, Klaus Wemmeret. 2007. Pre-Cenozoic intra-plate magmatism along the Central Andes (17-34°S):Composition of the mantle at an active margin[J]. Science Direct, 99:312-338.

    Google Scholar

    Green D H. 1971. Composition of basaltic magmas as indicators of conditions of origin:Application to oceanic volcanism[J]. Philosophical Transactions of the Royal Society of London, 268:707-725. doi: 10.1098/rsta.1971.0022

    CrossRef Google Scholar

    Holland T J B, Blundy J D. 1994. Non-ideal interactions in calcic amphiboles and their bearing on amphibole-plagioclase thermometry[J]. Contributions to Mineralogy and Petrology, 116:433-447. doi: 10.1007/BF00310910

    CrossRef Google Scholar

    Johnson M C, Rutherford M J. 1989. Experimental calibration of an aluminum-in-hornblende geobarometer with application to Long Valley caldera (California) volcanic rocks[J].Geology, 17:837-841. doi: 10.1130/0091-7613(1989)017<0837:ECOTAI>2.3.CO;2

    CrossRef Google Scholar

    Klohn E, Holmgren C, Ruge H. 1990. El Soldado, a Stratabound Copper Deposit Associated with Alkaline Volcanism in the Central Chilean Coastal Range[C]//Fonbote L, Amstutz G C, Cardozo M (eds.). Stratabound ore Deposits in the Andes. Berlin: Special Publication No.8 of the Society for Geology Applied to Mineral Deposits: 435-448.

    Google Scholar

    Le Maitre R W. 2005. A Classification of Igneous Rocks and Glossary of Terms (2nd Edition)[C]. England: Cambridge University Press, 1-256.

    Google Scholar

    Leake B E, Woolley A R, Aros C E S. 1997. Nomenclature of amphiboles:Report of the subcommittee on amphiboles of the international mineralogical association commission on new minerals and mineral names[J]. Canadian Mineralogist, 35(1):219-246.

    Google Scholar

    Li Janxu, Zheng Houyi, Gao Haiou. 2011. Geological characteristics and ore marks for prospecting of Los Quilos copper deposit in Chile[J]. Contributions to Geology and Mineral Resources Research, 26(1):85-89, 118 (in Chinese with English abstract).

    Google Scholar

    Li Zeqin, Wang Jiangzhen, Liu Jiajun, Li Chaoyang, Du Andao, Liu Ping, Ye Lin. 2003. Re-Os dating of molybdenite from Lala FeOxide-Cu-Au-Mo-REE deposit, southwest China:Implaications for ore genesis[J]. Contributions to Geology and Mineral Resources Research, 8(1):39-42 (in Chinese with English abstract).

    Google Scholar

    Lin Wenwei, Pang Lijun. 1994. The estimation of Fe3+ and Fe2+ contents in amphibole and biotite from EMPA data[J]. Journal of Changchun University of Earth Sciences, 24(2):155-162(in Chinese with English abstract).

    Google Scholar

    Ma Jing, Zeng Pusheng, Gou Ruitao Wang Jujie, Dai Yanjuan. 2015.Genesis and metallogenesis of alkaline complexes in China mainland[J]. Geology and Exploration, 51(3):466-477(in Chinese with English abstract).

    Google Scholar

    McBride S L, Robertson R C R, Clark A M, Farrar E. 1983. Magmatic and metallogenetic episodes in the northern tin belt, Cordillera oriental, Bolivia[J]. Geologische Rundschau, 72:685-713. doi: 10.1007/BF01822089

    CrossRef Google Scholar

    Meng Ziyue, Zhu Feilin, Zhang Kailiang. 2016. The key to research the magmatic rocks:Hornblende-plagioclase geothermobarometer[J]. Guangdong Trace Elements Science, 23(1):38-41(in Chinese with English abstract).

    Google Scholar

    Middlemost E A K. 1985. Magmas and Magmatic Rocks[M]. London:Longman Press, 1-266.

    Google Scholar

    Peccerillo R, Taylor S R. 1976. Geochemistry of eocene calc-alkaline volcanic rocks from the Kastamonu area, northern Turkey[J]. Contrib. Mineral. Petrol., 58:63-81. doi: 10.1007/BF00384745

    CrossRef Google Scholar

    Ramiro S S. 2000. Compendio de Geologia de Bolivia[J]. Revista Tecnia de Yacimientos Petroliferos Fiscales Bolivia, 18(1/2):1-127.

    Google Scholar

    Rauselicolom J A, Wiewiora A, Matesanz E. 1991. Relationship between composition and d001 for chlorite[J]. Am. Mineral., 76(7):1373-1379.

    Google Scholar

    Richard H, Sillitoe. 2003. Iron oxide-copper-gold deposits:An Andean view[J]. Mineralium Deposita, 38:787-812. doi: 10.1007/s00126-003-0379-7

    CrossRef Google Scholar

    Sato T. 1984. Manto type copper deposits in Chile:A review[J]. Bull.Geol. Surv. Jpn., 35(11):565-582.

    Google Scholar

    Schmidt M W.1992. Amphibole composition in tonalite as a function of pressure:An experimental calibration of the Al-in-hornblende barometer[J]. Contributions to Mineralogy and Petrology, 110:304-310. doi: 10.1007/BF00310745

    CrossRef Google Scholar

    Sillitoe R H. 1992. Gold and copper metallogeny of the central Andes:Past, present and future exploration objectives[J]. Economic Geology, 87:2205-2216.

    Google Scholar

    Sun S S, McDonough W F. 1989. Chemical and isotopic systematics of oceanic basalt: Implications for mantle composition and processes[C]//Saunders A D, Norry M J, (eds.). Magmatism in the Ocean Basins. London: Geological Society Special Publications, 42: 313-345.

    Google Scholar

    Tawackoli S, Jacobshagen V, Wemmer K, Andriessen P M. 1996. The Eastern Cordillera of southern Bolivia: A key region to the Andean back-Arc uplift and deformation history[C]. Saint-Malo, France: Extended Abstracts, Ⅲ International Symposium on Andean Geodynamics, 505-508.

    Google Scholar

    Viramonte J G, Kay S M, Becchio R, Escaloya M, Novitski I. 1999.Cretaceous rift related magmatism in central-western South America[J]. Journal of South American Earth Sciences, 12:109-121. doi: 10.1016/S0895-9811(99)00009-7

    CrossRef Google Scholar

    Walshe J L. 1986. A six-component chlorite:Solid solution model and the condition of chlorite formation in hydrothermal and geothermal systems[J]. Economic Geology, 81:681-705. doi: 10.2113/gsecongeo.81.3.681

    CrossRef Google Scholar

    Wang F D, Zhu X Q, Wang Z G. 2011. Madouzi-Type (nodular)sedimentary copper deposit associated with the Emeishan basalt[J]. Sci. China Earth Sci., 54:1880-1891. doi: 10.1007/s11430-011-4331-x

    CrossRef Google Scholar

    Wang Juli, Guo Jian, Liu Zhonkui, Zhang Yunfeng, Zhang Rong, Wang Weitao, Feng Juanping, Jing Jifeng, Li Ling jun. 2006.Sedimentary copper deposit in Emeishan basalts northeastern Yunnan province[J]. Mineral Deposits, (6):663-671. (in Chinese with English abstract).

    Google Scholar

    Wang Liben. 2001. Amphibole nomenclature-IMA-CNMMN[J]. Acta Petrologica et Mineralogica, 20(1):84-100 (in Chinese with English abstract).

    Google Scholar

    Williams P J. 1999. Fe-oxide-Cu-Au Deposits of the Olympic Dam/Ernest Henry-type[M]. New Developments in the Understanding of Some Major ore Types and Environments, with Implications for Exploration.In:Proc Prospectors and Developers Association of Canada Short Course, Toronto, 2-43.

    Google Scholar

    Wilson M. 1989. Igneous Petrogenesis[M]. London:Unwin Hyman Press, 1-466.

    Google Scholar

    Wilson N, Zentilli M, Reynolds P H, Boric R. 2003a. Age of mineralization by basinal fluids at the El Soldado manto-type copper deposit, Chile:40Ar/39Ar geochronology of K-feldspar[J]. Chem. Geol., 197 (1/4):161-176. doi: 10.1016/S0009-2541(02)00350-9

    CrossRef Google Scholar

    Wilson, N S F, Zentilli M, Spiro B. 2003b. A sulfur, carbon, oxygen, and strontiumisotope study of the volcanic-hosted El Soldado Manto-Type copper deposit, Chile:The essential role of bacteria and petroleum[J]. Econ. Geol., 98 (1):163-174. doi: 10.2113/gsecongeo.98.1.163

    CrossRef Google Scholar

    Xu Zhiqin, Zhao Zhonbao, Peng Miao, Ma Xuxuan, Li Huaqi, Zhao Junmeng. 2016. Review of "orogenic plateau"[J]. Acta Petrologica Sinica, 32(12):3557-3571 (in Chinese with English abstract).

    Google Scholar

    Zhu Bingquan, Chang Xiangyang, Hu Yaoguo, Zhang Zhengwei. 2002.Discovery of Yanhe copper deposit in the Yunnan-Guizhou border area and a new train of thought for copper prospecting in the large igneous province of Emeishan flood basalts[J]. Advances in Earth Science, 17(6):912-917 (in Chinese with English abstract).

    Google Scholar

    杜玉龙, 方维萱. 2017.安第斯玻利维亚段金属成矿带及战略选区方向探讨[C]//第八届全国成矿理论与找矿方法学术讨论会会议论文集.矿物学报, 37(增刊): 876-877.

    Google Scholar

    方维萱, 贾润幸, 王磊. 2017.塔西陆内红层盆地中盆地流体类型、砂砾岩型铜铅锌-铀矿床的大规模褪色化围岩蚀变与金属成矿[J].地球科学与环境学报, 39(5):585-619. doi: 10.3969/j.issn.1672-6561.2017.05.001

    CrossRef Google Scholar

    方维萱, 柳玉龙, 张守林, 郭茂华. 2009.全球铁氧化物铜金型(IOCG)矿床的3类大陆动力学背景与成矿模式[J].西北大学学报(自然科学版), 39(3):404-413.

    Google Scholar

    方维萱, 王磊, 贾润幸. 2018.塔西地区中-新生代盆-山-原镶嵌构造区:砂砾岩型铜铅锌-天青石-铀-煤成矿系统[J].地球科学与环境学报, 40(6):663-705. doi: 10.3969/j.issn.1672-6561.2018.06.001

    CrossRef Google Scholar

    李建旭, 郑厚义, 高海鸥. 2011.智利劳斯奎洛斯(Los Quilos)铜矿床地质特征及找矿标志[J].地质找矿论丛, 26(1):85-89, 118.

    Google Scholar

    李泽琴, 王奖臻, 刘家军, 李朝阳, 杜安道, 刘玉平, 叶琳. 2003.拉拉铁氧化物-铜-金-钼-稀土矿床Re-Os同位素年龄及其地质意义[J].地质找矿论丛, 18(1):39-42. doi: 10.3969/j.issn.1001-1412.2003.01.007

    CrossRef Google Scholar

    林文蔚, 彭丽君. 1994.由电子探针分析数据估算角闪石、黑云母中的Fe3+, Fe2+[J].长春地质学院学报, 24(2):155-162.

    Google Scholar

    麻菁, 曾普胜, 苟瑞涛, 王聚杰, 代艳娟. 2015.中国碱性杂岩的成因及其成矿作用[J].地质与勘探, 51(3):466-477.

    Google Scholar

    孟子岳, 朱飞霖, 张凯亮. 2016.研究岩浆岩的金钥匙:角闪石-斜长石矿物温压计[J].广东微量元素科学, 23(1):38-41.

    Google Scholar

    王富东, 朱笑青, 王中刚. 2011.与峨眉山玄武岩有关的沉积型铜矿——"马豆子式"铜矿的成因研究[J].中国科学:地球科学, 41(12):1851-1861.

    Google Scholar

    王居里, 郭健, 刘忠奎, 张云峰, 张蓉, 王伟涛, 冯士信, 冯娟萍, 井继峰, 李领军. 2006.滇东北峨眉山玄武岩区的沉积型铜矿床[J].矿床地质, (6):663-671. doi: 10.3969/j.issn.0258-7106.2006.06.003

    CrossRef Google Scholar

    王立本. 2001.角闪石命名法——国际矿物学协会新矿物及矿物命名委员会角闪石专业委员会的报告[R].岩石矿物学杂志, 20(1): 84-100.

    Google Scholar

    许志琴, 赵中宝, 彭淼, 马绪宣, 李化启, 赵俊猛. 2016.论"造山的高原"[J].岩石学报, 32(12):3557-3571.

    Google Scholar

    朱炳泉, 常向阳, 胡耀国, 张正伟. 2002.滇-黔边界鲁甸沿河铜矿床的发现与峨眉山大火成岩省找矿新思路[J].地球科学进展, 17(6):912-917. doi: 10.3321/j.issn:1001-8166.2002.06.017

    CrossRef Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(10)

Tables(5)

Article Metrics

Article views(2242) PDF downloads(1237) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint