2019 Vol. 46, No. 4
Article Contents

QIU Gengen, FANG Hui, Lü Qinyin, PENG Yan. 2019. Deep electrical structures and metallogenic analysis in the north section of Wuyishan Mountains and its adjacent areas: Based on three-dimensional magnetotelluric sounding results[J]. Geology in China, 46(4): 775-785. doi: 10.12029/gc20190408
Citation: QIU Gengen, FANG Hui, Lü Qinyin, PENG Yan. 2019. Deep electrical structures and metallogenic analysis in the north section of Wuyishan Mountains and its adjacent areas: Based on three-dimensional magnetotelluric sounding results[J]. Geology in China, 46(4): 775-785. doi: 10.12029/gc20190408

Deep electrical structures and metallogenic analysis in the north section of Wuyishan Mountains and its adjacent areas: Based on three-dimensional magnetotelluric sounding results

    Fund Project: Supported by the National Natural Science Foundation of China (No.41574068), the National Key R & D project (2016YFC0600201), China Geological Survey project (No.121201108000160913, No.12120114005801, No.DD20160082, No. DD20190032), and Basic Scientific Research project of CAGS(No.AS2016J12)
More Information
  • Author Bio: QIU Gengen, male, born in 1984, master, senior engineer, mainly engaged in the research and application of magnetotelluric method; E-mail:qiugengen@igge.cn
  • South China has experienced the evolution of multiple stages of tectonic-magma-mineralization. It is rich in mineral resources and has multiple mineralization concentration areas, which constitute an important base for national economic development. In this paper, the three-dimensional electrical structure model of the northern part of Wuyi Mountain and adjacent areas is constructed by using the regional magnetotelluric array observation data acquired in south China and the three-dimensional inversion program of WSINV3DMT. The electrical characteristics of the model show that the deep electrical characteristics along the lower part of the fault zone exhibit obvious low resistivity anomalous zones. The low resistivity anomalous zones may be the response of deep and large faults or the assembling boundary of paleo-micro-continental blocks, which have obviously controlled the shallow fault structure. It is found that most of the major endogenous metal deposits in Wuyi area are located above the low resistivity anomaly zone and the edge of deep soft fluids. They have obvious distribution regularity. At the same time, they are mainly distributed in the gradient zone of ΔT polarized magnetic anomaly. Combined with the above distribution rules and characteristics, the favorable areas for prospecting can be preliminarily delineated in Wuyi area.

  • 加载中
  • Chen Yuchuan. 1999. Prospect Evaluation of Mineral Resources in Major Metallogenic Belts of China[M]. Beijing:Geological Publishing House.

    Google Scholar

    Chen Gao, Jin Zhufa, Ma Yongsheng, Su Zhuliu, Wang Yinhu, Wang Wei. 2001. Remote reference technique in magnetotelluric sounding and its application[J]. GPP, 40(3):112-117.

    Google Scholar

    Chen Ke. 2011. The relationship between structure and mineralization[J]. Western Prospecting Engineering, 23(4):109-110.

    Google Scholar

    Chen Yongxiong, Xu Zhimin, Xin Huicui. 2015. A Study on remote reference de-noising technique in magnetotelluric sounding of strong noise[J]. Chinese Journal of Engineering Geophysics, 12(1):59-67.

    Google Scholar

    Chen Guangtao. 2015. Study on static displacement correction of the earth[J]. Science and Technology and Innovation, (17):82.

    Google Scholar

    Guo Lianghui, Meng Xiaohong, Shi Lei. 2011. Magnetic reduction to the pole in the South China Sea and its tectonic Implications[C]//The International Symposium on Deep Exploration into the Lithosphere.

    Google Scholar

    Jin Sheng, Zhang Letian, Wei Wenbo, Ye Gaofeng, Liu Guoxin, Deng Min, Jing Jianen. 2010. Magnetotelluric method for deep dectection of Chinese continent[J]. Acta Geologica Sinica, 84(6):808-817.

    Google Scholar

    Liu Guodong. 1994. Development of magnetotelluric sounding in China[J]. Acta Geophysica Sinica, (S1):301-310.

    Google Scholar

    Lü Q T, Shi D N, Liu Z D. 2015a. Crustal structure and geodynamics of the middle and lower reaches of Yangtze metallogenic belt and neighboring areas:Insights from deep seismic reflection profiling[J]. Journal of Asian Earth Science, 114:704-716. doi: 10.1016/j.jseaes.2015.03.022

    CrossRef Google Scholar

    Mao Jianren, Zhao Xilin, Ye Haimin, Hu Qin, Liu Kai, Yang Fang. 2010. Tectonomagmatic mineralization and evolution in Wuyishan metallogenic belt[J]. Shanghai Geology, 31(S1):140-144.

    Google Scholar

    Mao Jianren, Ye Haimin, Zhao Xilin, Hu Qin, Liu Kai, Yang Fang. 2010. Tectonomagmatic mineralization and evolution in Wuyishan metallogenic belt[J]. Mineral Deposits, 29(S1):18-19.

    Google Scholar

    Qiu Gengen, Fang Hui, Zhong Qing, Pei Fagen, Zhang Xiaobo, Li Xiaochang, Yuan Yongzhen, Lu Jinqi, Liu Changwang, Gao Baotun, He Meixin, Bai Dawei, Li Li, Zhao Ziyan. 2014. Study for MT 3D inversion in the Middle and Lower Reaches of the Yangtze River important mineralization zones and its adjacent area[J]. Progress in Geophysics, 29 (6):2730-2737.

    Google Scholar

    Qiu Gengen, Zhang Xiaobo, Bai Dawei, Pei Fagen. 2014.Effectiveness analysis of MT remote reference technique in suppressing noise[J]. Chinese Journal of Engineering Geophysics, 11 (3):305-310.

    Google Scholar

    Qiu Gengen, Peng Yan, Lu Qinyin. 2018. Analysis for model spatial resolution in MT 3D inversion[J]. Chinese Journal of Engineering Geophysics, 15 (5):616-624.

    Google Scholar

    Siripunvaraporn W, Uyeshima M, Egbert G. 2004. Three-dimensional inversion for Network-Magnetotelluric data[J]. Earth Planets and Space, 56(9):893-902. doi: 10.1186/BF03352536

    CrossRef Google Scholar

    Siripunvaraporn W, Egbert G, Lenbury Y, Uyeshima M. 2005. Threedimensional magnetotelluric inversion:data-space method[J]. Physics of the Earth and Planetary Interiors, 150(1):3-14.

    Google Scholar

    Siripunvaraporn W, Egbert G. 2009. WSINV3DMT:Vertical magnetic field transfer function inversion and parallel implementation[J]. Physics of the Earth and Planetary Interiors, 173(3):317-329.

    Google Scholar

    Shu Liangshu. 2012. An analysis of principal features of tectonic evolution in South China Block[J]. Geological Bulletin of China, 31 (7):1035-1053.

    Google Scholar

    Wei Wenbo. 2002. New advance and prospect of magnetotelluric sounding (MT) in China[J]. Progress of Geophysics, (2):245-254.

    Google Scholar

    Wu Binliang, Shao Min. 2005.3-D static shift displacement correction of magnetotelluric sounding data and its application[J]. Progress in Exploration Geophysics, (3):219-222, 10.

    Google Scholar

    Xu Zhimin, Xin Huicui, Lu Fujun. 2014. Ore cluster area of Luzong magnetotelluric (MT) method of remote reference research[J]. Progress in Geophysics, 29 (4):1822-1830.

    Google Scholar

    Xing Guangfu, Hong Wentao, Zhang Xuehui, Zhao Xilin, Ban Yizhong, Xiao Fan. 2017. Yanshanian granitic magmatisms and their mineralizations in East China[J]. Acta Petrologica Sinica, 33(5):1571-1590.

    Google Scholar

    Xu Zhimin, Xin Huicui, Tan Xinpin, Xu Zhangjian. 2018. An analysis of the experimental results of MT remote reference technology in strong electromagnetic interference region[J]. Geophysical and Geochemical Exploration, 42(3):560-568.

    Google Scholar

    Yan Liangjun, Hu Wenbao, Chen Qinli, Zhang Xiang, Hu Jiahua. 1998. Application of remote reference MT to noisy area[J]. Journal of Jianghan Petroleum Institute, (4):36-40.

    Google Scholar

    Yu Zhongzhen, Cao Shenghua, Luo Xiaohong. 2008. Evaluation and prospective of reserves of copper polymetallic mineral resources in Wuyishan Mountain metallogenic belt, Jiangxi Province[J]. Resources Survey and Environment, 29 (4):270-278.

    Google Scholar

    Zhang Guowei, Guo Anlin, Wang Yuejun, Li Sanzhong, Dong Yunpeng, Liu Shaofeng, He Defa, Chen Shunyou, Lu Rukui, Yao Anpin. 2013. Structures and problems of South China Continent[J]. Chinese Science:Geosciences, 10:1553-1582.

    Google Scholar

    Zhang K, Wei W B, Lü Q T. 2014. Four changes for efficiency and practicality on previous 3D MT NLCG inversion algorithm[J]. Acta Geod Geophys, 49:551-563. doi: 10.1007/s40328-014-0069-1

    CrossRef Google Scholar

    Zhang K, Lü Q T, Yan J Y, Hu H, Fu G M, Luo F. 2019. The threedimensional electrical structure and metallogenic prospect of the Ning (Nanjing)-Wu (Wuhu) basin and the southern adjacent area in eastern China[J]. Journal of Asian Earth Sciences. https://doi.org/10.1016/j.jseaes.2019.01.032.

    Google Scholar

    陈毓川.1999.中国主要成矿带矿产资源远景评价[M].北京:地质出版社.

    Google Scholar

    陈高, 金祖发, 马永生, 苏朱刘, 王寅虎, 王巍. 2001.大地电磁测深远参考技术及应用效果[J].石油物探, (3):112-117. doi: 10.3969/j.issn.1000-1441.2001.03.017

    CrossRef Google Scholar

    陈科. 2011.构造与成矿之间的关系[J].西部探矿工程, 23(04):109-110. doi: 10.3969/j.issn.1004-5716.2011.04.039

    CrossRef Google Scholar

    陈勇雄, 徐志敏, 辛会翠. 2015.强噪声的大地电磁远参考去噪研究[J].工程地球物理学报, 12(1):59-67. doi: 10.3969/j.issn.1672-7940.2015.01.012

    CrossRef Google Scholar

    陈广涛. 2015.大地电磁静态位移校正研究[J].科技与创新, (17):82.

    Google Scholar

    郭良辉, 孟小红, 石蕾. 2011.南海磁极还原及其构造意义[C]//年岩石圈深部勘探国际研讨会.北京.

    Google Scholar

    金胜, 张乐天, 魏文博, 叶高峰, 刘国兴, 邓明, 景建恩. 2010.中国大陆深探测的大地电磁测深研究[J].地质学报, 84(6):808-817.

    Google Scholar

    刘国栋. 1994.我国大地电磁测深的发展[J].地球物理学报, (S1):301-310.

    Google Scholar

    毛建仁, 赵希林, 叶海敏, 胡青, 刘凯, 杨芳. 2010.武夷山成矿带构造-岩浆-成矿作用与演化[J].上海地质, 31(S1):140-144.

    Google Scholar

    毛建仁, 叶海敏, 赵希林, 胡青, 刘凯, 杨芳. 2010.武夷山成矿带构造-岩浆-成矿作用与演化[J].矿床地质, 29(S1):18-19.

    Google Scholar

    仇根根, 方慧, 钟清, 裴发根, 张小博, 李晓昌, 袁永真, 卢景奇, 刘畅往, 高宝屯, 何梅兴, 白大为, 李立, 赵子言. 2014.长江中下游重要成矿区带及邻区大地电磁测深三维反演研究[J].地球物理学进展, 29(6):2730-2737.

    Google Scholar

    仇根根, 张小博, 白大为, 裴发根. 2014.大地电磁法远参考处理技术压制噪声干扰的应用效果分析[J].工程地球物理学报, 11(3):305-310. doi: 10.3969/j.issn.1672-7940.2014.03.006

    CrossRef Google Scholar

    仇根根, 彭炎, 吕琴音. 2018.大地电磁法三维反演计算模型分辨率分析[J].工程地球物理学报, 15(5):616-624.

    Google Scholar

    舒良树. 2012.华南构造演化的基本特征[J].地质通报, 31(7):1035-1053. doi: 10.3969/j.issn.1671-2552.2012.07.003

    CrossRef Google Scholar

    魏文博. 2002.我国大地电磁测深新进展及瞻望[J].地球物理学进展, (2):245-254. doi: 10.3969/j.issn.1004-2903.2002.02.009

    CrossRef Google Scholar

    吴炳良, 邵敏. 2005.大地电磁三维静态位移校正方法及其应用效果[J].勘探地球物理进展, (3):219-222+10.

    Google Scholar

    徐志敏, 辛会翠, 吕扶君. 2014.庐枞矿集区大地电磁法的远参考效果研究[J].地球物理学进展, 29(4):1822-1830.

    Google Scholar

    邢光福, 洪文涛, 张雪辉, 赵希林, 班宜忠, 肖凡. 2017.华东地区燕山期花岗质岩浆与成矿作用关系研究[J].岩石学报, 33(5):1571-1590.

    Google Scholar

    徐志敏, 辛会翠, 谭新平, 徐张建. 2018.强电磁干扰区大地电磁远参考技术试验效果分析[J].物探与化探, 42(3):560-568.

    Google Scholar

    严良俊, 胡文宝, 陈清礼, 张翔, 胡家华. 1998.远参考MT方法及其在南方强干扰地区的应用[J].江汉石油学院学报, (4):36-40.

    Google Scholar

    余忠珍, 曹圣华, 罗小洪. 2008.江西武夷成矿带铜多金属矿产资源远景评价与展望[J].资源调查与环境, 29(4):270-278. doi: 10.3969/j.issn.1671-4814.2008.04.005

    CrossRef Google Scholar

    张国伟, 郭安林, 王岳军, 李三忠, 董云鹏, 刘少峰, 何登发, 程顺有, 鲁如魁, 姚安平. 2013.中国华南大陆构造与问题[J].中国科学:地球科学, 10:1553-1582.

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(12)

Article Metrics

Article views(2719) PDF downloads(636) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint