2019 Vol. 46, No. 4
Article Contents

LÜ Qingtian, MENG Guixiang, YAN Jiayong, ZHANG Kun, ZHAO Jinhua, GONG Xuejing. 2019. Multi-scale exploration of mineral system: Concept and progress-A case study in the middle and lower reaches of the Yangtze River Metallogenic Belt[J]. Geology in China, 46(4): 673-689. doi: 10.12029/gc20190401
Citation: LÜ Qingtian, MENG Guixiang, YAN Jiayong, ZHANG Kun, ZHAO Jinhua, GONG Xuejing. 2019. Multi-scale exploration of mineral system: Concept and progress-A case study in the middle and lower reaches of the Yangtze River Metallogenic Belt[J]. Geology in China, 46(4): 673-689. doi: 10.12029/gc20190401

Multi-scale exploration of mineral system: Concept and progress-A case study in the middle and lower reaches of the Yangtze River Metallogenic Belt

    Fund Project: Supported jointly by National Key Research and Development Program (No. 2016YFC0600200), China Geological Survey Project (No. DD20160082) and National Natural Science Foundation (No. 41630320)
More Information
  • Author Bio: LÜ Qingtian, male, born in 1964, professor, engages in research on mineral exploration technique and its application; E-mail: lqt@cags.ac.cn
  • The guidance of metallogenic theory is urgently needed under the background that global mineral exploration is gradually turning to the target at "greenfields", deep earth and coverage areas. The concept of metallogenic system proposed at the end of the last century has attracted extensive attention and study of the mining industry due to its powerful function of regional mineralization forecasting. In this study, first and foremost, the authors review the concept, components and classification of mineral systems. Then the methods of detecting and identifying the main components of the metallogenic system are discussed. Last but not least, the deep process, crustal structure and geophysical response of typical intracontinental metallogenic systems are discussed based on the authors' multi-scale exploration in the middle and lower reaches of the Yangtze River Metallogenic Belt in recent years, and the application of the concept of mineral system in the field of metallogenic prediction is also prospected. The main conclusions of this paper are as follows:(1) The mineral system is a natural system that comprises all the essential factors controlling the formation and preservation of deposits, with basic components of "source", "path" and "site". Each component includes complex physical, chemical and kinetic processes. (2) A deposit is the 'result' of multi-scale deep processes coupling at a certain 'point' in the mineral system. During the evolution of the mineral system, various physical and chemical processes have strongly "modified" the crust and lithospheric mantle, leaving behind various physical, chemical, and mineralogical "footprints" with significant detectability due to the altered geophysical properties. (3) A new model was proposed based on the multi-scale exploration in the middle and lower reaches of the Yangtze River Metallogenic Belt, for the understanding of "source", "path" and "site" of a typical intracontinentalmetallogenic system. (4) Mineral system based multi-scale target predication will be a prospective research direction in the future, with the continuous developing of geoscience big data, machine learning and artificial intelligence.

  • 加载中
  • Chang Yinfo, Liu Xiangpei, Wu Changyan. 1991. Iron-copper Metallogenic Belt in the Middle and Lower Yangtze River[M]. Beijing:Geological Publishing House, 1-379(in Chinese).

    Google Scholar

    Chen L, Zheng T Y, Xu W W. 2006. A thinned lithospheric image of the Tanlu Fault Zone, eastern China:Constructed from wave equation based receiver function migration[J]. Journal of Geophysical Research, 111:B09312.

    Google Scholar

    Deemer S J, Hurich C A. 1994. The reflectivity of magmatic underplating using the layered mafic intrusion analog[J]. Tectonophysics, 232:239-255. doi: 10.1016/0040-1951(94)90087-6

    CrossRef Google Scholar

    Deng Jinfu, Wu Zongxu. 2001. Lithospheric thinning event in the lower Yangtze craton and Cu-Fe metallogenic belt in the middle and lower Yangtze River reaches[J]. Geology of Anhui, 11(2):86-91(in Chinese with English abstract).

    Google Scholar

    Dong Shuwen, Qiu Ruilong. 1993. Tectonic and Magmatic Activities in the Anqing-Yueshan Area[M]. Beijing:Geological Publishing House, 1-158(in Chinese).

    Google Scholar

    Drummond B J, Goleby B R, 1993. Seismic reflection images of major ore-controlling structure in the Eastern Goldfields[J]. Western Australia:Expl. Geophys., 24, 473-478. doi: 10.1071/EG993473

    CrossRef Google Scholar

    Dulfer H, Skirrow R G, Champion D C, Highet L M, Czarnoat K, Coglan R, Milligan R R. 2016. Potential for intrusion-hosted NiCu-PGE sulfide deposits in Australia:A continental-scale analysis of mineral system prospectivity[J]. Geoscience Australia Record, 129.

    Google Scholar

    Fan Yu, Zhou Taofa, Yuan Feng, Qian Cunchao, Lu Sanming, Cooke D. 2008. LA-ICP-MS zircon U-Pb ages of the A-type granites in the Lu-Zong(Lujiang-Zongyang) area and their geological significances[J]. Acta Geologica Sinica, 24(8):1715-1724(in Chinese with English abstract).

    Google Scholar

    Fan Yu, Zhou Taofa, Yuan Feng, Zhang Lejun, Qian Bing, Ma Liang, Cooke D. 2010. Geochronology of the diorite porphyrites in NingWu basin and their metallogenic significances[J]. Acta Petrologica Sinica, 26(9):2715-2728(in Chinese with English abstract).

    Google Scholar

    Fan yu, Zhou Taofa, Yuan Feng, Zhang Lejun, Qian Bing, Ma Liang, Xie Jie, Yang Xifei. 2011. Geochronology of the porphyry-like type iron deposits in Ning-Wu Basin:Evidence from 40Ar-39Ar phlogopite dating[J]. Acta Geologica Sinica, 85(5):810-820(in Chinese with English abstract).

    Google Scholar

    Fouch M J, James D E, VanDecar J C, Lee S, Kaapvaal Seismic Group. 2004. Mantle seismic structure beneath the Kaapvaal and Zimbabwe Cratons[J]. S. Afr. J. Geol., 107:33-44. doi: 10.2113/107.1-2.33

    CrossRef Google Scholar

    Griffin W L, Begg G C, Suzanne Y O'Reilly. 2013. Continental-root control on the genesis of magmatic ore deposits[J]. Nature Geosci., 6:905-910. doi: 10.1038/ngeo1954

    CrossRef Google Scholar

    Hagemann S G, Cassidy K. 2000. Archean orogenic lode gold deposits[C]//Hagemann S G, Brown P E (eds.). Gold in 2000, SEG Reviews in Economic Geology, 13: 9-68.

    Google Scholar

    Hagemann S G, Angerer T, Duuring P, Rosière C A, Figueiredo E, Silva R C, Lobato L, Hebsler A S, Walde D H G. 2016. BIFhosted iron mineral system:A review[J]. Ore Geol. Rev., 76:317-359. doi: 10.1016/j.oregeorev.2015.11.004

    CrossRef Google Scholar

    Heinson G, Direen N G, Gill R M. 2006. Magnetotelluric evidence for a deep-crustal mineralizing system beneath the Olympic Dam iron oxide copper-gold deposit, southern Australia[J]. Geology, 34(7):573-576. doi: 10.1130/G22222.1

    CrossRef Google Scholar

    Heinson G, Didana Y, Soeffky P, Thiel S, Wise T. 2018. The crustal geophysical signature of a world-class magmatic mineral system[J]. Scientific Report, 8:10608. DOI:10.1038/s41598-018-29016-2.

    CrossRef Google Scholar

    Huston D L, Mernagh T P, Hagemann S G, Doublier M P, Fiorentini M, Champion D C, Jaques A L, Czarnota K, Cayley R, Skiroow R, Bastrakov E. 2016. Tectonometallogenic systems-the place of mineral systems within tectonic evolution, with an emphasis on Australian examples[J]. Ore Geol. Rev., 76:168-210. doi: 10.1016/j.oregeorev.2015.09.005

    CrossRef Google Scholar

    Jiang G M, Zhang G B, Lü Q T, et al. 2013.3-D velocity model beneath the Middle-Lower Yangtze River and its implication to the deep geodynamics[J]. Tectonophysics, 606:36-48. doi: 10.1016/j.tecto.2013.03.026

    CrossRef Google Scholar

    Jiang Guoming, Zhang Guibin, Lü Qingtian, Shi Danian, Xu Yao. 2014. Deep geodynamics of mineralization beneath the MiddleLower Reaches of Yangtze River:Evidence from teleseismic tomography[J]. Acta Petrologica Sinica, 30(4):907-917(in Chinese with English abstract).

    Google Scholar

    Jones A G, Evans R L, Muller M R, Hamilton M P. 2009. Area selection for diamonds using magnetotellurics:Examples from southern Africa[J]. Lithos 112S, 83-92.

    Google Scholar

    Lewis P, Downes P J. 2008. Mineral systems and processes in New South Wales:A project to enhance understanding and assist exploration[J]. N. S. W. Geol. Surv. Quarterly Notes, 128, 1-15.

    Google Scholar

    Li Wenda, Mao Jianren, Zhu Yunhe, Xie Huaguang. 1998. Mesozoic Volcanic Rocks and Deposits in Southeastern China[M]. Beijing:Seismological Press, 1-156(in Chinese).

    Google Scholar

    Ling M X, Wang F Y, Ding X, Hu Y H, Zhou J B, Zartman R E, Yang X Y, Sun W D. 2009. Cretaceous ridge subduction along the Lower Yangtze River belt, Eastern China[J]. Economic Geology, 104:303-321. doi: 10.2113/gsecongeo.104.2.303

    CrossRef Google Scholar

    Lü Q T, Yan J Y, Shi D N, Dong S W, Tang J T, Wu M A, Chang Y F. 2013. Reflection seismic imaging of the Lujiang-Zongyang volcanic area:An insight into the crustal structure and geodynamics of an ore district[J]. Tectonophysics, 606:60-78. doi: 10.1016/j.tecto.2013.04.006

    CrossRef Google Scholar

    Lü Qingtian, Dong Shuwen, Shi Danian, Tang Jingtian, Jiang Guoming, Zhang Yongqian, Xu Tao and SinoProbe-03-CJ Group. 2014. Lithosphere architecture and geodynamic model of Middle and Lower Reaches of Yangtze Metallogenic Belt:A review from SinoProbe[J]. Acta Petrologica Sinica, 30(4):889-906(in Chinese with English abstract).

    Google Scholar

    Lü Q T, Shi D N, Liu Z D, Zhang Y Q, Dong S W, Zhao J H. 2015. Crustal structure and geodynamic of the Middle and Lower reaches of Yangtze metallogenic belt and neighboring areas:insights from deep seismic reflection profiling[J]. Journal of Asian Earth Science, 114:704-716. doi: 10.1016/j.jseaes.2015.03.022

    CrossRef Google Scholar

    Lü Qingtian, Dong Shuwen, Tang Jingtian, Shi Danian, Chang Yinfo and SinoProbe-03-CJ Group. 2015a. Multi-scale and integrated geophysical data revealing mineral systems and exploring for mineral deposits at depyh:A synthesis from SinoProbe-03[J]. Chinese Journal of Geophysics, 58(12):4319-4343(in Chinese with English abstract).

    Google Scholar

    Lü Qingtian, Liu Zhendong, Dong Shuwen, Yan Jiayong, Zhang Yongqian. 2015b. The nature of Yangtze River deep fault zone:Evidence from deep seismic data[J]. Chinese Journal of Geophysics, 58(12):4344-4359(in Chinese with English abstract).

    Google Scholar

    Lü Qingtian, Shi Danian, Yan Jiayong, Liu Zhendong. 2018.The Mesozoic mineral systems of South China:Lithospheric structure and deep processes constrained from integrated geophysical data-preliminary results[J]. Acta Geologica Sinica, 92(z1):15.

    Google Scholar

    Mao J W, Wang Y T, Lehmann B, Yu J J, Du A D, Mei Y X, Li Y F, Zang W S, Stein H J, Zhou T F. 2006. Molybdenite Re-Os and albite 40Ar/39Ar dating of Cu-Au-Mo and magnetite porphyry systems in the Yangtze River valley and metallogenic implications[J]. Ore Geology Reviews, 29(3/4):307-324.

    Google Scholar

    Mao J, Xie G, Duan C, Pirajno F, Ishiyama D, Chen Y. 2011. A tectono-genetic model for porphyry-skarn-stratabound Cu-AuMo-Fe and magnetite-apatite deposits along the Middle-Lower Yangtze River Valley, Eastern China[J]. Ore Geology Reviews, 43:294-314. doi: 10.1016/j.oregeorev.2011.07.010

    CrossRef Google Scholar

    McBridea J H, Whiteb R S, Smallwoodc J R, England R W. 2004.Must magmatic intrusion in the lower crust produce reflectivity?[J] Tectonophysics, 388:271-297. doi: 10.1016/j.tecto.2004.07.055

    CrossRef Google Scholar

    McCuaig T C, Beresford S, Hronsky, J M A. 2010. Translating the mineral systems approach into an effective exploration targeting system[J]. Ore Geology Reviews, 38:128-138. doi: 10.1016/j.oregeorev.2010.05.008

    CrossRef Google Scholar

    McCuaig T C, Hronsky J M A. 2014. The mineral system concept:the key to exploration targeting[J]. Soc. Econ. Geol. Spec. Publ., 18:153-176.

    Google Scholar

    Norman R P. 2003. Geophysical developments and mine discoveries in the 20th century[J]. The Leading Edge, 6:558-561.

    Google Scholar

    Ouyang L B, Li H Y, Lü Q T, Yang Y J, Li X F, J iang G M, Zhang G B, Shi D N, Zheng D, Sun S J, Tan J, Zhou M. 2014. Crustal and uppermost mantle velocity structure and its relationship to the formation of ore districts in the Middle-Lower Yangtze River region[J]. Earth and Planetary Science Letters, 408:378-389. doi: 10.1016/j.epsl.2014.10.017

    CrossRef Google Scholar

    Pan Y M, Dong P. 1999. The Lower Changjiang (Yangzi/Yangtze River) metallogenic belt, east central China:Intrusion-and wall rock-hosted Cu-Fe-Au, Mo, Zn, Pb, Ag deposits[J]. Ore Geology Reviews, 15:177-242. doi: 10.1016/S0169-1368(99)00022-0

    CrossRef Google Scholar

    Qiu G G, Fang H, Lü Q Y, Pen Y, He D S, He M X. 2018. Lithospheric Electrical Characteristics of Eastern Jiangnan Orogen, South China[C]//Proceedings of the International Workshop on Environment and Geoscience-Volume 1: 415-420. DOI: 10.5220/0007431204150420.

    Google Scholar

    Richards J P. 2003. Tectono-magmatic precursors for porphyry Cu-(Mo-Au) deposit formation[J]. Economic Geology, 98:1515-1533. doi: 10.2113/gsecongeo.98.8.1515

    CrossRef Google Scholar

    Shi D N, Lü Q T, Xu W Y, et al. 2013. Crustal structure beneath the middle-lower Yangtze metallogenic belt in East China:Constraints from passive source seismic experiment on the Mesozoic intracontinental mineralization[J]. Tectonophysics, 606:48-60. doi: 10.1016/j.tecto.2013.01.012

    CrossRef Google Scholar

    Skinner B J. 2005. Introduction: A Century of Excellence[J]. Economic Geology, 100th Anniv. Vol.: 1-4.

    Google Scholar

    Skirrow R G (ed.). 2009. Uranium ore-forming systems of the Lake Frome region, South Australia: Regional spatial controls and exploration criteria[J]. Geoscience Australia Record, 40: 148.

    Google Scholar

    Sodoudi F, Yuan X, Liu Q, Kind R, Chen J. 2006. Lithospheric thickness beneath the Dabie Shan, central eastern China from S receiver functions[J]. Geophysical Journal International, 166:1363-1367. doi: 10.1111/j.1365-246X.2006.03080.x

    CrossRef Google Scholar

    Tang Yongcheng, Wu Yanchang, Chu Guozheng. 1998. Geology of Copper-gold Polymetallic Deposits along the Yangtze River in Anhui Province[M]. Beijing:Geological Publishing House, 1-351(in Chinese).

    Google Scholar

    Tao Kuiyuan, Mao Jianren, Yang Zhuliang, Zhao Yu, Xing Guangfu, Xue Huaimin. 1998. Mesozoic petro-tectonic associations and records of the geodynamic processes in southeast China[J]. Earth Science Frontiers, 5(4):183-192(in Chinese with English abstract).

    Google Scholar

    Turneaure F S. 1955. Metallogenetic provinces and epochs[J]. Economic Geology, 50th Anniv. Vol.: 38-98.

    Google Scholar

    Vigneresse J L. 1995a. Control of granite emplacement by regional deformation[J]. Tectonophysics, 249:173-186. doi: 10.1016/0040-1951(95)00004-7

    CrossRef Google Scholar

    Vigneresse J L. 1995b. Crustal regime of deformation and ascent of granitic magma[J]. Tectonophysics, 249:187-202. doi: 10.1016/0040-1951(95)00005-8

    CrossRef Google Scholar

    Walshe J L, Cooke D R, Neumayr P. 2005. Five questions for fun and profit: a mineral system perspective on metallogenic epochs, provinces and magmatic hydrothermal Cu and Au deposits[C]//Mineral Deposit Research: Meeting the Global Challenge.Springer, Berlin, Heidelberg, 477-480.https://link.springer.com/chapter/10.1007%2F3-540-27946-6_124

    Google Scholar

    Wang Qiang, Zhao Zhenhua, Xiong Xiaolin, Xu Jifeng. 2001. Melting of the underplated basaltic lower crust:Evidence from the Shaxi adakitic sodic quartz diorite-porphyrites, Anhui Province, China[J]. Geochimica, 30(4):353-362(in Chinese with English abstract).

    Google Scholar

    Wang Qiang, Zhao Zhenhua, Xu Jifeng, Bai Zhenghua, Wang Jianxin, Liu Chengxin. 2004. The geochemical comparison between the Tongshankou and Yinzu adakitic intrusive rocks in southeastern Hubei:(delaminated) lower crustal melting and the genesis of porphyry copper deposit[J]. Acta Petrologica Sinica, 20(2):351-360(in Chinese with English abstract).

    Google Scholar

    Witherly K. 2012. The evolution of minerals exploration over 60 years and the imperative to explore undercover[J]. The Leading Edge, 3:292-295.

    Google Scholar

    Witherly K. 2014. Geophysical Expressions of Ore Systems-Our Current Understanding[J]. Society of Economic Geologists, Inc.Special Publication 18, 177-208.

    Google Scholar

    Wyborn L A I, Heinrich C A, Jaques A L. 1994. Australian Proterozoic mineral systems:Essential ingredients and mappable criteria[J]. AusIMM Publ. Ser. 5 (94):109-115.

    Google Scholar

    Xie G Q, Mao J W, Li R L, Qü W J, Pirajno F, Du AD. 2007. Re-Os molybdenite and Ar-Ar phlogopite dating of Cu-Fe-Au-Mo (W) deposits in southeastern Hubei, China[J]. Mineralogy and Petrology, 90 (3/4):249-270.

    Google Scholar

    Xie G Q, Mao J W, Zhao H J, Duan C, Yao L. 2012. Zircon U-Pb and phlogopite 40Ar-39Ar age of the Chengchao and Jinshandian skarn Fe deposits, Southeast Hubei Province, Middle-Lower Yangtze River Valley metallogenic belt, China[J]. Mineralium Deposita, 47(6):633-652. doi: 10.1007/s00126-011-0367-2

    CrossRef Google Scholar

    Xing Fengming, Xu Xiang. 1999. Anhui Yangtze Magmatite Belt and Mineralization[M]. Hefei:Anhui People's Publishing House, 1-170(in Chinese).

    Google Scholar

    Xu Jifeng, Wang Qiang, Xu Yigang, Zhao Zhenhua, Xiong Xiaolin. 2001. Geochemistry of Anjishan intermediate-acid intrusive rocks in Ningzhen area:Constraint to origin of the magma with HREE and Y depletion[J]. Acta Petrologica Sinica, 17(4):576-584(in Chinese with English abstract).

    Google Scholar

    Xu J F, Shinjo R, Defant M J, Wang Q, Rapp R P. 2002. Origin of Mesozoic adakitic intrusive rocks in the Ningzhen area of east China:Partial melting of delaminated lower continental crust?[J]. Geology, 30:1111-1114. doi: 10.1130/0091-7613(2002)030<1111:OOMAIR>2.0.CO;2

    CrossRef Google Scholar

    Yan Jiayong, Lü Qingtian, Meng Guixiang, Zhao Jinhua, Deng Zhen, Liu Yan. 2011. Tectonic framework research of the lower and middle Yangtze metallogenic belt based on gravity and magnetic multi-scale edge detection[J]. Acta Geologica Sinica, 85(5):909-914(in Chinese with English abstract).

    Google Scholar

    Yu Chongwen. 1994. Metallogenic dynamics-theoretical systems and methodologies[J]. Earth Science Frontiers, 1(3):54-82(in Chinese with English abstract).

    Google Scholar

    Yu Chongwen. 2001a. Fractal growth of ore-forming dynamical systems at the edge of chaos-A new metallogeny and methodology(First half)[J]. Earth Science Frontiers, 8(3):9-28(in Chinese with English abstract).

    Google Scholar

    Yu Chongwen. 2001b. Fractal growth of ore-forming dynamical systems at the edge of chaos-A new metallogeny and methodology(Second half)[J]. Earth Science Frontiers, 8(4):471-489(in Chinese with English abstract).

    Google Scholar

    Zhai Yusheng, Yao Shuzhen, Lin Xinduo. 1992. Iron-copper (gold) Metallogenic Regularity in the Middle and Lower Reaches of the Yangtze River[M]. Beijing:Geological Publishing House, 1-120(in Chinese).

    Google Scholar

    Zhai Yusheng. 1998. The tectonic evolution and metallogenic system of the paleocontinental margin[C]//Department of Geology, Peking University. Proceedings of the International Geosciences Symposium, Peking University. Beijing: Seismological Press, 769-778(in Chinese with English abstract).

    Google Scholar

    Zhai Yusheng. 1999. On the metallogenic system[J]. Earth Science Frontiers, 6(1):14-27(in Chinese with English abstract).

    Google Scholar

    Zhang C, Ma C Q, Holtz F. 2010. Origin of high-Mg adakitic magmatic enclaves from the Meichuan pluton, southern Dabie orogen (central China):Implications for delamination of the lower continental crust and melt-mantle interaction[J]. Lithos, 119:467-484. doi: 10.1016/j.lithos.2010.08.001

    CrossRef Google Scholar

    Zhang Guomin, Wang Suyun, Li Li, Zhang Xiaodong, Ma Hongsheng. 2002. Seismic source depth and its tectonic significance in China.[J] Science Bulletin, 47(9):663-668(in Chinese).

    Google Scholar

    Zhang K, Lü Q T, Yan J Y, Shao L S, Guo D, Zhang Y W. 2019. The subduction and continental collision of the North China and Yangtze Blocks:Magnetotelluric evidence from the SusongAnqing section of Western Anhui, China[J]. Geophys. J. Int., 216:2114-2128. doi: 10.1093/gji/ggy541

    CrossRef Google Scholar

    Zhang Minghui, Xu Tao, Lü Qingtian, Bai Zhiming, Wu Chenglong, Wu Zhenbo, Teng Jiwen. 2015.3D Moho depth beneath the middle-lower Yangtze metallogenic belt and its surrounding areas:Insight from the wide angle seismic data[J]. Chinese Journal of Geophysics, 58(12):4360-4372(in Chinese with English abstract).

    Google Scholar

    Zhou Taofa, Wu M G, Fan Y, Duan C, Yuan F, Zhang L J, Liu J, Qian B, Pirajno F and Cooke D. R. 2011. Geological, geochemical characteristics and isotope systematics of the Longqiao iron deposit in the Lu-Zong volcano-sedimentary basin, Middle-Lower Yangtze (Changjiang) River Valley, eastern China[J]. Ore Geology Reviews, 43 (1):154 -169.

    Google Scholar

    Zhou Taofa, Fan Yu, Yuan Feng. 2008. Advances on petrogensis and metallogeny study of the mineralization belt of the Middle and Lower Reaches of the Yangtze River area[J]. Acta Petrologica Sinica, 24(8):1665 -1678(in Chinese with English abstract).

    Google Scholar

    Zhou Taofa, Fan Yu, Wang Shiwei, White N C. 2017. Metallogenic regularity and metallogenic model of the middle-lower Yangtze River Valley metallogenic belt[J]. Acta Petrologica Sinica, 33(11):3353-3372(in Chinese with English abstract).

    Google Scholar

    Zhou X M, Li W X. 2000. Origin of Late Mesozoic igneous rocks in Southeastern China:implications for lithosphere subduction and underplating of mafic magmas[J]. Tectonophysics, 326:269-287. doi: 10.1016/S0040-1951(00)00120-7

    CrossRef Google Scholar

    Zhou X M, Sun T, Shen W Z, Shu L S, Niu Y L. 2006. Petrogenesis of Mesozoic granitoids and volcanic rocks in South China:A response to tectonic evolution[J]. Episodes, 29(1):26-33.

    Google Scholar

    常印佛, 刘湘培, 吴言昌. 1991.长江中下游铜铁成矿带[M].北京:地质出版社, 71-76.

    Google Scholar

    邓晋福, 吴宗絮. 2001.下扬子克拉通岩石圈减薄事件与长江中下游Cu-Fe成矿带[J].安徽地质, 11(2):86-91. doi: 10.3969/j.issn.1005-6157.2001.02.002

    CrossRef Google Scholar

    董树文, 邱瑞龙. 1993.安庆-岳山地区构造作用及岩浆活动[M].北京:地质出版社, 1-158.

    Google Scholar

    范裕, 周涛发, 袁峰, 钱存超, 陆三明, David R.C. 2008.安徽庐江-枞阳地区A型花岗岩的LA-ICP-MS定年及其地质意义[J].岩石学报, 24(8):1715-1724.

    Google Scholar

    范裕, 周涛发, 袁峰, 张乐骏, 钱兵, 马良, David R C.2010.宁芜盆地闪长玢岩的形成时代及对成矿的指示意义[J].岩石学报, 26(9):2715-2728.

    Google Scholar

    范裕, 周涛发, 袁峰, 张乐骏, 钱兵, 马良, 谢杰, 杨西飞. 2011.宁芜盆地玢岩型铁矿床的成矿时代:金云母40Ar-39Ar同位素年代学研究[J].地质学报, 85(5):810-820.

    Google Scholar

    江国明, 张贵宾, 吕庆田, 史大年, 徐峣. 2014.长江中下游地区成矿深部动力学机制:远震层析成像证据[J].岩石学报, 30 (4):907-917.

    Google Scholar

    李文达, 毛建仁, 朱云鹤, 谢华光. 1998.中国东南部中生代火山岩与矿床[M].北京:地震出版社, 1-156.

    Google Scholar

    吕庆田, 董树文, 史大年. 2014.长江中下游成矿带岩石圈结构与成矿动力学模型——深部探测(SinoProbe)综述[J].岩石学报, 30(4):889-906.

    Google Scholar

    吕庆田, 董树文, 汤井田, 史大年, 常印佛, SinoProbe-CJ项目组. 2015a.多尺度综合地球物理探测:揭示成矿系统、助力深部找矿——长江中下游深部探测(SinoProbe-03)进展[J].地球物理学报, 58(12):4319-4343.

    Google Scholar

    吕庆田, 刘振东, 董树文, 严加永, 张永谦. 2015b.长江深断裂带的构造性质:深地震反射证据[J].地球物理学报, 58(12):4344-4359.

    Google Scholar

    唐永成, 吴言昌, 储国正. 1998.安徽沿江地区铜金多金属矿床地质[M].北京:地质出版社, 1-351.

    Google Scholar

    陶奎元, 毛建仁, 杨祝良, 赵宇, 邢光福, 薛怀民. 1998.中国东南部中生代岩石构造组合和复合动力学过程的记录[J].地学前缘, 5(4):183-192. doi: 10.3321/j.issn:1005-2321.1998.04.001

    CrossRef Google Scholar

    王强, 赵振华, 熊小林, 许继峰. 2001.底侵玄武质下地壳的熔融:来自安徽沙溪adakite质富钠石英闪长玢岩的证据[J].地球化学, 30 (4):353-362. doi: 10.3321/j.issn:0379-1726.2001.04.008

    CrossRef Google Scholar

    王强, 赵振华, 许继峰, 白正华, 王建新, 刘成新. 2004.鄂东南铜山口、殷祖埃达克质(adakitic)侵入岩的地球化学特征对比:(拆沉)下地壳熔融与斑岩铜矿的成因[J].岩石学报, 20(2):351-360.

    Google Scholar

    邢凤鸣, 徐祥. 1999.安徽扬子岩浆岩带与成矿[M].合肥:安徽人民出版社, 1-170.

    Google Scholar

    许继峰, 王强, 徐义刚, 赵振华, 熊小林. 2001.宁镇地区中生代安基山中酸性侵入岩的地球化学:亏损重稀土和钇的岩浆产生的限制[J].岩石学报, 17(4):576-584.

    Google Scholar

    严加永, 吕庆田, 孟贵祥, 赵金花, 邓震, 刘彦. 2011.基于重磁多尺度边缘检测的长江中下游成矿带构造格架研究[J].地质学报, 85(5):900-914.

    Google Scholar

    於崇文. 1994.成矿作用动力学——理论体系和方法论[J].地学前缘, 1(3):54-82. doi: 10.3321/j.issn:1005-2321.1994.03.006

    CrossRef Google Scholar

    於崇文. 2001a.成矿动力系统在混沌边缘分形生长——一种新的成矿理论与方法论(上)[J].地学前缘, 8(3):9-28.

    Google Scholar

    於崇文. 2001b.成矿动力系统在混沌边缘分形生长——一种新的成矿理论与方法论(下)[J].地学前缘, 8(4):471-489.

    Google Scholar

    翟裕生, 姚书振, 林新多. 1992.长江中下游地区铁铜(金)成矿规律[M].北京:地质出版社, 1-120.

    Google Scholar

    翟裕生. 1998.古大陆边缘构造演化和成矿系统[C]//北京大学地质系主编.北京大学国际地质科学学术研讨会论文集.北京: 地震出版社, 769-778.

    Google Scholar

    翟裕生. 1999.论成矿系统[J].地学前缘, 6(1):14-27.

    Google Scholar

    张国民, 汪素云, 李丽, 张晓东, 马宏生. 2002.中国大陆地震震源深度及其构造意义[J].科学通报, 47(9):663-668. doi: 10.3321/j.issn:0023-074X.2002.09.004

    CrossRef Google Scholar

    张明辉, 徐涛, 吕庆田, 白志明, 武澄泷, 武振波, 滕吉文. 2015.长江中下游成矿带及邻区三维Moho面结构:来自人工源宽角地震资料的约束[J].地球物理学报, 58(12):4360-4372. doi: 10.6038/cjg20151203

    CrossRef Google Scholar

    周涛发, 范裕, 袁峰. 2008.长江中下游成矿带成岩成矿作用研究进展[J].岩石学报, 4(8):1665-1678.

    Google Scholar

    周涛发, 范裕, 王世伟, Noel C W. 2017.长江中下游成矿带成矿规律和成矿模式[J].岩石学报, 33(11):3353-3372.

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(4)

Article Metrics

Article views(4212) PDF downloads(964) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint