Citation: | QIN Tong, TANG Qingjia, ZHANG Qiang, YANG Pingheng. 2019. Chemical ions source analysis and stable isotope implications of different water bodies in large karst underground river system: A case study of Poxin groundwater basin in Guangxi[J]. Geology in China, 46(2): 302-315. doi: 10.12029/gc20190207 |
To explore the characteristics, sources and main controlling factors of water chemical ions in surface or groundwater of Poxin underground river system and the implications of carbon stable isotope, the authors collected hydrochemical and carbon stable isotopic data from 38 water sites in the Poxin underground river basin and did analysis with stoichiometry and isotopic method. The results show that spatially, the chemical ions in the mainstream of underground river vary significantly due to the effect of the regional rock types and the dilution of the tributaries. Ion proportional analysis shows that the precipitation has great influence on Cl- and Na+ in some springs, and the main type of carbonate dissolution seems to be limestone in the study area. The Mg2+/Ca2+ molar ratios of surface water and water in ground river skylight are negatively correlated with HCO3-, indicating that, at the macroscopic scale, the dissolution will become more intense with the higher HCO3- value, and H2SO4 and HNO3 will participate during the weathering of carbonate rocks actively. Silicate rocks weathering has contributed to Ca2+, Mg2+, Na+ and K+ of surface water and groundwater. Mining activities and agricultural activities have a great impact on the generation of SO42- and NO3-.The forward model of mass balance shows that, owing to regional rock types and hydrological conditions, water in surface and underground river skylights is mainly dominated by carbonate dissolution, whereas silicate dissolution and atmospheric input also contribute some components, and hence the ratios of three sources vary greatly spatially. The dissolved inorganic carbon (DIC) in the water is mainly derived from the dissolution of carbonate rocks and the soil CO2.DIC and the δ13CDIC values are obviously different between surface water and groundwater, and are negatively correlated with δ13CDIC, implying that the more DIC from the soil CO2, the more intense the dissolution capacity of the carbonate minerals. Based on the data from this study area and previous study in upper, middle and lower reaches of Xijiang River, the authors detected that both of data support the argument that the aquatic algae can apply DIC transport to organic carbon, and forms a stable carbon sink.
Cao Jianhua, Jiang Zhongcheng, YuanDaoxian, Xia Riyuan, Zhang Cheng.2017.The progress in the study of the karst dynamic system and global changes in the past 30 years[J].Geology in China, 44(5):874-900(in Chinese with English abstract). |
Cerling T E, Solomon D K, Quade J, Bowman J R.1991.On the isotopic composition of carbon in soil carbon dioxide[J].Geochimica et Cosmochimica Acta, 55(11):3403-3405. doi: 10.1016/0016-7037(91)90498-T |
Chetelat B, Liu C Q, Zhao Z Q, Q L Wang, S L Li, B L Wang.2008.Geochemistry of the dissolved load of the Changjiang Basin rivers:Anthropogenic impacts and chemical weathering[J].Geochimica et Cosmochimica Acta, 72(17):4254-4277. doi: 10.1016/j.gca.2008.06.013 |
Curl R L.2012.Carbon shifted but not sequestered[J].Science, 335:655. |
Galy A, Frence-Lanord C.1999.Weathering processes in the Ganges-Brahmaputra basin and the riverine alkalinity budget[J].Chemical Geology, 159(1/4):31-60. |
Gao Q, Wang Z.2015.Dissolved inorganic carbon in the Xijiang River:Concentration and stable isotopic composition[J].Environmental Earth Sciences, 73(1):253-266. |
Górka M, Sauer P E, Lewicka-Szczebak D, Jędrysek M O.2011.Carbon isotope signature of dissolved inorganic carbon (DIC) in precipitation and atmospheric CO2[J].Environmental Pollution, 159(1):294-301. |
Han G, Liu C Q.2004.Water geochemistry controlled by carbonate dissolution:A study of the river waters draining karst-dominated terrain, Guizhou Province, China[J].Chemical Geology, 204(1):1-21. |
Han Guilin, Liu Congqiang.2005.Strontium isotope and major ion chemistry of the rainwater from Guiyang, Guizhou Province, China[J].Environmental Chemistry, 23(2):213-218 (in Chinese with English abstract). |
Hu Zebin, 2007.Geology disaster statistic analysis and forcast method in Fengshan county[J].Journal of Meteorological Research and Application, 28(2):60-61 (in chinese). |
Huang Xiufeng.2014.Causes of and countermeasures for karst waterlogging in Poxin underground river basin[J].Safety and Environmental Engineering, 21(6):42-46 (in Chinese with English abstract). |
Jia Zhiqiang, Wu Hong, Xing Lixin.2012.Remote sensing inversion and dynamic analysis of localized habitat index in karst peak cluster area: a case study of 6 Guangxi area[C].China Remote Sensing Conference. |
Kaushal S S, Duan S, Doody T R, Haq Shahan, Smith R M, Newcomer Johnson T A, Newcomb K D, Gorman J, Bowman N, Mayer P M, Wood K L, Belt K T, Stack W P.2017.Human-accelerated weathering increases salinization, major ions, and alkalinization in fresh water across land use[J].Applied Geochemitery, 83:121-135. doi: 10.1016/j.apgeochem.2017.02.006 |
Lei Yanbin, Li Junli, Yao Tandong, Zhang Enlou, Shen Yongwei, Li Junli, Wang Xiang.2011.Characteristics of δ13C=value in lakes on Qiangtang Plateau and its affected factors[J].Journal of Lake Sciences, 23(5):673-680. doi: 10.18307/2011.0502 |
Levin B I, Kromer B, And D W.2010.Carbon isotope measurements of atmospheric CO2 at a coastal station in Antarctica[J].Tellus, 39B(1/2):89-95. |
Li Jun, Liu Congqiang, Li Longbo, Li Siliang, Wang Baoli, Chetelat B.2010.The impacts of chemical weathering of carbonate rock by sulfuric acid on the cycling of dissolved inorganic carbon in Changjiang River water[J].Geochimica, 39(4):305-313 (in Chinese with English abstract). |
Li Ke, Jiang Guanghui, Xia Qing.2007.Resources, environment and development ways of poxin underground river basin in Fengshan County[J].Journal of Agricultural Resources and Environment, 24(2):6-9 (in Chinese). |
Li Siliang, Liu Congqiang, Tao Faxiang, Lang Yunchao, Han Guilin.2004.Chemical and stable carbon isotopic compositions of the ground waters of Guilin City:Implications for biogeochemical cycle of carbon and contamination[J].Geochimica, 33(2):165-170(in Chinese with English abstract). |
Li X D, Liu C Q, Liu X L, Bao L R.2011.Identification of dissolved sulfate sources and the role of sulfuric acid in carbonate weathering using dual-isotopic data from the Jialing River, Southwest China[J].Journal of Asian Earth Sciences, 42(3):370-380. doi: 10.1016/j.jseaes.2011.06.002 |
Liao Fengqin.2017.Distribution characteristics of main agro meteorological disasters in Fengshan[J].Global Human Geography, 16:153(in Chinese). |
Liu Congqiang.2007.Biogeochemical Processes and Cycling of Nutrients in the Earth's Surface[M].The Science Publishing Company, P4(in Chinese). |
Liu Z, Dreybrodt W, Wang H.2010.A new direction in effective accounting for the atmospheric CO2 budget:Considering the combined action of carbonate dissolution, the global water cycle and photosynthetic uptake of DIC by aquatic organisms[J].Earth Science Reviews, 99(3/4):162-172. |
Long X, Sun Z, Zhou A, Liu D.2015.Hydrogeochemical and isotopic evidence for flow paths of karst waters collected in the Heshang Cave, central China[J].Journal of Earth Science, 26(1):149-156. doi: 10.1007/s12583-015-0522-2 |
Martin J B.2016.Carbonate minerals in the global carbon cycle[J].Chemical Geology, 449(2017):58-72. |
Meybeck M.1987.Global chemical-weathering of surficial rocks estimated from river dissolved loads[J].American Journal of Science, 287(5):401-428. doi: 10.2475/ajs.287.5.401 |
Mook W G, Bommerson J C, Staverman W H.1974.Carbon isotope fractionation between dissolved bicarbonate and gaseous carbon dioxide[J].Earth & Planetary Science Letters, 22(2):169-176. |
Ollivier P, Hamelin B, Radakovitc O.2010.Seasonal variations of physical and chemical erosion:A three-year survey of the Rhone River (France)[J].Geochimica et Cosmochimica Acta, 74(3):907-27. doi: 10.1016/j.gca.2009.10.037 |
Probst J L, Brunet F.2005.δ13C tracing of dissolved inorganic carbon sources in major world rivers[J].Geochimica et Cosmochimica Acta, 69(10):3321-3344. |
Romanek C S, Grossman E L, Morse J W.1992.Carbon isotopic fractionation in synthetic aragonite and calcite:Effects of temperature and precipitation rate[J].Geochimica et Cosmochimica Acta, 56(1):419-430. doi: 10.1016/0016-7037(92)90142-6 |
Roy S, Gaillardet J, Aaa Gre C J.1999.Geochemistry of dissolved and suspended loads of the Seine River, France:Anthropogenic impact, carbonate and silicate weathering[J].Geochimica et Cosmochimica Acta, 63(9):1277-1292. doi: 10.1016/S0016-7037(99)00099-X |
Song Derong, Yang Siwei.2012.The problems of ecological and control measures in Southwest karst area of China[J] China Population, Resource and Environment, 22(5):49-53(in Chinese with English abstract). |
Sun Hailong, Liu Zaihua, Yang Rui, Chen Bo, Yang Mingxing, Zeng Qingrui.2017.Spatial and seasonal variations of hydrochemistry of the Peral River and implications for estimating the rock weathering-related carbon sink[J].Earth and Environment, (1):57-65 (in Chinese with English abstract). |
Sun Huiguo, Han Jingtai, Zhang Shurong, Lu Xixi.2015.Carbon isotopic evidence for transformation of DIC to POC in the lower Xijiang River, SE China[J].Quaternary International, 380:288-296. |
Sun Houyun, Mao Qigui, Wei Xiaofeng, Zhang Huiqiong, Xi Yuze.2018.Hydrogeochemical characteristics and formation evolutionary mechanism of the groundwater system in the Hami basin[J].Geology in China, 45(6):1128-1141(in Chinese with English abstract). |
Tan Xiaoming, Fang Rongjie.2013.Evaluation of Poxin underground river in Fengshan county[J].Water Conservancy Science and Technology and Economy, 19(3):89-91(in Chinese with English abstract). |
Wu Q, Han G.2015.Sulfur isotope and chemical composition of the rainwater at the Three Gorges Reservoir[J].Atmospheric Research, 155:130-140. doi: 10.1016/j.atmosres.2014.11.020 |
Xu Peng, Tan Hongbing, Zhang Yanfei, Zhang Wenjie.2018.Geochemical characteristics and source mechanism of geothermal water in Tethys Himalaya belt[J].Geology in China, 45(6):1142-1154(in Chinese with English abstract). |
Xu Z, Liu C Q.2007.Chemical weathering in the upper reaches of Xijiang River draining the Yunnan-Guizhou Plateau, southwest China[J].Chemical Geology, 239(1):83-95. |
Yuan Jianfei, Deng Guoshi, Xu Fen, Tang Yeqi, Li Pengyue.2016.The multivariate statistical analysis of chemical characteristics and influencing factors of karst groundwater in the northern part of Bijie City, Guizhou Province[J].Geology in China, 43(4):1446-1456(in Chinese with English abstract). |
Zhan Zhaojun, Chen Feng, Yang Pingheng, Ren Juan, Zhang Haiyue, Liu Daiwei, Lan Jiacheng, Zhang Yu.2016.Comparison on the hydrogeochemical characteristics of typical karst groundwater system in southwest China, a case of Qingmuguan and Laolongdong in Chongqing[J].Environmental Science, 37(9):3365-3374 (in Chinese with English abstract). |
Zhang Hongbo, Yu Shi, He Shiyi, Liu Qi, Li Youling.2012.Analysis on the chemical characteristics of the atmosphere preciptation in Guilin[J].Carsologia Sinica, 31(3):289-295 (in Chinese with English abstract). |
Zhang Junpeng, Qi Shihua, Yao Huili.2011.The distribution characteristics of OCPS residues in karst undergroundriver in Guangxi[J].Environmental Pollution & Control, 33(4):54-57 (in Chinese with English abstract). |
Zhang Qiang.2012.The stability of carbon sink effect related to carbonate rock dissolution:A case study of the Caohai Lake geological carbon sink[J].Acta Geoscientica Sinica, 33(6):947-952. |
Zhao Hai Juan, Xiao Qiong, Wu Xia, Liu Fan, Miao Ying, Jiang Yongjun.2017.Impact of human activities on water-rock interactions in surface water of Lijiang river[J].Environmental Science, 38(10):4108-4119 (in Chinese with English abstract). |
Zhao Yonggui.1990.Study on Karst Groundwater System[M].Beijing:Science Press, 145-146 (in Chinese with English abstract). |
曹建华, 蒋忠诚, 袁道先, 夏日元, 章程.2017.岩溶动力系统与全球变化研究进展[J].中国地质, 44(5):874-900. |
韩贵琳, 刘丛强.2005.贵阳地区雨水化学与Sr同位素地球化学[J].环境化学, 23(2):213-218. doi: 10.3321/j.issn:0254-6108.2005.02.024 |
胡泽滨.2007.凤山县地质灾害统计分析及预报方法[J].气象研究与应用, 28(2):60-61. doi: 10.3969/j.issn.1673-8411.2007.02.015 |
贾志强, 吴虹, 邢立新.2012.岩溶峰丛区定域生境指标遥感反演与动态分析研究——以广西6地区为例[C].中国遥感大会论文集. |
类延斌, 姚檀栋, 张恩楼, Shen Yongwei, 王伟财, 李均力, 王翔.2011.羌塘高原湖水δ13CDIC值特征及影响因素分析[J].湖泊科学, 23(5):673-680. |
李军, 刘丛强, 李龙波, 李思亮, 王宝利, Chetelat B.2010.硫酸侵蚀碳酸盐岩对长江河水DIC循环的影响[J].地球化学, 39(4):305-313. |
李科, 姜光辉, 夏青.2007.凤山县坡心地下河流域的资源、环境与发展途径[J].农业资源与环境学报, 24(2):6-9. doi: 10.3969/j.issn.1005-4944.2007.02.002 |
李思亮, 刘丛强, 陶发祥, 朗赟超, 韩贵琳.2004.碳同位素和水化学在示踪贵阳地下水碳的生物地球化学循环及污染中的应用[J].地球化学, 33(2):165-170. doi: 10.3321/j.issn:0379-1726.2004.02.008 |
廖凤琴.2017.浅析凤山主要农业气象灾害的分布特征[J].环球人文地理, 16:153. |
刘丛强.2007.生物地球化学过程与地表物质循环[M].北京:科学出版社, 4. |
宋德荣, 杨思维.2012.中国西南岩溶地区生态环境问题及其控制措施[J].中国人口·资源与环境, 22(5):49-53. |
孙海龙, 刘再华, 杨睿, 陈波, 杨明星, 曾庆睿.2017.珠江流域水化学组成的时空变化特征及对岩石风化碳汇估算的意义[J].地球与环境, (1):57-65. |
孙厚云, 毛启贵, 卫晓锋, 张会琼, 葸玉泽.2018.哈密盆地地下水系统水化学特征及形成演化[J].中国地质, 45(6):1128-1141. |
谈啸明, 方荣杰.2013.凤山县坡心地下河水资源评价[J].水利科技与经济, 19(3):89-91. doi: 10.3969/j.issn.1006-7175.2013.03.035 |
许鹏, 谭红兵, 张燕飞, 张文杰.2018.特提斯喜马拉雅带地热水化学特征与物源机制[J].中国地质, 45(6):1142-1154. |
袁建飞, 邓国仕, 徐芬, 唐业旗, 李鹏岳.2016.毕节市北部岩溶地下水水化学特征及影响因素的多元统计分析[J].中国地质, 43(4):1446-1456. |
詹兆君, 陈峰, 杨平恒, 任娟, 张海月, 刘黛薇, 蓝家程, 张宇.2016.西南典型岩溶地下河系统水文地球化学特征对比:以重庆市青木关、老龙洞为例[J].环境科学, 37(9):3365-3374. |
张红波, 于奭, 何师意, 李奇, 李幼玲.2012.桂林岩溶区大气降水的化学特征分析[J].中国岩溶, 31(3):289-295. doi: 10.3969/j.issn.1001-4810.2012.03.010 |
张俊鹏, 祁士华, 姚慧丽.2011.广西岩溶地下河水体中有机氯农药浓度分布特征研究[J].环境污染与防治, 33(4):54-57. doi: 10.3969/j.issn.1001-3865.2011.04.013 |
张强.2012.岩溶地质碳汇的稳定性——以贵州草海地质碳汇为例[J].地球学报, (6):947-952. |
赵海娟, 肖琼, 吴夏, 刘凡, 苗迎, 蒋勇军.2017.人类活动对漓江地表水体水-岩作用的影响[J].环境科学, 38(10):4108-4119. |
赵永贵.1990.岩溶地下水系统的研究[M].北京:科学出版社, 145-146. |
Hydrogeology of the Poxin underground river basin (modified after 1:50000 Hydrogeological Report of Fengshan County)
Hydrogeological profile of the Poxin underground river basin (modified after 1:50000 Hydrogeological Report of Fengshan County)
Piper plot of surface water and groundwater in Poxin basin
Variation of hydrochemistry along the main stream of the underground river and the influence of tributaries
Convariation of Cl- with Na+ in different water bodies
Convariation of Ca2+/Mg2+ with HCO3- and SO42- in the study area
Analyses of carbonate dissolution
Relative contribution of silicate and carbonate weathering by H2CO3 and H2SO4
Relative contributions of ions from different sources ( a-Surface water, b-Groundwater skylights)
Relationship between δ13CDIC and HCO3-