Citation: | WANG Jinfang, LI Yingjie, LI Hongyang, DONG Peipei. 2018. The discovery of the Early Permian high-Mg diorite in Meilaotewula SSZ ophiolite of Inner Mongolia and and its Intra-oceanic Subduction[J]. Geology in China, 45(4): 706-719. doi: 10.12029/gc20180405 |
This paper reports a new discovery of the Early Permian Bagahaer high-Mg diorite in the Meilaotewula SSZ ophiolite in Xi Ujimqin Banner of Inner Mongolia. The Bagahaer diorite occurs along the Hegenshan suture zone. The zircon U-Pb LA-ICPMS dating shows that the age of the diorite is 282±2Ma, suggesting Early Permian. The rock has high MgO (5.00%-10.94%, Mg# 54-74), Cr (75.00×10-6-555.90×10-6) and Ni (26.20×10-6-228.40×10-6) values and low Al2O3 (13.48%-14.98%), K2O (0.48%-1.61%), TiO2 (0.28-0.76%) and P2O5 (0.080%-0.160%) values. The diorite is enriched in K, Rb and Sr large ion lithophile elements, and depleted in Nb, Ta, Zr, Ti and P high field strength elements. The total REE is low (25.16×10-6-83.57×10-6). Rare earth curve is of flat slightly right pattern. All of the geochemical characteristics indicate that the Bagahaer pluton belongs to high-Mg dioritoids and island-arc magmatite generated along a subduction zone, similar to features of sanukitoid. Combined with the temporal and spatial distribution characteristics of the boninite and adakite within the Meilaotewula SSZ ophiolite, it is suggested that, in Early Permian, the Paleo-Asian Ocean was not closed in the study area but was at its subduction stage. It is inferred that the high-Mg diorite might have been derived from partial melting of the mantle wedge metasomatised by subducted oceanic crust+sedimentderived siliceous melts during the Paleo-Asian Ocean subduction.
Andersen T. 2002. Correction of commen lead U-Pb analyses that do not report 204 Pb[J]. Chemical Geology, 192:59-79. doi: 10.1016/S0009-2541(02)00195-X |
Boynton W V. 1984. Geochemistry of the rare earth elements:meteorite studies/Henderson P. Rare earth element geochemistry[J].Elsevier, 63-114. |
Chen Bin, Zhao Guochun, Wilde Simon. 2001. Subduction and collision-related granitoids from southern Sonidzuoqi, Inner Mongolia:Isotopic ages and tectonic implications[J]. Geological Review, 47(4):361-367(in Chinese with English abstract). |
Claesson S, Vetrin V, Bayanova T. 2000. U-Pb zircon age from a Devonian carbonatite dyke, Kola peninsula, Russia:A record of geological evolution from the Archaean to the Palaeozoic[J]. Lithos, 51:95-108. doi: 10.1016/S0024-4937(99)00076-6 |
Condie K C. 1986. Geochemistry and tectonic setting of Early Proterozoic supracrustal rocks in the southwest united states[J]. Journal of Geology, 94:845-864. doi: 10.1086/629091 |
Corfu F. 2003. Atlas of Zircon Textures[J]. Rev. Mineral, 53(1):469-500. doi: 10.2113/0530469 |
Deng JF, Flower MFJ, Liu C. 2009. Nomeuclature, diagnosis an origin of high-magnesian andesites(HMA) and magnesian andesites(MA):A review from petrographic and experimental data[J]. Geochimica et Cosmochimica Acta, 73(13), A279. |
Deng J F, Flower M F J, Liu C. 2017. A review of experimental constraints on boninitic magma genesis[J]. AOGS 4th Aunual Meeting, Baugkok 31 Jul-4 Aug, Abstract, www. asiaoceania. org, . |
Deng Jinfu, Liu Cui, Feng Yanfang, Xiao Qinghui, Su Shangguo, Zhao Guo Chun, Kong Weiqiong, Cao Wenyan. 2010. High magnesian andesitic/dioritic rocks (HMA) and magnesian andesitic/dioritic rocks (MA):two igneous rock types related to oceanic subduction[J]. Geology in China, 37(4):1112-1118 (in Chinese with English abstract). |
Dong Xuefa, Yu Shengqiang, Tang Zengcai, Xiao Qinghui, Yuan Qiang, Chen Zhongda, Zhou Zongyao, Wu Xiaoyong. 2016. Geochemical characteristics of the intra-oceanic arc type metabasic-volcanics in Chencai accretion complex of Zhejiang Province and their geological significance[J]. Geology in China, 43(3):817-828(in Chinese with English abstract). |
Elburg M A, Bergen M V, Hoogewerff J. 2002. Geochcmical trends across an Arc-Continent Collision Zone:Magma Sources and Slab-Wedge transfer Processes below the Pantar Strait Volcanoes, lndonesia[J]. Geochimicaet Cosmochimica Acta, 66(15):2771-2789. doi: 10.1016/S0016-7037(02)00868-2 |
Furukawa Y, Tatsumi Y. 1999. Melting of a subducting slab and production of high-Mg andesite magmas; Unusual magmatism in SW Japan at 13-15Ma[J]. Geophysical Research Letters, 26:2271-2274. doi: 10.1029/1999GL900512 |
Gong Fanhao, Huang Xin, Zheng Yuejuan, Chen Shuwang. 2013. Significance of the submarine fan of Lower Permian Shoushangou Formation in West Ujimqin-Qi, Inner Mongolia[J]. Geology and Resources, 22(6):478-483(in Chinese with English abstract). |
Hao baiwu. 2012. Discovery of adakite granitein Narenwula, Inner Mongolia:its genesis, zircon U-Pb ages and tectonic significance[J]. Mineral. Petrol., 32(1):28-39(in Chinese with English abstract). |
Hawkesworth C J, Turner S P, Mcdermott F. 1997. U-Th isotopes in Arc Magmas:Implications for element transfer from the Subducted Crust[J]. Science, 276(5312):551-555. doi: 10.1126/science.276.5312.551 |
Ishizuka O, Tani K, Reagan M. 2014. Izu-Bonin-Mariana forearc Crust as a modern ophiolite analogue[J]. Elements, 10:115-120. doi: 10.2113/gselements.10.2.115 |
Kamei A, Owada M, Nagao T. 2004. High-Mg diorites derived from sanukitic HMA magmas, Kyushu Island, southwest Japan arc:Evidence from clinopyroxene and whole rock compositions[J]. Lithos, 75:359-371. doi: 10.1016/j.lithos.2004.03.006 |
Kang Jianli, Xiao Zhibin, Wang Huichu, Chu Hang, Ren Yunwei, Liu Huan, Gao Zhirui, Sun Yiwei. 2016. Late Paleozoic Subduction of the Paleo-Asian Ocean:Geochronological and Geochemical Evidence from the Meta-basic Volcanics of Xilinhot, Inner Mongolia[J]. Acta Geologica Sinica, 90(2):383-397. |
Koschek G. 1993. Origin and significance of the SEM cathodoluminescence from zircon[J]. Journal of Microscopy, 171(3):223-232. doi: 10.1111/jmi.1993.171.issue-3 |
Li Fenqi, Li Yiduo, Zhang Shizheng, Li Yong. 2016. The 90 Ma island-arc type plutonism in the subduction-accretionary complex in Langxian County area, Tibe[J].Geology in China, 43(1):142-152(in Chinese with English abstract). |
Li G Z, Wang Y J, Li C Y. 2017. Discovery of Early Permian radiolarian fauna in the Solon Obo ophiolite belt, Inner Mongolia and its geological significance[J]. Chin. Sci. Bull., 62:400-406(in Chinese). doi: 10.1360/N972016-00703 |
Li Yingjie, Wang Jinfang, Wang Genhou, Dong Peipei, Li Hongyang, Hu Xiaojia. 2018a. Discovery of the plagiogranites in the Diyanmiao ophiolite, southeastern Central Asian Orogenic Belt, Inner Mongolia, China and its tectonic significance[J].Acta Geologica Sinica, 92(02):568-585. doi: 10.1111/acgs.2018.92.issue-2 |
Li Yingjie, Wang Genhou, Santosh M, Wang Jinfang, Dong Peipei, Li Hongyang.2018b.Supra-subduction zone ophiolites from Inner Mongolia, North China:Implications for the tectonic history of the southeastern Central Asian Orogenic Belt[J]. Gondwana Research, 59:126-143, https://doi.org/10.1016/j.gr.2018.02.018. doi: 10.1016/j.gr.2018.02.018 |
Li Yingjie, Wang Jinfang, Li Hongyang, Dong Peipei, Liu Yucui, Liu Dewu, Bai Hui. 2012. Recognition of Diyanmiao ophiolite in XiUjimqin Banner, Inner Mongolia[J]. Acta Petrologica Sinica, 28(4):1282-1290 (in Chinese with English abstract). |
Li Yingjie, Wang Jinfang, Li Hongyang, Dong Peipei. 2015. Recognition of Meilaotewula ophiolite in XiUjimqin Banner, Inner Mongolia[J]. Acta Petrologica Sinica, 31(5):1461-1470 (in Chinese with English abstract). |
Li Yingjie, Wang Jinfang, Li Hongyang, Dong Peipei. 2013. Geochemical characteristics of Baiyinbulage ophiolite in XiUjimqin Banner, Inner Mongolia[J].Acta Petrologica Sinica, 29(8):2719-2730 (in Chinese with English abstract). |
Liang Rixuan. 1994. The features of ophiolites in the central sector of Inner Mongolia and its geological significance[J].Regional Geology of China, 1:37-45 (in Chinese with English abstract). |
Liu Jianfeng, Chi Xiaoguo, Zhang Xingzhou, Ma Zhihong, Zhao Zhi, Wang Tiefu, Hu Zhaochu, Zhao Xiuyu. 2009. Geochemical characteristic of carboniferous quartz-diorite in the southern Xiwuqi area, Inner Mongolia and its tectonic significance[J]. Acta Geologica Sinica, 83(3):365-376(in Chinese with English abstract). |
Liu Jianfeng, Li Jinyi, Sun Lixin, Yin Dongfang, Zheng Peixi. 2016. Zircon U-Pb dating of the Jiujingzi ophiolite in Bairin Left Banner, Inner Mongolia:Constraints on the formation and evolution of the Xar Moron River suture zone[J]. Geology in China, 43(06):1947-1962(in Chinese with English abstract). |
Liu Jun, Wu Guang, Li Tiegang, Wang Guorui, Wu Hao. 2014.SHRIMP zircon U-Pb dating, geochemistry, Sr-Nd isotopic analysis of the Late Paleozoic intermediate-acidic intrusive rocks in the Hadamiao area, Xianghuang Banner, Inner Mongolia and its geological significances[J]. Acta Petrologica Sinica, 30(1):95-108(in Chinese with English abstract). |
Miao L, Shi Y, Guo F. 2008. Geochronology and geochemistry of the Hegenshan ophiolitic complex:Implications for late-stage tectonic evolution of the Inner Mongolia-Daxinganling Orogenic Belt, China[J]. Journal of Asian Earth Sciences, 32(4):404-415. |
Pearce J A, Lippard S J, Roberts S.1984. Characteristics and tectonic significance of supra-subduction zone ophiolites[J]. Geological Society of London Special Publication, 16(1):77-94. doi: 10.1144/GSL.SP.1984.016.01.06 |
Peccerillo A, Taylor S R.1976. Geochemistry of eocene calc-alkaline volcanic rocks from the Kastamonu Area, NorthernTurkey[J]. Contributions to Mineralogy and Petrology, 58:63-81. doi: 10.1007/BF00384745 |
Plank T. 2005. Constraints from thorium/Lanthanum on Sediment Recycling at Subduction Zones and the Evolution of the Continents[J]. Journal of Petrology, 16(5):921-944. |
Reagan M K, Hanan, B B, Heizler M T. 2008. Petrogenesis of volcanic rocks from Saipan and Rota, Mariana Islands, and implications for the evolution of nascent island arcs[J]. Journal of Petrology, 49(3):441-464. doi: 10.1093/petrology/egm087 |
Reagan M K, Ishizuka Osamu, Sterner R J. 2010. Fore-arc basalts and subduction initiation in the Izu-Bonin-Mariana system[J]. Geochemistry Geophysics Geosystems, 11(3):1-17. |
Reagan. 2013. The geology of the southern Mariana fore-arc crust:implications for the scale of Eocene volcanism in the western pacific[J]. Earth and planetary science Letters, 380:41-51. doi: 10.1016/j.epsl.2013.08.013 |
Shang Q H. 2004. The discovery and significance of Permian radiolarians Northern Orogenic belt in the northern and middle lnner Mongolia[J], Chinese Science Bulletin, 49:2574-2579. |
Shi Yuruo, Liu Cui, Deng Jinfu, Jian Ping. 2014. Geochronological frame of granitoids from Central Inner Mongolia and its tectonomagmatic evolution[J]. Acta Petrologica Sinica, 30(11):3155-3171(in Chinese with English abstract). |
Shimoda G, Tatsumi Y, Nohda S.1998. Setouchi high-Mg andesites revisited:Geochemical evidence for melting of subducted sediments[J]. Earth and Planetary Science Letters, 160:479-492. doi: 10.1016/S0012-821X(98)00105-8 |
Smithies R H, Kranendonk M J, Champion D C. 2007. The Mesoarchean Emergence of Modern-Style subduction[J]. Gondwana Research, 11(1/2):50-68. |
Sun S S, McDonough W F. 1989. Chemical and isotope systematics of oceanic basalts:implications for mantle composition and processes[J]. Geological Society of London. Special Publication, 42:313-345. doi: 10.1144/GSL.SP.1989.042.01.19 |
Tang Gongjian, Wang Qiang. 2010. High Mg andesite and their geodynamic implications[J]. Acta Petrologica Sinica, 26:2495-2512 (in Chinese with English abstract). |
Tatsumi Y and Hanyu T. 2003. Geochemical modeling of dehydration and partial melting of subducting lithosphere:Toward a comprehensive understanding of high-Mg andesite formation in the setouchi volcanic be1t, SW Japan[J]. Geochemistry Geophysics Geosystems, 4(9):643-651. |
Tatsumi Y, Ishizaka K.1982. Origin of high-magnesian andesites in the Setouchi volcanic belt, southwest Japan:Ⅰ. Petrgraphical and chemical characteristics[J]. Earth and Planetary Science Letters, 60:293-304. doi: 10.1016/0012-821X(82)90008-5 |
Tatsumi Y. 2001. Geochemical modeling of partial melting of subducting sediments and subsequent melt mantle interaction:generation of high-Mg andesites in the Setouchi volcanic belt, southwest Japan[J]. Geology, 29(4):323-326. doi: 10.1130/0091-7613(2001)029<0323:GMOPMO>2.0.CO;2 |
Tsuchiya N, Suzuki S, Kimura JI. 2005. Evidence for slab melt/mantle reaction:Petrogenesis of Early Cretaceous and Eocene high-Mg andesites from the Kitakami Mountains, Japan[J]. Lithos, 79:179-206. doi: 10.1016/j.lithos.2004.04.053 |
Viruete JE, Contreras F, Stein C. 2007. Magmatic relationships and ages between adakites, magnesian andesites and Nb-enriched basalt-andesites from Hipaniola:record of a major change in the Caribbean island arc magma sources[J]. Lithos, 99(3/4):151-177. |
Wang Jinfang, Li Yingjie, Li Hongyang Dong Peipei.2017a. Discovery of Early Permian intra-oceanic arc adakite in the Meilaotewula ophiolite, Inner Mongolia and its evolution model[J]. Acta Geologica Sinica, 91(08):1776-1795(in Chinese with English abstract). |
Wang Jinfang, Li Yingjie, Li Hongyang Dong Peipei. 2017b. LAICP-MS zircon U-Pb dating of the Nuhete Early Cretaceous Atype granite in XiUjimqin Banner of Inner Mongolia and its geological significance[J]. Geological Bulletin of China, 36(8):1343-1358(in Chinese with English abstract). |
Wang Qiang, Zhao Zhenhua, Xu Jifeng, DEerekA.WYMAN, Xiong Xiaolin, Zi Feng, Bai Zhenghua. 2006.Carboniferous adakite-high Mg andesite-Nb-enriched basaltic rock suties in the Northern Tianshan area:Implications for Phanerozoic crustal growth in the Central Asia orogenic belt and Cu-Au mineralization[J]. Acta Petrologica Sinica, 22(1):11-30 (in Chinese with English abstract). |
Woodhead J D, Hergt J M, Davidson J P. 2001. Hafnium isotope evidence for conservative element mobility during subduction zone processes[J]. Earth and Planetary Science letters, 192(3):331-346. doi: 10.1016/S0012-821X(01)00453-8 |
Xiao Qinghui, Li Tingdong, Pan Guitang, Lu Songnian, Ding Xiaozhong, Deng Jinfu, Feng Yimin, Liu Yong, Kou Caihua, Yang Linlin. 2016. Petrologic ideas for identification of ocean-continent transition:Recognition of intra-oceanic arc and initial subduction[J]. Geology in China, 43(3):721-737(in Chinese with English abstract). |
Yogodzinski G M. 1995. Magnesian andesite in the western Aleutian Komandorsky Region; implications for Slab melting and processes in the mantle wedge[J]. Geological Society of Amerzca Bulletin, 107(5):505-519. doi: 10.1130/0016-7606(1995)107<0505:MAITWA>2.3.CO;2 |
Zhang Qi, Qian Qing, Zhai, Mingguo, Jin Weijun, Wang Yan, Jian Ping, Wang Yuanlong. 2005. Geochcmitry, Petrogenesis and geodynamic implications of sanukite[J]. Acta Petrologica et Mineralogica, 24(2):117-125 (in Chinese with English abstract). |
Zeng Junjie, Zheng Youye, Qi Jianhong, Dai Fanghua, Zhang Gangyang, Pang Yingchun, Wu Bin. 2008. Foundation and geological significance of adakitic granite at Guyang of Inner Mongolia[J]. Earth Science——Journal of China University of Geosciences, 33(6):755-762(in Chinese with English abstract). doi: 10.3799/dqkx.2008.091 |
Zhang Yuqing. 2009. Geochemical characteristics of Permian adakitic granodiorite in Bayinwula of Sonid Left Banner, Inner Mongolia[J]. Acta Petrologica et Mineralogica, 28(4):329-338(in Chinese with English abstract). |
Zhao Shaoqing, Fu Lebing, Wei Junhao.2015. Petrogenesis and Geodynamic Setting of Late Triassic Quartz Diorites in Zhiduo Area, Qinghai Province[J]. Earth Science——Journal of China University of Geosciences, 40(1):61-76. doi: 10.3799/dqkx.2015.005 |
陈斌, 赵国春, Simon Wilde. 2001.内蒙古苏尼特左旗南两类花岗岩同位素年代学及其构造意义[J].地质论评, 47(4):361-367. |
邓晋福, 刘翠, 冯艳芳, 肖庆辉, 苏尚国, 赵国春, 孔维琼, 曹文燕.2010.高镁安山岩/闪长岩类(HMA)和镁安山岩/闪长岩类(MA):与洋俯冲作用相关的两类典型的火成岩类[J].中国地质, 37(4):1112-1118. |
董学发, 余盛强, 唐增才, 肖庆辉, 袁强, 陈忠大, 周宗尧, 吴小勇. 2016.浙江"陈蔡增生杂岩"中洋内弧型变基性火山岩的地球化学特征及其地质意义[J].中国地质, 43(3):817-828. doi: 10.12029/gc20160309 |
公繁浩, 黄欣, 郑月娟, 陈树旺. 2013.内蒙古西乌旗下二叠统寿山沟组海底扇的发现及意义[J].地质与资源, 22(6):478-483. |
郝百武. 2012.内蒙古那仁乌拉埃达克质花岗岩的发现、成因、锆石U-Pb年龄及其构造意义[J].矿物岩石, 32(1):28-39. |
康健丽, 肖志斌, 王惠初, 初航, 任云伟, 刘欢, 高知睿, 孙义伟.2016.内蒙古锡林浩特早石炭世构造环境:来自变质基性火山岩的年代学和地球化学证据[J].地质学报, 90(2):383-397. |
李奋其, 李益多, 张士贞, 李勇. 2016.西藏朗县地区增生楔杂岩带90 Ma岛弧型深成岩浆活动和意义[J].中国地质, 43(1):142-152. doi: 10.12029/gc20160111 |
李英杰, 王金芳, 李红阳, 董培培, 刘玉翠, 刘德武, 白卉. 2012.内蒙古西乌旗迪彦庙蛇绿岩的识别[J].岩石学报, 28(4):1282-1290. |
李英杰, 王金芳, 李红阳, 董培培. 2015.内蒙古西乌旗梅劳特乌拉蛇绿岩的识别[J].岩石学报, 31(5):1461-1470. |
李英杰, 王金芳, 李红阳, 董培培. 2013.内蒙西乌旗白音布拉格蛇绿岩地球化学特征[J].岩石学报, 29(8):2719-2730. |
梁日暄. 1994.内蒙古中段蛇绿岩特征及地质意义[J].中国区域地质, (1):37-45. |
刘建峰, 迟效国, 张兴洲, 马志红, 赵芝, 王铁夫, 胡兆初, 赵秀羽. 2009.内蒙古西乌旗南部石炭纪石英闪长岩地球化学特征及其构造意义[J].地质学报, 83(3):365-376. |
刘建峰, 李锦轶, 孙立新, 殷东方, 郑培玺. 2016.内蒙古巴林左旗九井子蛇绿岩锆石U-Pb定年:对西拉木伦河缝合带形成演化的约束[J].中国地质, 43(06):1947-1962. |
刘军, 武广, 李铁刚, 王国瑞, 吴昊. 2014.内蒙古镶黄旗哈达庙地区晚古生代中酸性侵入岩的年代学、地球化学、Sr-Nd同位素组成及其地质意义[J].岩石学报, 30(1):95-108. |
石玉若, 刘翠, 邓晋福, 简平. 2014.内蒙古中部花岗质岩类年代学格架及该区构造岩浆演化探讨[J].岩石学报, 2014, 30(11):3155-3171. |
唐功建, 王强. 2010.高镁安山岩及其地球动力学意义[J].岩石学报, 26:2495-2512. |
王金芳, 李英杰, 李红阳, 董培培. 2017a.内蒙古梅劳特乌拉蛇绿岩中埃达克岩的发现及其演化模式[J].地质学报, 91(08):1776-1795. |
王金芳, 李英杰, 李红阳, 董培培. 2017b.内蒙古西乌旗努和特早白垩世A型花岗岩LA-ICPMS锆石U-Pb年龄及其地质意义[J].地质通报, 36(8):1343-1358. |
王强, 赵振华, 许继峰, Derek A.WYMAN, 熊小林, 资峰, 白正华. 2006.天山北部石炭纪埃达克岩-高镁安山岩-富Nb岛弧玄武质岩:对中亚造山带显生宙地壳增生与铜金成矿的意义[J].岩石学报, 22(1):11-30. |
肖庆辉, 李廷栋, 潘桂棠, 陆松年, 丁孝忠, 邓晋福, 冯益民, 刘勇, 寇彩化, 杨琳琳. 2016.洋陆转换的岩石学思路——洋内弧与初始俯冲的识别[J].中国地质, 43(3):721-737. doi: 10.12029/gc20160303 |
曾俊杰, 郑有业, 齐建宏, 代芳华, 张刚阳, 庞迎春, 武彬. 2008.内蒙古固阳地区埃达克质花岗岩的发现及其地质意义[J].地球科学——中国地质大学学报, 33(6):755-762. |
张旗, 钱青, 翟明国, 金惟浚, 王焰, 简平, 王元龙. 2005. Sanukite(赞岐岩)的地球化学特征、成因及其地球动力学意义[J].岩石矿物学杂志, 24(2):117-125. |
张玉清. 2009.内蒙古苏尼特左旗巴音乌拉二叠纪埃达克质花岗闪长岩类地球化学特征及其地质意义[J].岩石矿物学杂志, 28(4):329-338. |
赵少卿, 付乐兵, 魏俊浩, 谭俊, 王旭春, 赵志新, 李翔. 2015.青海治多地区晚三叠世石英闪长岩地球化学特征及成岩动力学背景[J].地球科学——中国地质大学学报, 40(1):61-76. |
Sketch tectonic map of the Bagahaer high-Mg diorite, Inner Mongolia(after Miao et al., 2008; Li et al., 2015)
Regional geological map of the Bagahaer high-Mg diorite
Sketch geological map of the Bagahaer high-Mg diorite
Outcrop(a) and transmitted light photomicrograph (b) of the Bagahaer high-Mg diorite
Cathodoluminescent images and LA-ICP-MS U-Pb ages of zircons from the Bagahaer high-Mg diorite
U-Pb concordia diagram and histograms of zircons from the Bagahaer high-Mg diorite
SiO2-K2O classification diagrams of the Bagahaer high-Mg diorite(after Peccerillo et al., 1976; Wang et al., 2017a)
Chondrite-normalized REE patterns of the Bagahaer high-Mg diorite(after Boynton, 1984)
Primitive mantle-normalized trace element spider diagram of the Bagahaer high-Mg diorite(after Sun et al., 1989)
SiO2 versus MgO diagrams of the Bagahaer high-Mg diorites (symbols as for Fig. 6) (after Deng et al., 2009; 2017)
FeO*/MgO versus SiO2 diagrams of the Bagahaer high-Mg diorites (symbols as for Fig. 6() after Deng et al., 2009; 2017)
Th/Yb-Th/Sm diagrams of the Bagahaer high-Mg diorite(Sanukite after Tatsumi, 2003); (Mariana fore-arc basalts after Reagan et al., 2010); (boninite and adakite after Wang et al., 2017a))
Th-La/Ybtectonic discriminant diagrams of the Bagahaer high-Mg diorite(Sanukite after Tatsumi et al., 2003; Mariana fore-arc basalts after Reagan et al., 2010; boninite, adakite, Nb-enriched basalt and tholeiite after Wang et al., 2017a) Condie, 1986)