2018 Vol. 45, No. 3
Article Contents

MEN Lanjing, ZHANG Xinwen, SUN Jinggui, ZHAO Junkang, WANG Haojun, LIU Chengxian. 2018. Metallogenic mechanism of the Xiaoxinancha Au-rich Cu deposit in Yanbian area, Jilin Province: Constrains from fluid inclusions and isotope geochemistry[J]. Geology in China, 45(3): 544-563. doi: 10.12029/gc20180309
Citation: MEN Lanjing, ZHANG Xinwen, SUN Jinggui, ZHAO Junkang, WANG Haojun, LIU Chengxian. 2018. Metallogenic mechanism of the Xiaoxinancha Au-rich Cu deposit in Yanbian area, Jilin Province: Constrains from fluid inclusions and isotope geochemistry[J]. Geology in China, 45(3): 544-563. doi: 10.12029/gc20180309

Metallogenic mechanism of the Xiaoxinancha Au-rich Cu deposit in Yanbian area, Jilin Province: Constrains from fluid inclusions and isotope geochemistry

    Fund Project: Supported by Science Research Foundation of Jilin Province (No. 120160038, 120140075), Plan Project about the development of Jilin Province Science and Technology (No. 20180101310JC, 20180520086JH) and National Natural Science Foundation of China (No. 40772052)
More Information
  • Author Bio: MEN Lanjing, female, born in 1981, lecturer, doctor, majors in geochemistry of mineral deposit; E-mail: menjinglan4668872@126.com
  • The Xiaoxinancha Au-rich Cu deposit is an important hydrothermal deposit in eastern China. The deposit includes two mines, known as the North mine (veinlet-dissemination type) and the South mine (vein type), which show different ore grades and orebody characteristics. The total homogenization temperatures (Th, total) range from 120 to 470 ° C, and the salinities in the Ⅰ mineralization stage and Ⅱ-Ⅲ mineralization stage are 10.1%-20.0% NaCl eqv and 0.4%-45.5% NaCl eqv, respectively, with the gas composition consisting mainly of H2O, CO2, CH4 and N2 in the North mine. The South mine fluids yield Th, total of 150 to 450℃, salinities of 4.0%-11.1% NaCl eqv in the Ⅰmineralization stage, and the salinities in theⅡ-Ⅲ mineralization stage decrease with the decreasing temperatures, and the main gas composition consists of H2O, CO2, and CH4. The quartz-hosted fluid inclusions in the hornblende-granodiorite have homogenization temperatures of 150 to 510℃, and salinities of 4.9%-11.5% NaCl eqv, being similar to those in the North and South mine. The authors hold that the North mine was formed by replacement of fluids which experienced mixing with crustal fluids in the Wudaogou Group after the boiling, whereas the South mine was mainly formed through filling-crystallization of the initial ore-forming fluids with the decreasing temperatures and pressures, and the ore-forming fluids that involved the meteoric water in the mid-late stage produced melnikovite-quartz veins in the North mine and pure sulfide veins in the South mine. The fluid inclusions in the hornblende-granodiorite possibly reveal initial ore-forming fluid signatures characterized by low-moderate salinity and mantle-derived magmatic fluids.

  • 加载中
  • Ahmad S N, Rose A W. 1980. Fluid inclusions in porphyry and skarn ore at Santa Rita, New Mexico[J]. Economic Geology, 75, 229-250. doi: 10.2113/gsecongeo.75.2.229

    CrossRef Google Scholar

    Bodnar R J. 1993. Revised equation and table for determining the freezing point depression of H2O-NaCl solutions[J]. Geochim.Cosmochim. Acta, 57, 683-684. doi: 10.1016/0016-7037(93)90378-A

    CrossRef Google Scholar

    Burnham C W. 1979. Magmas and hydrothermal fluids//Barnes H L (ed. ). Geochemistry of hydrothermal ore deposits, 2nd edn. Wiley, New York, 71-136.

    Google Scholar

    Clayton R N, O'Neil J R, Mayed T K. 1972. Oxygen isotope exchange between quartz and water[J]. Journal of Geophysical Research[J]. 77, 3057-3067. doi: 10.1029/JB077i017p03057

    CrossRef Google Scholar

    Cline J S and Bodnar R J. 1994.Direct evolution of brine from a crystallizing silicic melt at the Questa, New Mexico, molybdenum deposit[J]. Econ. Geol., 89:1780-1802. doi: 10.2113/gsecongeo.89.8.1780

    CrossRef Google Scholar

    Giggenbach W F. 1997. The origin and evolution of fluids in magmatic-hydrothermal systems//(Barnes H L ed. ). Geochemistry of Hydrothermal Ore Deposits. Wiley, New York, 737-796.

    Google Scholar

    He Peng, Yan Guangsheng, Zhu Xinyou, Zhang Zhongyi, Wang Yanli, Cheng Xiyin, Li Yongsheng, Zhen Shimin, Du Zezhong, Jia Delong, Gong Xiaodong. 2013.Fluid inclusion study of the Saishitang Cu deposit in Qinghai[J]. Geology in China, 40(2):580-593 (in Chinese with English abstract).

    Google Scholar

    Hedenquist J W, Lowenstern J B. 1994. The role of magmas in the formation of hydrothermal ore deposits[J]. Nature, 370(6490):519-527. doi: 10.1038/370519a0

    CrossRef Google Scholar

    Jin Ke. 2003. Petrology and Geochemistry of Mesozoic Volcanic Rocks in Yanbian Area: Constraints on Transformation of Tectonic System and Composition of Lithosphere[D]. Changchun: Jilin University, (in Chinese with English abstract).

    Google Scholar

    Li Wenchang, Liu Xuelong, Zeng Pusheng, Yin Guanghou. 2011. The Characteristics of metallogenic rocks in the Pulang porphyry copper deposit of Yunnan Province[J]. Geology in China, 38(2):403-414(in Chinese with English abstract).

    Google Scholar

    Li Yinqing, Chen Dianfen. 1995. A study of fluid inclusions and oreforming process of the Xiaoxinancha gold-copper deposit, Jilin Province[J]. Mineral Deposits, 14(2) 151-156(in Chinese with English abstract).

    Google Scholar

    Liu Chongqiang, Huang Zhilong, Li Heping, Su Genli. 2001. The geofluid in the mantle and its role in ore-forming processes[J]. Earth Science Frontiers China University of Geosciences (Beijing), (8):231-243(in Chinese with English abstract).

    Google Scholar

    Lowenstern J B. 2001. Carbon dioxide in magma and implications for hydrothermal systems[J]. Mineralium Deposita, 36, 490-502. doi: 10.1007/s001260100185

    CrossRef Google Scholar

    Marianne R, Landtwing, Thomas Pettke. 2005. Copper deposition during quartz dissolution by cooling magmagtic-hydromal fluids:the Bingham porphyry[J]. Earth and Planetary Science Letters, 235, 229-243. doi: 10.1016/j.epsl.2005.02.046

    CrossRef Google Scholar

    Men Lanjing, Sun Jinggui, Zhang Zengjie, Li Yixin, Xing Shuwen, Cui Peilong. 2011. An isotopic (Sr, Nd and Pb) tracer study on Xiaoxinancha gold-rich copper deposit in Yanbian, China:implication for the geodynamic model of diagenesis and metallogenesis[J]. Acta Geologica Sinica, 85:175-188. doi: 10.1111/acgs.2011.85.issue-1

    CrossRef Google Scholar

    Meng Qingli, Zhou Yongchang, Chai Sheli. 2001. Porphyry-hydrothermal Copper-Gold deposits in East Yanbian, China[M]. Changchun:Jilin Science and Technology Publishing House, 33-82(in Chinese).

    Google Scholar

    Ramboz C, Pichavant M, Weisbrod A. 1982.Fluid immiscibility in natural processes:Use and misuse of fluid inclusion data in terms of immiscibility[J]. Chemical Geology, 37:29-46. doi: 10.1016/0009-2541(82)90065-1

    CrossRef Google Scholar

    Redmond P, Einaudi M T, Inan E E, Landtwing M R, Heinrich C A. 2004. Copper deposition by fluid cooling in intrusion-centered systems:new insights from the Bingham porphyry ore deposit, Utah[J]. Geology, 32:217-220. doi: 10.1130/G19986.1

    CrossRef Google Scholar

    Ren Yunsheng, Wang Hui, Qu Wenjun. 2011.Re-Os Isotopic Dating of Molybdenite from Xiaoxinancha Copper-Gold Deposit in the Yanbian Area and Its Geological Significance[J]. Earth Science——Journal of China University of Geosciences, 36(4):721-728(in Chinese with English abstract).

    Google Scholar

    Rodder E. 1971. Fluid inclusion studies on the porphyry-type ore deposits at Bingham, Utah, Butte, Montana, and Climax, Colorado[J]. Economic Geology, 66:98-120. doi: 10.2113/gsecongeo.66.1.98

    CrossRef Google Scholar

    Roedder E. 1984.Fluid inclusions:Reviews in Mineralogy and Geochemistry[J]. Mineralogical Society of America, 12:1-664.

    Google Scholar

    Rui Zongyao, Zhang Hongtao, Wang Longsheng.1995. Porphyry-hydrothermal Copper-Gold deposits in Yanbian area, Jilin Province[J]. Mineral Deposits, 14(2):99-114(in Chinese with English abstract).

    Google Scholar

    Rusk B G, Reed M, Dilles J H. 2004.Composition of magmatic hydrothermal fluids determined by LA-ICP-MS of fluid inclusions from the porphyry copper molybdenum deposit at Butte, MT[J]. Chem. Geol., 210:173-199. doi: 10.1016/j.chemgeo.2004.06.011

    CrossRef Google Scholar

    Rusk B G, Reed M, Dilles J H. 2008.Fluid inclusion evidence for magmatic-hydrothermal fluid evolution in the porphyry coppermolybdenum deposit, Butte, Montana[J]. Econ. Geol., 103:307-334. doi: 10.2113/gsecongeo.103.2.307

    CrossRef Google Scholar

    Shepherd T, Rankin A H, Alderton D H M. 1985. A Practical Guide to Fluid Inclusion Studies[M]. London:Blackie, 239.

    Google Scholar

    Sun Chao. 1994. Study on Isotope geology of Xiaoxinancha goldcopper deposit[J]. Mineral Resources and Geology, 8(2):119-123(in Chinese with English abstract).

    Google Scholar

    Sun Jinggui, Men Lanjing, Zhao Junkang. 2008a. Zircon chronology of melanocratic dykes in the district of the Xiaoxinancha Au-rich Cu deposit in Yanbian and its geological implication[J]. Acta Geologica Sinica, 82(4):517-527(in Chinese with English abstract).

    Google Scholar

    Sun Jinggui, Chen Lei, Zhao Junkang. 2008b, SHRIMP U-Pb dating of zircons from Late Yanshanian granitic complex in Xiaoxinancha gold-rich copper orefield of Yanbian and its geological implications[J]. Mineral Deposit, 27(3):319-328 (in Chinese with English abstract).

    Google Scholar

    Sun Jinggui, Men Lanjing, Chen Dong. 2009. Constraints of magmatism on the ore-formingprocess of magmatic hydrothermal gold-rich copper deposits as recorded from the element geochemistry and zircon CL image features:A case study of the Xiaoxinancha gold-richcopper deposit, Yanbian, Jilin Province[J]. Mineral Petro., 29(3):43-52(in Chinese with English abstract).

    Google Scholar

    Sun Jinggui, Xing Shuweng, Zheng Qingdao. 2006. Geology and Geochemistry of Nonferrous and Noble Metal Deposits, Northeastern China[M]. Changchun:Jilin University Publishing House, 1-128 (in Chinese).

    Google Scholar

    Sun Jinggui, Zhao Junkang, Chen Junqiang. 2008. Ore-forming mechanism for the Xiaoxinancha Au-rich Cu deposit in Yanbian, Jilin Province, China:Evidence from nobles gas isotope geochemistry of fluid inclusions in minerals[J]. Science in China Series D:Earth Science, 51:1-13(in Chinese with English abstract).

    Google Scholar

    Sun W D, Arculus R J, Kamenetsky V S. 2004. Release of goldbearing fluids in convergent margin magmas prompted by magnetite crystallization[J]. Nature, 431 (7011), 975-978. doi: 10.1038/nature02972

    CrossRef Google Scholar

    Sun W D, Huang R F, Li H. 2015. Porphyry deposits and oxidized magmas[J]. Ore Geol. Rev., 65:97-131. doi: 10.1016/j.oregeorev.2014.09.004

    CrossRef Google Scholar

    Sun W D, Liang H Y, Ling M X. 2013. The link between reduced porphyry copper deposits and oxidized magmas[J]. Geochim.Cosmochim. Acta, 103, 263-275. doi: 10.1016/j.gca.2012.10.054

    CrossRef Google Scholar

    Sun W D, Wang J T, Zhang L P. 2017. The formation of Porphyry copper deposits[J]. Acta Geochim., 36 (1):9-15. doi: 10.1007/s11631-016-0132-4

    CrossRef Google Scholar

    Ulrich T, Günther D and Heinrich C A. 2001.The evolution of a porphyry Cu-Au deposit based on LA-ICP-MS analyses of fluid inclusions:Bajo de la Alumbrera, Argentina[J]. Economic Geology, 96, 1743-1774. doi: 10.2113/gsecongeo.96.8.1743

    CrossRef Google Scholar

    Wang Keyong, Qing Min, Sun Fengyue. 2010. Study on the geochemical characteristics of ore-forming fluids and genesis of Xiaoxinancha gold-copper deposit, Jilin Province[J]. Acta Petrological Sinica, 26(12):3727-3734(in Chinese with English abstract).

    Google Scholar

    Wu Shangquan. 1986. Main geological characteristics and Genesis of the Xiaoxinancha gold copper deposit, in Jilin Province[J]. Mineral deposit, 5(2):75-84(in Chinese with English abstract).

    Google Scholar

    Xie Hongjing, Wang Yuwang, Wang Lijuan, Jiang Wei, Zhang Yunguo, Kou Haichuan, Sun Zhiyuan. 2016. Fluid inclusions study of the Changhanboluo Pb-Zn-Ag deposit, Inner Mongolia[J]. Geology in China, 43(2):531-545 (in Chinese with English abstract).

    Google Scholar

    Yu Jiejiang, Men Lanjing, Chen Lei. 2008. SHRIMP U-Pb ages of Zircon and its geological impl ications from metamorphic dacite of the Wudaogou Group in Yanbian area[J]. Journal of Jilin University (Earth Science edition), 38(3):363-367(in Chinese with English abstract).

    Google Scholar

    Zartman R E, Doe B R. 1981.Plumbotectonics the model[J]. Tectonophysics, 75:135-162. doi: 10.1016/0040-1951(81)90213-4

    CrossRef Google Scholar

    Zhang Mingjie, Meng G.uanglu, Hu Peiqing. 2008. Chemical compositions of volaties in Qilian ocean[J]. Journal of Lanzhou University (Natural Science), 44(4):1-9(in Chinese with English abstract).

    Google Scholar

    Zhang Yanbin. 2002. The Isotopic Geochronoligic Frame of Granatic Magmatism in Yanbian area[D]. Changchun: Jilin University (in Chinese with English abstract).

    Google Scholar

    Zhao Hongguang. 2007. Study on the Metallogenesis and Models in Mesozoic Epithermal Gold Deposits in Yanbian, Jilin Province[D]. Changchun: Jilin University (in Chinese with English abstract).

    Google Scholar

    Zhao Junkang, Sun Jinggui, Men Lanjing. 2008. Characteristic and implication of Daughter minerals in Fluid inclusion of Xiaoxinancha gold-rich copper deposit[J]. Journal of Jilin University (Earth Science edition), 38(3):384-388(in Chinese with English abstract).

    Google Scholar

    Zheng Doufan, Piao Taoyun, Wan Yunsheng. 1983. Deposit Geological Characteristic and Metallogenic Regularity the Xiaoxinancha Gold-copper Deposit[M]. Changchun:Nonferrous Metal Geological Exploration Bureau, 1-52(in Chinese).

    Google Scholar

    Zhou Yan, Xian Jiaquan, Wang Tiefu. 2004. Isotope Geochemistry of the Xiaoxinancha Gold and Copper Deposit[J]. Acta Geoscientica Sinica, 25(2):133-136(in Chinese with English abstract).

    Google Scholar

    何鹏, 严光生, 祝新友, 张忠义, 王艳丽, 程细音, 李永胜, 甄世民, 杜泽忠, 贾德龙, 巩小栋.2013.青海赛什塘铜矿床流体包裹体研究[J].中国地质, 40(2):580-593.

    Google Scholar

    解洪晶, 王玉往, 王莉娟, 蒋炜, 张云国, 寇海川, 孙志远. 2016.内蒙古长汉卜罗铅锌银矿床流体包裹体研究[J].中国地质, 43(2):531-545. doi: 10.12029/gc20160214

    CrossRef Google Scholar

    靳克. 2003. 延边地区中生代火山岩的岩石学和地球化学: 对构造体制转换与岩石圈深部物质组成的制约[D]. 长春: 吉林大学.http://www.wanfangdata.com.cn/details/detail.do?_type=degree&id=Y569876

    Google Scholar

    李文昌, 刘学龙, 曾普胜, 尹光候. 2011.云南普朗斑岩型铜矿成矿岩体的基本特征[J].中国地质, 38 (2):403-414.

    Google Scholar

    李荫清, 陈殿芬.1995.吉林小西南岔金铜矿床的流体包裹体及成矿作用研究[J].矿床地质, 14(2):151-156

    Google Scholar

    刘丛强, 黄智龙, 李和平, 苏根利. 2001.地幔流体及其成矿作用[J].地学前缘, 8, 231-243. doi: 10.3321/j.issn:1005-2321.2001.04.001

    CrossRef Google Scholar

    孟庆丽, 周永昶, 柴社力. 2001.中国延边东部斑岩-热液脉型铜金矿床[M].吉林:吉林科学技术出版社, :1-162

    Google Scholar

    任云生, 王辉, 屈文俊. 2011.延边小西南岔铜金矿床辉钼矿Re-Os同位素测年及其地质意义[J].地球科学——中国地质大学学报, 36(4):721-728.

    Google Scholar

    芮宗瑶, 张洪涛, 王龙生.1995.吉黑东部斑岩型-浅成热液型铜金矿床多重成矿模型[J].矿床地质, 14(2):174-184.

    Google Scholar

    孙超. 1994.小西南岔金铜矿床同位素地质学研究[J].矿产与地质, 8(2):119-123.

    Google Scholar

    孙景贵, 门兰静, 赵俊康, 陈雷, 梁树能, 陈冬, 逄伟. 2008a.延边小西南岔大型富金铜矿床矿区内暗色脉岩的锆石年代学及其地质意义[J].地质学报, 82(4):517-527.

    Google Scholar

    孙景贵, 陈雷, 赵俊康. 2008b.延边小西南岔富金铜矿田燕山晚期花岗杂岩的锆石SHRIMP U-Pb年龄及其地质意义[J].矿床地质, 27(3):319-328.

    Google Scholar

    孙景贵, 门兰静, 陈冬. 2009.岩浆作用对岩浆热液金铜成矿制约的元素地球化学和锆石CL图像记录——以延边小西南岔富金铜矿床为例[J].矿物岩石, 29(3):43-52.

    Google Scholar

    孙景贵, 邢树文, 郑庆道. 2006.中国东北部陆缘有色、贵金属矿床的地质、地球化学[M].长春:吉林大学出版社, 1-125.

    Google Scholar

    孙景贵, 赵俊康, 陈军强. 2007.延边小西南岔富金铜矿床的成矿机理研究:矿物流体包裹体的稀有气体同位素地球化学证据[J].中国科学(D辑), 2007, 37(12):1-13.

    Google Scholar

    王可勇, 卿敏, 孙丰月. 2010.吉林小西南岔金铜矿床成矿流体地球化学特征及矿床成因研究[J].岩石学报, 26(12):3727-3734.

    Google Scholar

    吴尚全.吉林小西南岔铜金矿床的主要地质特征及其成因[J].矿床地质, 1986, 5(2):75-84.

    Google Scholar

    于介江, 门兰静, 陈雷.延边地区五道沟群变质英安岩的锆石SHRIMP U-Pb年龄及其地质意义[J].吉林大学学报(地球科学版), 2008, 38(3):363-367.

    Google Scholar

    张铭杰, 孟广路, 胡沛青, 李立武, 李钢柱.祁连古大洋地幔流体化学组成[J].兰州大学学报(自然科学版), 2008, 44(4):1-9.

    Google Scholar

    张艳斌. 2002. 延边地区花岗质岩浆活动的同位素地质年代学格架[D]. 长春: 吉林大学.http://www.wanfangdata.com.cn/details/detail.do?_type=degree&id=Y495962

    Google Scholar

    赵宏光. 2007. 延边中生代浅成热液金、金铜矿床的成因与成矿模式研究[D]. 长春: 吉林大学.

    Google Scholar

    赵俊康, 孙景贵, 门兰静, 陈雷. 2008.小西南岔富金铜矿床流体包裹体中子矿物特征及意义[J].吉林大学学报(地球科学版), 38(3), 384-388.

    Google Scholar

    郑斗范, 朴淘允, 万玉生. 1983.小西南岔金铜矿床地质特征及成矿规律[M].长春:吉林省有色地质勘探局, 1-52.

    Google Scholar

    周燕, 咸嘉泉, 王铁夫. 2004.小西南岔金、铜矿床同位素地球化学[J].地球学报, 25(2):133-136.

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(12)

Tables(3)

Article Metrics

Article views(3264) PDF downloads(626) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint