2017 Vol. 44, No. 4
Article Contents

HONG Jun, JI Wenhua, ZHANG Haidi, LIU Mingyi, MA Zhongping, LI Yanguang, ZHANG Huishan. 2017. Petrogenesis of Murgab gabrro-diorite from Pamir:Evidence from zircon U-Pb dating, Hf isotopes and lithogeochemistry[J]. Geology in China, 44(4): 722-736. doi: 10.12029/gc20170406
Citation: HONG Jun, JI Wenhua, ZHANG Haidi, LIU Mingyi, MA Zhongping, LI Yanguang, ZHANG Huishan. 2017. Petrogenesis of Murgab gabrro-diorite from Pamir:Evidence from zircon U-Pb dating, Hf isotopes and lithogeochemistry[J]. Geology in China, 44(4): 722-736. doi: 10.12029/gc20170406

Petrogenesis of Murgab gabrro-diorite from Pamir:Evidence from zircon U-Pb dating, Hf isotopes and lithogeochemistry

    Fund Project: Supported by China Geological Survey Program (No. 121201112036, 12120114018601)
More Information
  • Author Bio: HONG Jun, male, born in 1985, doctor candidate and engineer, engages in the study of magmatism of orogenic belts and regional geology and mineral investigation; E-mail: hongjunmail2013@163.com
  • Located in the central part of Pamir, Tajikistan, near the Rushan-Pshart suture zone, the Murgab pluton separates the middle Pamir from southern Pamir. Petrologically, the pluton consists of gabrro and diorite which intruded into the epimetamorphic detrital rocks of late Proterozoic (?). LA-ICP-MS zircon U-Pb dating shows that the age of gabbro and that of diorite is 232±1.5 Ma and 231.5±1.9 Ma respectively, which represents the formation age of this pluton. The εHf (t) values of the zircon are in the range of 4.8-12.1 and 6.4-10, with a weighted average of 8.1±1.5 (MSWD=6.5) and 7.9±0.8(MSWD=2.4), suggesting that its original rock was derived from mantle materials. The one-stage Hf model ages (TDM1) are 477-621 Ma, 391-672 Ma respectively indicating an original rock of Cambrian-Precambrian basement. The lithogeochemical data shows that gabbros are characterized by rich Mg and, poor Al and alkali, thus belonging to low-potassium rocks, whereas the diorites are rich in Si, Al and poor in Mg, Ti, hence belonging to calc-alkaline to high K calc-alkaline rocks. The gabbros and diorites share similar REE and trace elements features, which are characterized by high total REE content and rich LREE with slight normal Eu anomaly. The trace elements are characterized by rich LILEs and poor HFES. Based on geochemical characteristics, the authors infer that the pluton formed in an island-arc environment. The subduction was continuing during late Triassic, which indicates that the Rushan Ocean basin was closed at least later than 232 Ma.

  • 加载中
  • Angiolini L, Zanchi A, Zanchetta S, Nicora A, Vezzoli G. 2013. The Cimmerian geopuzzle:New data from South Pamir[J]. Terra Nova 25, 352-360.

    Google Scholar

    Arculus R J. 1994. Aspects of magma genesis in arcs[J]. Lithos, 33:189-208. doi: 10.1016/0024-4937(94)90060-4

    CrossRef Google Scholar

    Ballard J R, Palin J M, Williams I S. 2001.Two ages of porphyry intrusion resolved for the super-giant Chuquicamata copper deposit of northern Chile by LA-ICP-MS and SHRIMP[J]. Geology, 9:383-386.

    Google Scholar

    Blichert-Toft J and Albarede F.1997.The Lu-Hf isotope geochemistry of chondrites and the evolution of the mantle-crust system[J].Earth Planet. Sci. Lett., 148:243-258. doi: 10.1016/S0012-821X(97)00040-X

    CrossRef Google Scholar

    Burtman V S and P Molnar. 1993. Geological and geophysical evidence for deep subduction of continental crust beneath the Pamir[J]. Geol. Soc. Am. Spec. Pap, 281, 1-76.

    Google Scholar

    Davies J H, Stevenson D J.1992. Physical model of source region of subduction zone volcanics[J]. Journal of Geophysical Research, 97:2037-2070. doi: 10.1029/91JB02571

    CrossRef Google Scholar

    Ducea M N, Lutkov V, Minaev V T, Hacker B, Luffi P, Metcalf J. 2003. Building the Pamirs:the view from the underside[J]. Geological Society of America, 31 (10):849-852.

    Google Scholar

    Eiler J M, Grawford A J, Elliott T R, Farley K A, Valley J W, Stolper E M. 2000.Oxygen isotope geochemistry of oceanic arc lavas[J]. Journal of Petrology, 41:229-256. doi: 10.1093/petrology/41.2.229

    CrossRef Google Scholar

    Frey F A, Prinz M. 1978. Ultramafic inclusions from San Carlos, Arizona:petrologic and geochemical data bearing on their petrogenesis[J]. Earth and Planetary Science Letters, 38(1):129-176. doi: 10.1016/0012-821X(78)90130-9

    CrossRef Google Scholar

    Griffin W L, Pearson N J, Belousova E, Jackson S E, Achterbergh E V. 2000. The Hf isotope composition of cratonic mantle:LAMMC-ICPMS analysis of zircon megacrysts in kimberlites[J]. Geochimica et Cosmochimica Acta, 64:133-147. doi: 10.1016/S0016-7037(99)00343-9

    CrossRef Google Scholar

    Grove T L, Elkins Tanton L T, Parman S W, Chatterjee N, Müntener O, Gaetani G A. 2003. Fractional crystallization and mantle melting controls on calk-alkaline differentiation trends[J]. Contributions to Mineralogy and Petrology, 145(5):515-533. doi: 10.1007/s00410-003-0448-z

    CrossRef Google Scholar

    Hong Jun, Ji Wenhua, Zhang Huishan, Yao Wenguang, Meng Guanglu, Wang Bin, Lv Pengrui, Yang Bo. 2014. Zircon SHRIMP U-Pb dating, geochemistry and tectonic implications of the Qieshijiebie gabbro on the northern margin of South Pamir[J]. Geological Bulletin of China, 33(6):820-829(in Chinese with English abstract).

    Google Scholar

    Hong Jun, Ji Wenhua, Zhang Huishan, Yao Wenguang, Fan Baocheng, Liu Mingyi, Luo Yanjun. 2015. LA-ICP-MS zircon U-Pb dating, geochemistry and tectonic implications of the Dugeli Alkali-rich porphyries on the eastern margin of Pamir[J]. Acta Geologica Sinica, 89(9):1463-1654(in Chinese with English abstract).

    Google Scholar

    Horn I, Rudnick R L, Mcdonough W F. 2000. Precise element and isotope ratio determination by simultaneous solution nebulization and LA-ICP-MS:Application to U-Pb geochronology[J]. Chemical Geology, 167:405-425. doi: 10.1016/S0009-2541(00)00229-1

    CrossRef Google Scholar

    Kosler J, Fonneland H, Sylvester P. 2002. U-Pb dating of detrital zircons for sediment provenance studies-acomparison of LAICP-MS and SIMS techniques[J]. Chemical Geology, 182:605-618. doi: 10.1016/S0009-2541(01)00341-2

    CrossRef Google Scholar

    Leven E Y. 1995. Permian and Triassic of the Rushan-Pshart zone(Pamir)[J]. Riv. Ital. Paleontol. Stratigr. 101, 3-16.

    Google Scholar

    Ludwing K R. 2003. Isoplot 3.0-A geochronological toolkit for Microsoft Excel[J]. Berkeley Geochronological Center, Spec. Pub., (4):1-70.

    Google Scholar

    Lukens C E, Carrapa B, Singer B S, Gehrels G E. 2012. Miocene exhumation of the Pamir revealed by detrital geothermochronology of Tajikstan rivers[J]. Tectonics 31, 12.

    Google Scholar

    Matte P, Tapponnier P, Arnaud N, Bourjot L, Avouac J P, Vidal P, Liu Q, Pan Y, Wang Y. 1996. Tectonics of Western Tibet, between the Tarim and the Indus[J]. Earth Planet. Sci. Lett.142, 311-330. doi: 10.1016/0012-821X(96)00086-6

    CrossRef Google Scholar

    Pashkov B R, Budanov V I. 1990. The tectonics of the zone of intersection between the Southeastern and southwestern Pamir[J]. Geotectonics 24, 246-253 (in Russian).

    Google Scholar

    Pashkov B R, Shvol'man V A. 1979. Rift margins of Tethys in the Pamirs[J].Geotectonics 13, 447-456.

    Google Scholar

    Pearce J A. 1984. Trace element discrimination diagram for tectonic interpretation of granitic rocks[J]. Petrology, 25:656-682.

    Google Scholar

    Robinson A C, Yin An, Manning C E, Harrison T M, Zhang S H, Wang X F. 2004. Tectonic evolution of the northeastern Pamir:constraints from the northern portion of the Cenozoic Kongur Shan extensional system[J]. Geol. Soc. Am. Bull, 116:953-974. doi: 10.1130/B25375.1

    CrossRef Google Scholar

    Robinson A C, Yin An, Manning C E, Harrison T M, Zhang S H, Wang X F. 2007. Cenozoic evolution of the eastern Pamir:implications for strain accommodation mechanisms at the western end of the Himalayan-Tibetan orogen[J]. Geol. Soc. Am. Bull. 119, 882-896. doi: 10.1130/B25981.1

    CrossRef Google Scholar

    Robinson A C, Ducea M, Lapen T J, 2012. Detrital zircon and isotopic constraints on the crustal architecture and tectonic evolution of the northeastern Pamir[J]. Tectonics 31, TC2016.

    Google Scholar

    Scherer E, Munker C and Mezger K, 2001, Calibration of the lutetiumhafnium clock[J]. Science, 293:683-687. doi: 10.1126/science.1061372

    CrossRef Google Scholar

    Schwab M, Ratschbacher L, Siebel W, McWilliams M, Minaev V, Lutkov V, Chen F, Stanek K, Nelson B, Frisch W, Wooden J L.2004. Assembly of the Pamirs:Age and origin of magmatic belts from the southern Tienshan to the southern Pamirs and their relation to Tibet[J]. Tectonics 23, TC4002.

    Google Scholar

    Sun Shuqin, Wang Yunliang, Zhang Chengjiang.2003.Discrimination of the tectonic settings of Basalts by Th, Nb, and Zr[J]. Geological Review, 49(1):40-47.

    Google Scholar

    Sun S S, McDonough W F.1989.Chemical and isotopic systematic of oceanic basalts:Implications for mantle composition and processes[C]//Saunders A D, Norry M J(eds.). Magmatsm in the Ocean Basins[J]. Geological Society Special Publication, 42:313-345.

    Google Scholar

    Taylor S R and Mc Lennan S. 1995. The geochemical composition of the continental crust[J]. Reviews of Geophysics, 33:241-265. doi: 10.1029/95RG00262

    CrossRef Google Scholar

    Vavra G, Gebauer D, Schmid R. 1996. Multiple zircon growth and recrystallization during polyphase Late Carboniferous to Triassic metamorphism in granulites of the Ivrea Zone:Anion microprobe study[J]. Contrib. Mineral. Petrol., 122:337-358. doi: 10.1007/s004100050132

    CrossRef Google Scholar

    Wang Yunliang, Zhang Chengjiang, Xiu Shuzhi. 2001. Th/Hf-Ta/Hf identification of tectonic setting of basalts[J]. Acta Petrologica Sinica, 17 (3):413-421(in Chinese with English abstract).

    Google Scholar

    Wu Yuanbao and Zheng Yongfei. 2004. Genesis of zircon and its const raints on inter pretation of U-Pb age[J]. Chinese Science Bulletin, 49(15):1554-1569(in Chinese with English abstract). doi: 10.1007/BF03184122

    CrossRef Google Scholar

    Yin An, Harrison T M.2000. Geologic evolution of the HimalayanTibetan orogen[J]. Annu. Rev. Earth Planet. Sci., 28, 211-280. doi: 10.1146/annurev.earth.28.1.211

    CrossRef Google Scholar

    Yan Jun, Chen Jiangfeng, Xu Xisheng. 2008. Geochemistry of Cretaceous mafic rocks from the Lower Yangtze region, eastern China:characteristics and evolution of the lithospheric mantle[J]. Journal of Asian Earth Sciences, 33:177-193. doi: 10.1016/j.jseaes.2007.11.002

    CrossRef Google Scholar

    Yan Yi, Lin Ke, Li Zi'an. 2003.Provenance tracing of sediments by means of synthetic study of shape, composition and chronology of zircon[J]. Geotectonica et Metallogenia, 27(2):184-190.

    Google Scholar

    Yuan H L, Gao S, Liu X M et al. 2004. Accurate U-Pb age and trace element determinations of zircon by laser ablation-inductively coupled plasma mass spectrometry[J]. Geostandards and Geoanalytical Reaerch, 28(3):353-370. doi: 10.1111/ggr.2004.28.issue-3

    CrossRef Google Scholar

    洪俊, 计文化, 张辉善, 姚文光, 孟广路, 王斌, 吕鹏瑞, 杨博. 2014.南帕米尔北缘切实界别辉长岩LA-ICP-MS锆石U-Pb定年、地球化学特征及其地质意义[J].地质通报, 33(6):820-829.

    Google Scholar

    洪俊, 计文化, 张辉善, 姚文光, 范堡程, 刘明义, 罗彦军. 2015.帕米尔东缘杜格里富碱斑岩锆石U-Pb定年、地球化学特征及构造意义[J].地质学报, 89(9):1463-1654.

    Google Scholar

    孙书勤, 汪云亮, 张成江. 2003.玄武岩类岩石大地构造环境的Th、Nb、Zr判别[J].地质论评, 49(1):40-47.

    Google Scholar

    汪云亮, 张成江, 修淑芝. 2001.玄武岩类形成的大地构造环境的Th/Hf-Ta/Hf图解判别[J].岩石学报, 17(3):413-421.

    Google Scholar

    吴元保, 郑永飞. 2004.锆石成因矿物学研究及其对U-Pb年龄解释的制约[J].科学通报, 49(16):1589-1604. doi: 10.3321/j.issn:0023-074X.2004.16.002

    CrossRef Google Scholar

    闫义, 林柯, 李自安. 2003.利用锆石形态、成分组成及年龄分析进行沉积物源区示踪的综合研究[J].大地构造与成矿学, 27(2):184-190.

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(7)

Tables(3)

Article Metrics

Article views(2175) PDF downloads(958) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint