2017 Vol. 44, No. 4
Article Contents

ZHANG Zhenguo, HUO Shaochuan, LENG Chunpeng, GAO Lianfeng, ZHANG Ying, FU Haifeng. 2017. Interactions between the Earth Sphere and its constraint on the progress of anoxic-oxic in the Cretaceous Ocean[J]. Geology in China, 44(4): 707-721. doi: 10.12029/gc20170405
Citation: ZHANG Zhenguo, HUO Shaochuan, LENG Chunpeng, GAO Lianfeng, ZHANG Ying, FU Haifeng. 2017. Interactions between the Earth Sphere and its constraint on the progress of anoxic-oxic in the Cretaceous Ocean[J]. Geology in China, 44(4): 707-721. doi: 10.12029/gc20170405

Interactions between the Earth Sphere and its constraint on the progress of anoxic-oxic in the Cretaceous Ocean

    Fund Project: Support by National Key Basic Research Program of China (973 Program)(No. 2012CB822000), National Natural Science Foundation of China(No. 41172015, 41302008), Science Foundation of Hebei province(No.D2015209075, D2017209236), Key projects of the natural science foundation of Hebei Education Department (No.ZD2016077), Cultivating projectof the natural science foundation of NCST(No. SP201501)
More Information
  • Author Bio: ZHANG Zhenguo, male, born in 1967, doctor, professor, mainly engages in the study of marine geology, marine resources and environment and paleooceanography; E-mail:zzgcugb@163.com
  • The Cretaceous is an important period in which occurred many geological events, especially the OAEs (Oceanic Anoxic Events) characterized by black shales, and theoxic process characterized by CORBs (Cretaceous Oceanic Red Beds). This paper describes the causative mechanism which explains how the oceanic environment changed from anoxic to oxic in Cretaceous. Two typical events show different results that caused by interactionsoftheEarthSpheres. Here we propose that the rise of atmospheric CO2 occurred because the enhanced submarine volcanism-was abruptly and permanently diminished during the Cretaceous. The Cretaceous large-scale submarine volcanism caused the concentration of CO2. The releasing of the inner energy of the lithosphere and thedistribution oflandwhich caused the increasing of atmospheric temperature. This change presented the same trend as the oceanic water temperature, and caused the decreasing of O2 concentration in the Cretaceous ocean, and then the OAEs occurred. The lithosphere produced volume of lava in the upper oceanic crustwhich contained Fe in the seafloor. When thehydrothermal fluids alteration of oceanic crust and the seawater/basalt interactions (including microbes alteration of submarine basaltic glass), the element Fe dissolved in seawater. Iron is a micronutrient essential for the synthesis of enzymes required for photosynthesis in oceanic environment, it could spur phytoplankton growth rapidly. The photosynthesis of phytoplankton which can consume carbon dioxide is in much of the world's oceans, wherever they are in atmosphere or in ocean. This process could produce equal oxygen. And then, the oxic environment characterized by red sediment which is rich in Fe3+ appeared. The data show rhythm of the anoxic and oxic from south Tibet and DSDP/ODP section, which the anoxic is often accompanied by the occurrence of oxygen rich environment.Undoubtedly, the anoxic andoxic in the Cretaceous Ocean were controlled by the mutually dependent processes of the Earth system which included lithosphere, hydrosphere, atmosphere and biosphere. An important conclusion of this study is that the black shalesand the oceanic red beds are caused by the same reason, but led different results. The anoxic and oxic in the Cretaceous ocean were caused by volcanic activities, but they were of different causative mechanisms. The former was based on physical and chemical process, while the latter involved more complicated bio-oceanic-geochemistry process.

  • 加载中
  • Arthur M A. 1979. North Atlantic cretaceous black shales:The record at site 398 and a brief comparison with other occurrences[M]. Initial reports of the Deep Sea Drilling Project, 47:719-753

    Google Scholar

    Arvidson R S, Mackenzie F T, Guidry M W. 2013. Geologic history of seawater:A MAGic approach to carbon chemistry and ocean ventilation. Chemical Geology, 362:287-304 doi: 10.1016/j.chemgeo.2013.10.012

    CrossRef Google Scholar

    Asimow P D, Hirschmann M M, Stolper E M. 2001. Calculation of peridotite partial melting from thermodynamic models of minerals, melts:Ⅳ. Adiabatic decompression, the composition, mean properties of mid-ocean ridge basalts[J]. Petrology, 42:963-998 doi: 10.1093/petrology/42.5.963

    CrossRef Google Scholar

    Barron E J. 1983.A warm equable Cretaceoue:the nature of the problem[J]. Earth-Science Review, 19(4):305-338. doi: 10.1016/0012-8252(83)90001-6

    CrossRef Google Scholar

    Benzerara K, Menguy N, Banerjee N R, Tolek T, Guyot F. 2007. Alteration of submarine basaltic glass from the Ontong Java Plateau:A STXM and TEM study[J]. Earth and Planetary Science Letters, 260:187-200. doi: 10.1016/j.epsl.2007.05.029

    CrossRef Google Scholar

    Berner R A, Beerling D J, Dudley R, Jennifer M R, Richard A W. 2003. Phanerozoic atmospheric oxygen[J].Annual Review of Earth Planetary Science. 31:105-34. doi: 10.1146/annurev.earth.31.100901.141329

    CrossRef Google Scholar

    Berner R A, Canfield D E. 1989. A new model for atmospheric oxygen over Phanerozoic time[J]. American Journal of Science, 289(4):333-61. doi: 10.2475/ajs.289.4.333

    CrossRef Google Scholar

    Berner R A, Lasaga A C, Garrels R M. 1983. The carbonate-silicate geochemical cycle and its effect on atmospheric carbon dioxide over the past 100 million years[J]. American Journal of Science, 283:641-683. doi: 10.2475/ajs.283.7.641

    CrossRef Google Scholar

    Berner R A. 1990. Atmospheric carbon dioxide levels over Phanerozoic time[J]. Science, 249(4975):1382-1386. doi: 10.1126/science.249.4975.1382

    CrossRef Google Scholar

    Berner R A. 1992.Palaeo-CO2 and climate[J]. Nature, 358:114. doi: 10.1038/358114a0

    CrossRef Google Scholar

    Berner R A. 1999.Atmospheric CO2 over Phanerozoic time[J]. Proceeding of the National Academy Sciences of the USA, 96(20):10955-10957. doi: 10.1073/pnas.96.20.10955

    CrossRef Google Scholar

    Bi Siwen. 2003. Earth system science-the frontier of earth science and scientific basis of the sustainable development strategy in the 21st century[J]. Geological Bulletin of China, 22(8):601-611 (in Chinese with English abstract).

    Google Scholar

    Blank J G, Delaney J R, Marsais D J. 1993. The concentration isotopic composition of carbon in basaltic glasses from the Juan de Fuca Ridge[J]. GeochimicaetCosmochimicaActa, 57(4):875-887.

    Google Scholar

    Boucot A J, Gray J. 2001. A critique of Phanerozoic climatic models involving changes in the CO2 content of the atmosphere[J]. EarthScience Reviews, 56(1-4):1-159.

    Google Scholar

    Broecker W S. 1991.The great ocean conveyor[J]. Oceanography, 4:79-89. doi: 10.5670/oceanog

    CrossRef Google Scholar

    Bruce W F. 1996. Phytoplankton bloom on iron rations[J]. Nature, 383:475-476.

    Google Scholar

    Brumsack H J. 1980.Geochemistry of Cretaceous black shales from the Atlantic Pcean (DSDP Legs 11, 14, 36 and 41). Chemical Geology, 3:1-2, 5.

    Google Scholar

    Campbell I H, Kerr A C. 2007. The great plume debate:Testing the plume theory[J]. Chemical Geology, 241 (3/4):149-152.

    Google Scholar

    Cerling T E. 1991. Carbon dioxide in the atmosphere:Evidence from Cenozoic and Mesozoic paleosols[J]. American Journal of Science, 291(4):377-400. doi: 10.2475/ajs.291.4.377

    CrossRef Google Scholar

    Cerling T E. Solomon D K, Quade J, John R B. 1991. On the isotopic composition of carbon in soil carbon dioxide[J].Geochimica et Cosmochimica Acta, 55(11):3403-3405. doi: 10.1016/0016-7037(91)90498-T

    CrossRef Google Scholar

    Chen J, Devey C, Fischer C. 2005. Ocean-abyss of time[M].Earth Sciences for Society Foundation, Leiden, The Netherlands.1-16.

    Google Scholar

    Christopher L S, Richard A F, Nicolas G, Robert M K, Kitack L, John L B, Rik W, Wong C S, Douglas W R, Bronte T, Frank J M, Peng T H, Alexander K, Tsueno Ono, Aida F R. 2004. The oceanic sink for anthropogenic CO2[J]. Science, 305:367-371. doi: 10.1126/science.1097403

    CrossRef Google Scholar

    Christopher L S, Toste T. 2010. Estimation of anthropogenic CO2 inventories in the ocean[J]. Annual Review Marine Science, 2:175-198. doi: 10.1146/annurev-marine-120308-080947

    CrossRef Google Scholar

    Christopher S R. Earth History.Paleomap Project Cretaceous[]. http://www.scotese.com/earth.htm.

    Google Scholar

    Coale K H, Fitzwater S E, Gordon R M, Kenneth S J, Richard T B. 1996. Control of community growth and export production by upwelled iron in the equatorial Pacific Ocean[J]. Nature, 379:621-624. doi: 10.1038/379621a0

    CrossRef Google Scholar

    Coffin M F, Eldholm O. 1994. Large igneous provinces:Crustal structure, dimensions, and external consequences[J]. Review Geophys, 32:1-36. doi: 10.1029/93RG02508

    CrossRef Google Scholar

    Courtillot V E, Renne P R. 2003. On the age of flood basalt events[J]. ComptesRendus Geoscience, 335(1):113-140 doi: 10.1016/S1631-0713(03)00006-3

    CrossRef Google Scholar

    Dahl T W, Emma U H, Ariel D A, David P G, Bond G, Benjamin C, Gill H. 2010. Devonian rise in atmospheric oxygen correlated to the radiations of terrestrial plants and large predatory fish[J]. Proceedings of the National Academy of Science of the United States of America, 107(42):17911-17915. doi: 10.1073/pnas.1011287107

    CrossRef Google Scholar

    de Baar H J, de Jong J T. 2001. Distributions, sources and sinks of iron in seawater[C]//Turner D R, Hunter K A(eds.). Biogeochemistry of Fe in Seawater. SCOR/IUPAC.Chichester, 123-253.

    Google Scholar

    Dondra V B, Tyler H C, Ralph C T, Geoffrey J S, Kenneth W B. 2013. Coastal iron and nitrate distributions during the spring and summer upwelling season in the central California Current upwelling regime[J]. Continental Shelf Research, 66:58-72. doi: 10.1016/j.csr.2013.07.003

    CrossRef Google Scholar

    Duce R A, Tindale N W. 1991. Atmospheric transport of iron and its deposition in the ocean[J]. Limnology and Oceanography, 36(8):1715-1726. doi: 10.4319/lo.1991.36.8.1715

    CrossRef Google Scholar

    Edward R A, Cliff S L, Philip W B, Samantha J L, Maria T M, Andrew R Bowie.2000. Importance of stirring in the development of an iron-fertilized phytoplankton bloom[J]. Nature, 407:727-730. doi: 10.1038/35037555

    CrossRef Google Scholar

    Falkowski P, Scholes R J, Boyle E, Canadell J, Canfield D, Elser J, Gruber N, Hibbard K, Högberg P, Linder S, Mackenzie F T, Moore B, Pedersen T, Rosenthal Y, Seitzinger S, Smetacek V, Steffen W. 2000. The global carbon cycle:a test of our knowledge of earth as a system[J]. Science, 290(5490):291-296. doi: 10.1126/science.290.5490.291

    CrossRef Google Scholar

    Fisk M R, Giovannoni S J, Thorseth I H. 1998.The extent of microbial life in the volcanic crust of the ocean basins[J]. Science, 281:978-980. doi: 10.1126/science.281.5379.978

    CrossRef Google Scholar

    Furnes H, Staudigel H. 1999. Biological mediation of basalt glass alteration in the ocean crust:how deep is the deep biosphere?[J]. Earth and Planetary Science Letters, 166(3-4):97-103. doi: 10.1016/S0012-821X(99)00005-9

    CrossRef Google Scholar

    Geider R J, LaRoche J. 1994. The role of iron in phytoplankton photosynthesis, and the potential for iron-limitation of primary productivity in the sea[J].Photosynthesis Research, 39:275-301. doi: 10.1007/BF00014588

    CrossRef Google Scholar

    George W L, Wu J f. 1997. What controls dissolved iron concentrations in the world ocean?-a comment[J]. Marine Chemistry, 57(3/4):137-161.

    Google Scholar

    Gordon R M, Coale K H, Johnson K S. 1997. Iron distributions in the equatorial Pacific:implications for new production[J]. Limnology and Oceanography, 42(3):419-431. doi: 10.4319/lo.1997.42.3.0419

    CrossRef Google Scholar

    Gregory J R. 2001. A 300-million-year record of atmospheric carbon dioxide from fossil plant cuticles[J]. Nature, 411:287-290. doi: 10.1038/35077041

    CrossRef Google Scholar

    Guo Zhengtang, Wu Haibin. 2004. On the solid earth science and earth system science[J]. Advances In Earth Science, 19(5):699-705(in Chinese with English abstract).

    Google Scholar

    Guy C, Daux V, Schott J. 1999. Behaviour of rare earth elements during seawater/basalt interactions in the Mururoa Massif[J]. Chemical Geology, 158(1/2):21-35.

    Google Scholar

    Hansell D A, Carlson C A. 1998. Deep-ocean gradients in the concentration of dissolved organic carbon[J]. Science, 395(6699):263-266.

    Google Scholar

    Hein J W, de Baar, Jeroen T M, de Jong, Rob F N, Klaas R T, Maria A L, Bathmann U, Michiel R L, Jüri S. 1999. Low dissolved Fe and the absence of diatom blooms in remote Pacific waters of the Southern Ocean[J]. Marine Chemistry, 66(1/2):1-34.

    Google Scholar

    Hollander D J, McKenzie J A. 1991. Carbon dioxide control on carbon-isotope fractionation during aqueous photosynthesis:A paleo-PCO2 barometer[J]. Geology, 19(9):929-32. doi: 10.1130/0091-7613(1991)019<0929:CCOCIF>2.3.CO;2

    CrossRef Google Scholar

    Hong Hanjing, Yu Yong, ZhengXiuzhen, Liu Peixun, Tao We. 2003. Global volcano distribution:pattern and variation. Earth Science Frontiers, 10:11-16(in Chinese with English abstract).

    Google Scholar

    Hutchins D A, Hare C E, Weaver R S, Zhang Y, Firme G F, DiTullio G R, Alm M B, Riseman S F, Maucher J M, Geesey M E, Trick C G, Smith G J, Rue E L, Conn J, Bruland K W. 2002. Phytoplankton Fe limitation in the Humboldt Current and Peru Upwelling[J]. Limnology and Oceanography, 47:997-1011. doi: 10.4319/lo.2002.47.4.0997

    CrossRef Google Scholar

    Hutchins D A, Wang W X, Fisher N S. 1995. Copepod grazing and the biogeochemical fate of diatom iron[J]. Limnology and Oceanography, 40:989-994. doi: 10.4319/lo.1995.40.5.0989

    CrossRef Google Scholar

    Ingle S, Coffin M F. 2004.Impact origin for the greater Ontong Java Plateau?[J]. Earth and Planetary Science Letters, 218(1/2):123-134.

    Google Scholar

    Jeffrey B G, Nancy M A, Robert D, Carl G. 1995. Implications of the late Palaeozoic oxygen pulse for physiology and evolution[J]. Nature, 375:117-120. doi: 10.1038/375117a0

    CrossRef Google Scholar

    Jeffrey C A, Pilar M. 2000.On the role of microbes in the alteration of submarine basaltic glass:A TEM study[J]. Earth and Planetary Science Letters, 181(3):301-313. doi: 10.1016/S0012-821X(00)00204-1

    CrossRef Google Scholar

    Jenkyns H C. 2010. Geochemistry of oceanic anoxic events[J]. Geochemistry, Geophysics, Geosystems, 11:1-30.

    Google Scholar

    Jickells T D. 1999. The inputs of dust derived elements to the Sargasso Sea:a synthesis[J]. Marine Chemistry, 68(1-2):5-14. doi: 10.1016/S0304-4203(99)00061-4

    CrossRef Google Scholar

    Jickells T, Spokes L J. 2001. Atmospheric iron inputs to the oceans. In:Turner, D.R., Hunter, K.A. (Eds.), The biogeochemistry of Iron in seawater. SCOR-IUPAC, Baltimore, 85-121.

    Google Scholar

    Jin Xingchun, Zhou Zuyi, Wang Pinxian.1995. Ocean Drilling Program and Earth Science in China[M].Shanghai:Tongji University Press, 248-251(in Chinese with English abstract).

    Google Scholar

    John P, Hayes J M. 1990. A carbon isotope record of CO2 levels during the late Quaternary[J].Nature, 347:462-464. doi: 10.1038/347462a0

    CrossRef Google Scholar

    Johnson K S, Gordon R M, Coale K H. 1997. What controls dissolved iron concentrations in the world ocean?[J]. Marine Chemistry, 57(3-4):137-161. doi: 10.1016/S0304-4203(97)00043-1

    CrossRef Google Scholar

    Kazumi O, Eiichi T. 2013. Biogeochemical effects of atmospheric oxygen concentration, phosphorus weathering, and sea-level stand on oceanic redox chemistry:Implications for greenhouse climates. Earth and Planetary Science Letters, 373:129-139. doi: 10.1016/j.epsl.2013.04.029

    CrossRef Google Scholar

    Kazumi O, Eiichi T. 2013.Biogeochemical effects of atmospheric oxygen concentration, phosphorus weathering, and sea-level stand on oceanic redox chemistry:Implications for greenhouse climates. Earth and Planetary Science Letters, 373:129-139. doi: 10.1016/j.epsl.2013.04.029

    CrossRef Google Scholar

    Kenneth S J, Kenneth H C, Virginia A E, Neil W T. 1994. Iron photochemistry in seawater from the equatorial Pacific[J]. Marine Chemistry, 46(4):319-334. doi: 10.1016/0304-4203(94)90029-9

    CrossRef Google Scholar

    Kentaro N, Yasuhiro K, Kensaku T, Teruaki I. 2007. Geochemistry of hydrothermally altered basaltic rocks from the Southwest Indian Ridge near the Rodriguez Triple Junction[J]. Marine Geology, 239(3-4):125-141. doi: 10.1016/j.margeo.2007.01.003

    CrossRef Google Scholar

    Kerr A C, Mahoney J J. 2007. Oceanic plateaus:Problematic plumes, potential paradigms[J]. Chemical Geology, 241(3-4):332-353. doi: 10.1016/j.chemgeo.2007.01.019

    CrossRef Google Scholar

    Kevin B, Trond H T. 2004. Derivation of Large Igneous Provinces of the past 200 million years from long-term heterogeneities in the deep Mantle[J]. Earth and PlanetaryScience Letters, 227(3-4):531-538. doi: 10.1016/j.epsl.2004.09.015

    CrossRef Google Scholar

    Lam P J, Bishop J K. 2008. The continental margin is a key source of iron to the HNLC North Pacific Ocean[J]. Geophysical Research Letters, 35(7):521-539.

    Google Scholar

    Larson R L. 1991.Geological consequences of superplumes[J]. Geology, 19:963-966. doi: 10.1130/0091-7613(1991)019<0963:GCOS>2.3.CO;2

    CrossRef Google Scholar

    Leblanc K, Hare C E, Boyd P W, Bruland K W, Sohst B, Pickmere S, Lohan M C, Buck K, Ellwood M, Hutchins D A. 2005. Fe and Zn effects on the Si cycle and diatom community structure in two contrasting high and low-silicate HNLC areas[J]. Deep Sea Research Part I:Oceanographic Research Papers, 52(10):1842-1864. doi: 10.1016/j.dsr.2005.06.005

    CrossRef Google Scholar

    Leckie R M, Bralower T J, Cashman R. 2002. Oceanic anoxic events and plankton evolution:Biotic response to tectonic forcing during the mid-Cretaceous[J]. Paleoceanography, 17:1-29.

    Google Scholar

    Lehman S J, Keigwin L D. 1992. Sudden changes in North Atlantic circulation during the last deglacbtion[J]. Natare, 356:757-762. doi: 10.1038/356757a0

    CrossRef Google Scholar

    Liu Benpei, Zhang Shihong.1997. Rhythms of different geospheres and their relations in middle jurassic-early cretaceous. Earth Science Frontiers (China University of Geosciences, Beijing), 4(3/4):65-74(in Chinese with English abstract).

    Google Scholar

    Liu Z H, Dreybrodt W, Liu H J. 2011. Atmospheric CO2 sink:Silicate weathering or carbonate weathering?[J] Application Geochemistry, 26:292-294. doi: 10.1016/j.apgeochem.2011.03.085

    CrossRef Google Scholar

    Liu Z H, Dreybrodt W, Wang H J. 2010. A new direction in effective accounting for the atmospheric CO2 budget:Considering the combined action of carbonate dissolution, the global water cycle and photosynthetic uptake of DIC by aquatic organisms[J]. Earth Science Review, 99:162-172. doi: 10.1016/j.earscirev.2010.03.001

    CrossRef Google Scholar

    Liu Zaihua, Drevhrodt W, Liu Huan. 2011. Atmospheric CO2 sink:silicate weathering or carbonate weathering[J]. Quaternary Sciences, 31:426-430(in Chinese with English abstract).

    Google Scholar

    Liu Zaihua, DreybrodtW, WangHaijing. 2007. An important CO2 sinks generated by the global water cycle[J]. Chinese Science Bulletin, 52(20):2418 -2422(in Chinese).

    Google Scholar

    Liu ZaiHua.2012. New progress and prospects in the study of rockweathering-related carbon sinks[J]. Chinese Science Bulletin, 57(2/3):95-102(in Chinese).

    Google Scholar

    Liu Yushan, Zhang Guilan. 1996. An experimental study on sea waterbasalt interaction at 250~500℃ and 100 MPa[J]. Geochimica, 25:53-62(in Chinese with English abstract).

    Google Scholar

    Lu Lu, Yan Lilong, Li Qiuhuan, Zeng Lu, Jin Xin, Zhang Yuxiu, Hou Quanlin, Zhang Kaijun. 2016. Oceanic plateau and its significances on the Earth system:A review[J]. Acta Petrologica Sinica, 32(6):1851-1876(in Chinese with English abstract).

    Google Scholar

    Lui H C, Jeffrey C A, Damon A H. 2002. Lithium and lithium isotope through the upper oceanic crust:a study of seawater-basalt exchange at ODP Sites 504B and 896A[J]. Earth and Planetary Science Letters, 201(1):187-201. doi: 10.1016/S0012-821X(02)00707-0

    CrossRef Google Scholar

    Ma Zongjin, Du Pinren, Lu Miaoan. 2005. Multi-Layered interaction of the earth[J]. Earth Science Frontiers, 12(2):11-21(in Chinese with English abstract).

    Google Scholar

    Mackey D J, OSullivan J E, Watson R J. 2002. Iron in the western Pacific:A riverine or hydrothermal source for iron in the Equatorial Undercurrent?[J]. Deep Sea Research Part I:Oceanographic Research Papers, 49(5):877-893. doi: 10.1016/S0967-0637(01)00075-9

    CrossRef Google Scholar

    Mann P, Asahiko T. 2004. Global tectonic significance of the Solomon Islands and Ontong Java Plateau convergent zone[J]. Tectonophysics, 389(3/4):137-190.

    Google Scholar

    Martin J H, Coale K H, Johnson K S, Fitzwater S E, Gordon R M, Tanner S J, Hunter C N, Elrod V A, Nowicki J L, Coley T L, Barber R T, Lindley S, Watson A J, Van Scoy K, Law C S, Liddicoat M I, Ling R, Stanton T, Stockel J, Collins C, Anderson A, Bidigare R, Ondrusek M, Latasa M, Millero F J, Lee K, Yao W, Zhang J Z, Friederich G, Sakamoto C, Chavez F, Buck K, Kolber Z, Greene R, Falkowski P, Chisholm S W, Hoge F, Swift R, Yungel J, Turner S, Nightingale P, Hatton A, Liss P, Tindale N W. 1994. Testing the iron hypothesis in ecosystems of the equatorial Pacific Ocean[J]. Nature, 371:123-129. doi: 10.1038/371123a0

    CrossRef Google Scholar

    Martin J H, Gordon R M. 1988. Northeast Pacific iron distributions in relation to phytoplankton Productivitys[J]. Deep Sea Research Part A. Oceanographic Research Papers, 35 (2):177-196. doi: 10.1016/0198-0149(88)90035-0

    CrossRef Google Scholar

    Martin J H. 1990. Glacical-interglacial CO2 change:The iron hypothesis[J]. Paleoceanography, 5:1-13. doi: 10.1029/PA005i001p00001

    CrossRef Google Scholar

    Martin R W, Timothy D J, Karen J H. 2014. The role of iron sources and transport for Southern Ocean productivity[J].Deep Sea Resarch Part I:Oceanographic Research Papers, 87:82-94. doi: 10.1016/j.dsr.2014.02.003

    CrossRef Google Scholar

    Mercedes de la P, Emma M H, Xose A P, Melchor G D, Magdalena S C, Jesús M F, Abdellatif O, Fiz F P, Aida F R. 2011. Reconstruction of the seasonal cycle of air-sea CO2 fluxes in the Strait of Gibraltar[J]. Marine Chemistry, 126(1/4):155-162.

    Google Scholar

    Murataa A, Kumamotoa Y, Saitoa C, Kawakami H, Asanuma I, Kusakabe M, Inoue H Y. 2002. Impact of a spring phytoplankton bloom on the CO2 system in the mixed layer of the northwestern North Pacific[J]. Deep-Sea Research Ⅱ, 49:5531-5555. doi: 10.1016/S0967-0645(02)00203-5

    CrossRef Google Scholar

    Olsen P E. 1997. Stratigraphic record of the Mesozoic breakup of Pangea rift system[J].Science, 25:337-421.

    Google Scholar

    Passow U, Carlson C A. 2012. The biological pump in a high CO2 world[J]. Marine Ecology Progress Series, 470:249-271. doi: 10.3354/meps09985

    CrossRef Google Scholar

    Philip E J, Paterno R C. 2001. Geochemistry of the oldest Atlantic oceanic crust suggests Mantle plume involvement in the early history of the central Atlantic Ocean[J]. Earth and Planetary Science Letters, 192(3):291-302. doi: 10.1016/S0012-821X(01)00452-6

    CrossRef Google Scholar

    Philip W B, Andrew J W, Cliff S L, Edward R A, Thomas T, Rob M, Dorothee C E, Andrew R B, Buesseler K O, Hoe C, Matthew C, Peter C, Ken D, Russell F, Mark G, Mark H, Julie H, Mike H, Greg J, Julie L, Malcolm L, Roger L, Maria T M, Michael R M, Scott N, Stu P, Rick P, Steve R, Karl S, Philip S, Robert S, Kim T, Suzanne T, Anya W, John Z. 2000. A mesoscale phytoplankton bloom in the polar Southern Ocean stimulated by iron fertilization[J]. Nature, 407:695-702 doi: 10.1038/35037500

    CrossRef Google Scholar

    Pieter P T, Joseph A B, Ralph F K. 1993. Oceanic 13C/12C Observation:A new window on ocean CO2 uptake[J]. Global Biogeochemical Cycles, 7:353-368. doi: 10.1029/93GB00053

    CrossRef Google Scholar

    Pineau F, Javoy M. 1994. Strong degassing at ridge crests:The behavior of dissolved carbon, water in basalt glasses at MidAtlantic ridge[J]. Earth and Planetary Science Letters, 123(1/3):179-198.

    Google Scholar

    Price M L, Morel F M. 1998. Biological cycling of iron in the ocean[J]. Metal Ions in Biological System, 35:1-36

    Google Scholar

    Raymond T P, Ian S, Richard J S, Mike I L, Mark M, Rachel A M, Peter J S, John T A, Alex R B, Dorothee C B, Matthew A C, Sophie F, Gary R F, Megan F, Anna E H, Ross J H, Alan H, Timothy D J, Richard S L, Paul J M, Florence H N, Maria N, Hélène P, Ekaterina E P, Alex J P, Jane F R, Sophie S, Tania S, Mark S, Sarah T, Sandy T, Hugh J V, Robert W, Mike V Z. 2009. Southern Ocean deepwater carbon export enhanced by natural iron fertilization[J]. Nature, 457:577-580. doi: 10.1038/nature07716

    CrossRef Google Scholar

    Richard E E, Kenneth L B, Ian H C. 2005. Frontiers in Large Igneous Province research[J]. Lithos, 79(3/4):271-297.

    Google Scholar

    Robert E L, Abraham L. 2005. A model of Phanerozoic cycles of carbon and calcium in the global ocean:Evaluation and constraints on ocean chemistry and input fluxes[J]. Chemical Geology, 217 (1/2):113-126.

    Google Scholar

    Saunders A D, Tarney J, Kerr A C, Kent R W. 1996.The formation and fate of large oceanic igneous provinces[J].Lithos, 37(2/3):81-95.

    Google Scholar

    Schlanger S O, Jenkyns H C. 1976. Cretaceous oceanic an-oxic events:Cause and consequence[J]. Geology, 55:179-184.

    Google Scholar

    Schmitz W J. 1995. On the interbasin-scale thermohalinecirculation[J]. Review Geophys, 33:151-173. doi: 10.1029/95RG00879

    CrossRef Google Scholar

    Shigenobu Takeda, Atsushi Tsuda. 2005. An in situ iron-enrichment experiment in the western subarctic Pacific (SEEDS):Introduction and summary[J]. Progress in Oceanography, 64:95-109. doi: 10.1016/j.pocean.2005.02.004

    CrossRef Google Scholar

    Sinton C W, Duncan R A. 1998. An oceanic flood basalt province within the Caribbean plate[J]. Earth and Planetary Science Letters, 155(3-4):221-235. doi: 10.1016/S0012-821X(97)00214-8

    CrossRef Google Scholar

    Sun Jun, Li Xiaoqian, Chen Jianfang, Guo Shujing. 2016. Progress in oceanic biological pump[J]. Journal of Oceanography, 38(4):1-21(in Chinese with English abstract).

    Google Scholar

    Sun Jun.2011. Marine phytoplankton and biological carbon sink. Acta Ecologica Sinica, 31(18):5372-5378(in Chinese with English abstract).

    Google Scholar

    Takata H, Kuma K, Iwade S, Yamajyoh Y, Yamaguchi A, Takagi S, Sakaoka K, Yamashita Y, Tanoue E, Takashi M, Kan K, Jun N. 2004. Spatial variability of iron in the surface ocean water of the northwestern North Pacific Ocean[J]. Marine Chemistry, 86(3/4):139-157.

    Google Scholar

    Tarduno J A, Sliter W V, Kroenke L, Leckie M, Mayer H, Mahoney J J, Musgraver R, Storey M, Winterer E L. 1991. Rapid formation of Ontong Java Plateau by Aptian Mantle Plume[J].Science, 254:399-403. doi: 10.1126/science.254.5030.399

    CrossRef Google Scholar

    Thorseth I H, Pedersen R B, Christie D M. 2003. Microbial alteration of 0-30 Ma seafloor and sub-seafloor basaltic glasses from the Australian Antarctic Discordance[J]. Earth and Planetary Science Letters, 255(15):237-247.

    Google Scholar

    Torsvik T, Furnes H, Muehlenbachs K, Ingunn H T, Tumyr O. 1998. Evidence for microbial activity at the glass-alteration interface in oceanic basalts[J]. Earth and Planetary Science Letters, 162(1/4):165-176.

    Google Scholar

    Wan Xiaoqiao, Liu Wencan, Li Guobiao, Li Yan. 2003. Cretaceous black shale and dissolved oxygen content-A case study in southern Tibet[J]. Geology in China, 30 (1):36-47(in Chinese with English abstract).

    Google Scholar

    Wang Chengshan, Cao Ke, Huang Yongjian. 2009. Sedimentary record and Cretaceous Earth Surface System changes[J]. Earth Science Frontiers, 16(5):1-14(in Chinese with English abstract).

    Google Scholar

    Wang Chengshan. 2006. Coupling of the Earth Surface System:Inferring from the Cretaceous major geological events[J]. Advances in Earth Science, 21(7):837-842(in Chinese with English abstract).

    Google Scholar

    Wang Chenshan, Huang Yongjian, Hu Xiumian, Li Xianghui. 2004. Cretaceous oceanic redbeds:Implications for paleoclimatology and paleoceanography[J]. Acta Geologica Sinca, 78(3):873-877.

    Google Scholar

    Wang Xi, Wan Xiaoqiao, Li Guobiao. 2008. Late Cretaceous to early Paleogene strontium isotopic stratigraphy in the Gamba area, Tibet[J]. Geology in China, 35(4):598-607(in Chinese with English abstract).

    Google Scholar

    Wells M L, Price N M, Bruland K W. 1995. Iron chemistry in seawater and its relationship to phytoplankton[J]. Marine Chemistry, 48:157-182. doi: 10.1016/0304-4203(94)00055-I

    CrossRef Google Scholar

    Wells M L, Vallis G K, Silver E A. 1999. Tectonic processes in Papua New Guinea and past productivity in the eastern equatorial Pacific Ocean[J]. Nature, 398:601-604. doi: 10.1038/19281

    CrossRef Google Scholar

    Wen Zhixin, Tong Xiaoguang, Zhang Guangya, Wang Zhaoming, Yang Shufeng, Chen Hanlinj, Song Chengpeng. 2014. Earth Science Frontiers, 21(3):26-37(in Chinese with English abstract).

    Google Scholar

    Wignall P B. 2001. Large igneous provinces and mass extinctions[J]. Earth Science Reviews, 53(1/2):1-33.

    Google Scholar

    Wolfgang B, Karina J E. 2003. Iron and sulfide oxidation within the basaltic ocean crust:Implications for chemolithoautotrophic microbial biomass production[J]. Geochimica et Cosmochimica Acta, 67(20):3871-3887. doi: 10.1016/S0016-7037(03)00304-1

    CrossRef Google Scholar

    Wu Genyao. 2006. Cretaceous:A key transition period of the plate tectonic evolution in China and its adjacent areas[J]. Geology in China, 33(1):64-77(in Chinese with English abstract).

    Google Scholar

    Wu Guanghe, Zhang Ruyi, Zhang Chao. 2004. Physical Geography[M]. Beijing:Higher Education Press(in Chinese).

    Google Scholar

    Wu J F, Luther G W. 1996. Spatial and temporal distribution of iron in the surface water of the northwestern Atlantic Ocean[J]. Geochimica et Cosmochimica Acta, 60:2729-2741. doi: 10.1016/0016-7037(96)00135-4

    CrossRef Google Scholar

    Wu Weihua, Yang Jiedong, Xu Shijin. 2007. Chemical Weathering and Atmospheric CO2 Consumption of Qinghai-Xizang(Tibet) Plateau[J]. Geological Review, 53(4):515-528(in Chinese with English abstract).

    Google Scholar

    Xiao Qinghui, Liu Yong, FengYanfang, QiuRuizhao, Zhang Yu. 2010. A preliminary study of the relationship between Mesozoic lithosphere evolution in eastern China and the subduction of the Pacific plate[J]. Geology in China, 37(4):1092-1101(in Chinese with English abstract).

    Google Scholar

    Xu Fei, Zhou Zuyi. 2003. Oceanic plateaus:windows to the earth's interior. Advance in earthsciences, 18(5):745-752(in Chinese with English abstract).

    Google Scholar

    Xu Yongfu, Wang Mingxing.1998. The role of marine biological processes in the oceanic uptake of atmospheric carbon dioxide[J], Actameteorologica sinica, 56(4):436-446(in Chinese with English abstract).

    Google Scholar

    Xu Zemin, Huang Runqiu. 2013. The assessment of the weathering intensity of Emeishan basalt based on rock blocks(Ⅰ):Geochemistry of weathered basalt blocks[J]. Geology in China, 40(3):895-908(in Chinese with English abstract).

    Google Scholar

    Xu Zemin, Huang Runqiu. 2013.The assessment of the weathering intensity of Emeishan basalt based on rock blocks (Ⅳ):A proposed weathering index (FF)[J]. Geology in China, 40(6):1942-1948(in Chinese with English abstract).

    Google Scholar

    Yann B, Helmuth T, Khalid E, Hein J W. 2005. The continental shelf pump for CO2 in the North Sea-evidence from summer observation[J]. Marine Chemistry, 93(2/4):131-147.

    Google Scholar

    Yin Jianping, Wang Youshao, XuJirong, Sun Song. 2006. Adavances of studies on marine carbon cycle.Actaecologica sinica, 26(2) 566-575(in Chinese with English abstract).

    Google Scholar

    Zhai Shikui, Wang Xingtao, Yu Zenghui, Li Huaiming.2005. Heat and mass flux estimation of modern seafloor hydrothermal activity.Acta Oceanologica Sinica, 27(2):115-121(in Chinese with English abstract).

    Google Scholar

    Zhang Zhenguo, DuanXingkuan, GaoLianfeng, WangChunlei, Leng Chunpeng, Cui Yue. 2013. Modern ocean iron release experiment and its implications for palaeoceanographicstudy:forming mechanisms of corbs[J]. Marine Geology Frontiers, 29(9):1-8(in Chinese with English abstract).

    Google Scholar

    Zhang Zhenguo, Fang Nianqiao, GaoLianfeng, GuiBaoling, Cui Muhua. 2007. Cretaceous black shale and oceanic red beds:process and mechanism of oceanic anoxic events and oxic environment[J]. Marine Geology & Quaternary Geology, 27(3):69-75(in Chinese with English abstract).

    Google Scholar

    Zhang Zhenguo, Fang Nianqiao, GaoLlianfeng, GuiBaoling, Cui Muhua. 2008. Cretaceous black shale and the oceanic red beds:Process mechanisms of oceanic anoxic events and oxic environment[J]. Frontiers Earth Science China, 2(1):41-48. doi: 10.1007/s11707-008-0008-y

    CrossRef Google Scholar

    Zhao Xixi. 2005. The earth's magnetic field and global geologic phenomena in mid-cretaceous[J]. Earth Science Frontiers, 12 (2):199-216.

    Google Scholar

    Zhou Lijun. 2007. Evolution of thermohaline circulation in the Atlantic:the north Atlantic deep water began to form in Early Oligocene[J]. Marine Geology Letters, 23(1):17-19(in Chinese).

    Google Scholar

    Zhou Shuzhen, TianLianshu, HuShuangxi. 2005. Climatology and Meteorology[M]. Beijing:Higher Education Press(in Chinese).

    Google Scholar

    Zhu Yaohua, Wei Zexun, Fang Guohong, Wang Yonggang, Guan Yuping. 2014. Interbasin exchanges and their roles in global ocean circulation:A study based on 1400 years'spin up of MOM4p1[J]. Acta Oceanological Sinica, 36(2):1-15(in Chinese with English abstract).

    Google Scholar

    Zong Pu, Xue Jingzhuang. Co-evolution of atmospheric oxygen content and biodiversity in Geological history[J]. Bulletin of Biology, 2015, 50(4):1-5(in Chinese).

    Google Scholar

    毕思文. 2003.地球系统科学-世纪地球科学前沿与可持续发展战略科学基础[J].地质通报, 22(8):601-611.

    Google Scholar

    郭正堂, 吴海斌. 2004.浅谈固体地球科学与地球系统科学[J].地球科学进展, 19(5):699-705.

    Google Scholar

    洪汉净, 于泳, 郑秀珍, 刘培洵, 陶玮. 2003.全球火山分布特征[J].地学前缘, 10:11-16. doi: 10.3321/j.issn:1005-2321.2003.z1.004

    CrossRef Google Scholar

    金性春, 周祖翼, 汪品先. 1995.大洋钻探与中国地球科学[M].上海:同济大学出版社, 248-251.

    Google Scholar

    刘本培, 张世红. 1997.侏罗-白垩纪地球圈层演化节律及相互关系[J].地学前缘, 4(3/4):65-74.

    Google Scholar

    刘玉山, 张桂兰. 1996. 250~500℃、100Mpa下海水-玄武岩反应的实验研究[J].地球化学, 25:53-62. doi: 10.3321/j.issn:0379-1726.1996.01.006

    CrossRef Google Scholar

    刘再华, Dreybrodt W, 刘洹. 2011.大气CO2汇:硅酸盐风化还是碳酸盐风化的贡献?[J].第四纪研究, 31:426-430. doi: 10.3969/j.issn.1001-7410.2011.03.04

    CrossRef Google Scholar

    刘再华, Dreybrodt W, 王海静. 2007.一种由全球水循环产生的可能重要的CO2汇[J].科学通报, 52(20):2418-2422. doi: 10.3321/j.issn:0023-074x.2007.20.013

    CrossRef Google Scholar

    刘再华.岩石风化碳汇研究的最新进展和展望[J].科学通报, 2012, 57(2-3):95-102.

    Google Scholar

    陆鹿, 严立龙, 李秋环, 曾璐, 金鑫, 张玉修, 侯泉林, 张开均. 2016.洋底高原及其对地球系统意义研究综述[J].岩石学报, 32(6):1851-1876

    Google Scholar

    马宗晋, 杜品仁, 卢苗安. 2005.地球的多圈层相互作用[J].地学前缘, 12(2):11-21.

    Google Scholar

    孙军, 李晓倩, 陈建芳, 郭术津. 2016.海洋生物泵研究进展[J].海洋学报, 38(4):1-21. doi: 10.11978/2015092

    CrossRef Google Scholar

    孙军. 2011.海洋浮游植物与生物碳汇[J].生态学报, 31(18):5372-5378.

    Google Scholar

    万晓樵, 刘文灿, 李国彪, 李艳. 2003.白垩纪黑色页岩与海水含氧量变化——以西藏南部为例[J].中国地质, 30 (1):36-47.

    Google Scholar

    王成善, 曹珂, 黄永建. 2009.沉积记录与白垩纪地球表层系统变化[J].地学前缘, 16(5):1-14.

    Google Scholar

    王成善. 2006.白垩纪地球表层系统重大地质事件与温室气候变化研究-从重大地质事件探寻地球表层系统耦合[J].地球科学进展, 21(7):837-842.

    Google Scholar

    王曦, 万晓樵, 李国彪. 2008.西藏岗巴晚白垩世-古近纪早期锶同位素地层[J].中国地质, 35(4):598-607.

    Google Scholar

    温志新, 童晓光, 张光亚, 王兆明, 杨树锋, 陈汉林, 宋成鹏. 2014.全球板块构造演化过程中五大成盆期原型盆地的形成、改造及叠加过程[J].地学前缘, 21(3):26-37.

    Google Scholar

    吴根耀. 2006.白垩纪:中国及邻区板块构造演化的一个重要变换期[J].中国地质, 33(1):64-77.

    Google Scholar

    吴卫华, 杨杰东, 徐士进. 2007.青藏高原化学风化和对大气CO2的消耗通量[J].地质论评, 53(4):515-528.

    Google Scholar

    伍光和, 田连恕, 胡双熙, 王乃昂. 2004.自然地理学[M].北京:高等教育出版社.

    Google Scholar

    肖庆辉, 刘勇, 冯艳芳, 邱瑞照, 张昱. 2010.中国东部中生代岩石圈演化与太平洋板块俯冲消减关系的讨论[J].中国地质, 37(4):1092-1101.

    Google Scholar

    徐斐, 周祖翼. 2003.洋底高原:了解地球内部的窗口[J].地球科学进展, 18(5):745-752.

    Google Scholar

    徐永福, 王明星. 1998.海洋生物过程在海洋吸收大气二氧化碳中的作用[J].气象学报, 56(4):436-446. doi: 10.11676/qxxb1998.038

    CrossRef Google Scholar

    徐则民, 黄润秋.2013.基于结构体的峨眉山玄武岩风化程度评价(Ⅰ):风化结构体地球化学[J].中国地质, 40(3):895-908.

    Google Scholar

    徐则民, 黄润秋. 2013.基于结构体的峨眉山玄武岩风化程度评价(Ⅳ):风化指数FF[J].中国地质, 40(6):1942-1948.

    Google Scholar

    殷建平, 王友绍, 徐继荣, 孙松. 2006.海洋碳循环研究进展[J].生态学报, 26(2):566-575.

    Google Scholar

    翟世奎, 王兴涛, 于增慧, 李怀明. 2005.现代海底热液活动的热和物质通量估算[J].海洋学报, 27(2):115-121.

    Google Scholar

    张振国, 段杏宽, 高莲凤, 王春磊, 冷春鹏, 崔岳. 2013.现代大洋铁盐投放实验对古海洋学研究的启示:白垩纪大洋红层产生的背景与机制[J].海洋地质前沿, 29(9):1-8.

    Google Scholar

    张振国, 方念乔, 高莲凤, 桂宝玲, 崔木花. 2007.白垩纪黑色页岩与大洋红层:缺氧到富氧的过程与机制[J].海洋地质与第四纪地质, 27(3):69-75.

    Google Scholar

    周立君. 2007.大西洋温盐循环的演变:早渐新世北大西洋深水开始形成[J].海洋地质动态, 23(1):17-19.

    Google Scholar

    周淑珍, 田连恕, 胡双熙. 2005.气象学与气候学[M].北京:高等教育出版社.

    Google Scholar

    朱耀华, 魏泽勋, 方国洪, 王永刚, 管玉平. 2014.洋际交换及其在全球大洋环流中的作用:MOM4p1积分1400年的结果[J].海洋学报, 36(2):1-15. doi: 10.11978/j.issn.1009-5470.2014.02.001

    CrossRef Google Scholar

    宗普, 薛进庄. 2015.地质历史时期大气氧含量与生物多样性的协同演变[J].生物学通报, 50(4):1-5.

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(5)

Article Metrics

Article views(3886) PDF downloads(1367) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint