2017 Vol. 44, No. 4
Article Contents

SONG Yucai, HOU Zengqian, LIU Yingchao, ZHANG Hongrui. 2017. Mississippi Valley-Type (MVT) Pb-Zn deposits in the Tethyan domain:A review[J]. Geology in China, 44(4): 664-689. doi: 10.12029/gc20170403
Citation: SONG Yucai, HOU Zengqian, LIU Yingchao, ZHANG Hongrui. 2017. Mississippi Valley-Type (MVT) Pb-Zn deposits in the Tethyan domain:A review[J]. Geology in China, 44(4): 664-689. doi: 10.12029/gc20170403

Mississippi Valley-Type (MVT) Pb-Zn deposits in the Tethyan domain:A review

    Fund Project: Supported by National Key R&D Plan (No. 2016YFC0600306), National Natural Science Foundation of China (No. 41773043, 41320104004, 41773042, 41772088), and the Geological Survey Project of China (No. DD20160024-02)
More Information
  • Author Bio: SONG Yucai, male, born in 1978, doctor, senior researcher, engages in the study of sediments-hosted base metal deposits; E-mail: song_yucai@aliyun.com
  • The Tethyan domain hosts the world's most abundant Mississippi Valley-Type (MVT) Pb-Zn deposits, which occur in fold-thrust belts and forelands on both sides of the continent-continent collisional zone through the whole Tethyan domain. Mineralization commonly took place when the ore districts were experiencing strike-slip or extensional deformation, which occurred after regional compression or during the late stage of a compressional deformation event. The main ore-controlling factors include extensional faults, evaporite diapir, carbonate dissolution and collapse, evaporite dissolution and collapse, porous dolostone, and barite-bearing strata. Records of hydrocarbon fluids are present in many Pb-Zn deposits and ore districts of the Tethyan domain. They reacted with (dissolved) sulfate to provide reduced sulfur for the ore formation. The generation of such abundant MVT Pb-Zn deposits in the Tethyan domain can be attributed to the continent-continent collisional tectonic setting, large amounts of evaporites, and plentiful hydrocarbon fluids. This study raises the exploration potential for MV TPb-Zn deposits in the Tethyan domain.

  • 加载中
  • Agard P, Omrani J, Jolivet L, Whitechurch H, Vrielynck B, Spakman W, Monié P, Meyer B, Wortel R. 2011. Zagros orogeny:A subduction-dominated process[J]. Geological Magazine, 148 (5/6):692-725.

    Google Scholar

    Ahsan S, Qureshi I. 1997. Mineral/rock resources of Lasbela and Khuzdar Districts, Balochistan, Pakistan[J]. Geol. Bull. Univ. Peshawar, 30:41-51.

    Google Scholar

    Alavi M. 2004. Regional stratigraphy of the Zagros fold-thrust belt of Iran and its proforeland evolution[J]. American Journal of Science, 304 (1):1-20. doi: 10.2475/ajs.304.1.1

    CrossRef Google Scholar

    Alavi M. 2007. Structures of the Zagros fold-thrust belt in Iran[J]. American Journal of Science, 307(9):1064-1095. doi: 10.2475/09.2007.02

    CrossRef Google Scholar

    Allen M B, Kheirkhah M, Emami M H, Jones S J. 2011. Right-lateral shear across Iran and kinematic change in the Arabia-Eurasia collision zone[J]. Geophys. J. Int., 184(2):555-574. doi: 10.1111/gji.2011.184.issue-2

    CrossRef Google Scholar

    Anhui Geological Survey. 2005. Report of 1:250, 000 Wenquan and Songxi Geological Maps[R]. Unpublished, Hefei (in Chinese).

    Google Scholar

    Arlegui L. 2001. Paleostress reconstruction from Striated Fault Data Sets in the Kirthar Fold Belt, Southern Pakistan[J]. Int. Geol. Rev., 43(6):539-547. doi: 10.1080/00206810109465031

    CrossRef Google Scholar

    Ballato P, Nowaczyk N R, Landgraf A, Strecker M R, Friedrich A, Tabatabaei S H. 2008. Tectonic control on sedimentary facies pattern and sediment accumulation rates in the Miocene foreland basin of the southern Alborz mountains, northern Iran[J]. Tectonics, 27(6), doi:10.1029/2008TC002278, 2008.

    CrossRef Google Scholar

    Banerjee D M, Mazumdar A. 1999. On the Late Neoproterozoic-Early Cambrian Transition Events in Parts of East Gondwanaland[J]. Gondwana Research, 2(2):199-211. doi: 10.1016/S1342-937X(05)70145-3

    CrossRef Google Scholar

    Beales F W, Hardy J L. 1980. Criteria for the recognition of diverse dolomite types with an emphasis on studies on host rocks for Mississippi Valley Type ore deposits[J]. SEPM Special Publication, 28:197-213.

    Google Scholar

    Bechstadt T. 1978. The lead-zinc deposit of Bleiberg-Kreuth(Carinthia, Austria):Palinspastic situation, paleogeography and ore mineralization[J]. Verhandlungen Geol. Bun'desanstal, 3:221-235.

    Google Scholar

    Bechtel A, Pervaz M, Püttmann W. 1998. Role of organic matter and sulphate-reducing bacteria for metal sulphide precipitation in the Bahloul Formation at the Bou Grine Zn/Pb deposit (Tunisia)[J]. Chemical Geology, 144(1/2):1-21.

    Google Scholar

    Bechtel A, Shieh Y N, Pervaz M, Püttmann W. 1996. Biodegradation of hydrocarbons and biogeochemical sulfur cycling in the salt dome environment:inferences from sulfur isotope and organic geochemical investigations of the bahloul formation at the Bou Grine Zn/Pb ore deposit, Tunisia[J]. Geochimica et Cosmochimica Acta, 60(60):2833-2855.

    Google Scholar

    Blisniuk P M, Hacker B R, Glodny J, Ratschbacher L, Bi S, Wu Z, McWilliams M O, Calvert A. 2001. Normal faulting in central Tibet since at least 13.5 Myr ago[J]. Nature, 412(6847):628-632. doi: 10.1038/35088045

    CrossRef Google Scholar

    Boni M, Gilg H A, Balassone G, Schneider J, Allen C R, Moore F. 2007. Hypogene Zn carbonate ores in the Angouran deposit, NW Iran[J]. Mineralium Deposita, 42(8):799-820. doi: 10.1007/s00126-007-0144-4

    CrossRef Google Scholar

    Bouabdellah M. 2012. Genesis of the Touissit-Bou Beker Mississippi Valley-type district (Morocco-Algeria) and its relationship to the Africa-Europe collision[J]. Economic Geology, 107(1):117-146. doi: 10.2113/econgeo.107.1.117

    CrossRef Google Scholar

    Bouabdellah M, Brown A C, Sangster D F. 1995. Mechansims of formation of internal sediments at the Beddiane lead-zinc deposit, Touissit Mining district, northeastern Morocco[C]//International Field Conference on Carbonate-Hosted Lead-Zinc Deposits, Extended Abstract, St. Louis, Missouri USA.

    Google Scholar

    Bouabdellah M, Niedermann S, Velasco F. 2015. The Touissit-Bou Beker Mississippi Valley-type district of northeastern Morocco:relationships to the Messinian salinity crisis, Late NeogeneQuaternary alkaline magmatism, and buoyancy-driven fluid convection[J]. Economic Geology, 110(6):1455-1484. doi: 10.2113/econgeo.110.6.1455

    CrossRef Google Scholar

    Bouhlel S, Johnson C A, Leach D L. 2007. The peridiapiric-type PbZn deposit at Fedj El Adoum, Tunisia:Geology, petrography, and stable isotopes[C]//Proceedings of the Ninth Biennial SGA Meeting, Dublin, Ireland, 1:323-326.

    Google Scholar

    Bouhlel S, Leach D L, Johnson C A, Lehmann B. 2009. Ore Textures and isotope signatures of the peridiapiric carbonate-hosted Pb-Zn deposit of Bougrine, Tunisia[C]//Proceedings of the Tenth Biennial Meeting of the Society for Geology Applied to Mineral Deposits, Townsville, Queensland, 1:409-411.

    Google Scholar

    Bouhlel S, Leach D L, Johnson C A, Marsh E, Salmi-Laouar S, Banks D A. 2016. A salt diapir-related Mississippi Valley-type deposit:the Bou Jaber Pb-Zn-Ba-F deposit, Tunisia:fluid inclusion and isotope study[J]. Mineralium Deposita, 51 (6):749-780. doi: 10.1007/s00126-015-0634-8

    CrossRef Google Scholar

    Bradley D C, Leach D L. 2003. Tectonic controls of Mississippi Valley-type lead-zinc mineralization in orogenic forelands[J]. Mineralium Deposita, 38:652-667. doi: 10.1007/s00126-003-0355-2

    CrossRef Google Scholar

    Bradley D C, Leach D L, Symons D, Emsbo P, Premo W, Breit G, Sangster, D F. 2004. Reply to discussion on "Tectonic controls of Mississippi Valley-type lead-zinc mineralization in orogenic forelands" by Kesler S E, Christensen J T, Hagni R D, Heijlen W, Kyle J R, Misra K C, Muchez P, Van der Voo R[J]. Mineralium Deposita, 39(4):515-519.

    Google Scholar

    Brevart O, Dupré B, Allegre C J. 1982. Metallogenic provinces and the remobilization process studied by lead isotopes; lead-zinc ore deposits from the southern Massif Central, France[J]. Economic Geology, 77(3):564-575. doi: 10.2113/gsecongeo.77.3.564

    CrossRef Google Scholar

    Brigo L, Omenetto P. 1979. The lead and zinc ores of the Raibl (Cave del Predil-northern Italy) Zone:new metallogenic data[J].Verh. Geol. Bundesaust (Austria), 3:241-247.

    Google Scholar

    Brugger J, McPhail D C, Wallace M, Waters J. 2003. Formation of Willemite in Hydrothermal Environments[J]. Economic Geology, 98(4):819-835. doi: 10.2113/gsecongeo.98.4.819

    CrossRef Google Scholar

    Burchfiel B C. 1980. Eastern European Alpine system and the Carpathian orocline as an example of collision tectonics[J]. Tectonophysics, 63(1/4):31-61.

    Google Scholar

    Cai J X, Zhang K J. 2009. A new model for the Indochina and South China collision during the Late Permian to the Middle Triassic[J]. Tectonophysics, 467(1/4):35-43.

    Google Scholar

    Charef A, Sheppard S M F. 1987. Pb-Zn mineralization associated with diapirism:fluid inclusion and stable isotope (H, C, O) evidence for the origin and evolution of the fluids at Fedj-elAdoum, Tunisia[J]. Chemical Geology, 61(1):113-134.

    Google Scholar

    Chen Wei, Kong Zhigang, Liu Fengxiang, Wang Xuewu, Deng Mingguo, Zhao Jianxing. 2017. Geology, geochemistry, and ore genesis of the Nayongzhi Pb-Zn deposit, Guizhou Province, NW China[J]. Acta Geologica Sinica, 91(6):1269-1284(in Chinese with English abstract).

    Google Scholar

    Chi G, Xue C, Sun X, Lai J, Luo P, Song H, Li S, Zeng R. 2017. Formation of a giant Zn-Pb deposit from hot brines injecting into a shallow oil-gas reservoir in sandstones, Jinding, southwestern China[J]. Terra Nova, 29:312-320. doi: 10.1111/ter.2017.29.issue-5

    CrossRef Google Scholar

    Clayton C J, Baird A W. 1997. Fluid flow, Pb-Zn mineralization, hydrocarbon maturation and migration in the Tunisian Atlas[C]. Geofluids Ⅱ'97."International Conference on Fluid Evolution, Migration, and Interaction in Sedimentary Basins and Orogenic Belts, 2nd, Extended Abstracts.

    Google Scholar

    Coppola V, Boni M, Gilg H A, Strzelska-Smakowska B. 2009. Nonsulfide zinc deposits in the silesia-cracow district, southern Poland[J]. Mineralium Deposita, 44(5):559-580. doi: 10.1007/s00126-008-0220-4

    CrossRef Google Scholar

    Cox S F, Knackstedt M A, Braun J. 2001. Principles of structural controls on permeability and fluid flow in hydrothermal systems[M]//Richards J P, Tosdal R M (ed.). Structural Controls on Ore genesis, Reviews in Economic Geology, 14:1-24.

    Google Scholar

    Dal Piaz G V, Bistacchi A, Massironi M. 2003. Geological outline of the Alps[J]. Episodes, 26(3):175-180.

    Google Scholar

    Daliran F, Pride K, Walther J, Berner Z A. Bakker R J. 2013. The Angouran Zn (Pb) deposit, NW Iran:evidence for a two stage, hypogene zinc sulfide-zinc carbonate mineralization[J]. Ore Geology Reviews, 53:373-402. doi: 10.1016/j.oregeorev.2013.02.002

    CrossRef Google Scholar

    DeCelles P G, Kapp P, Gehrels G E, Ding L. 2014. Paleocene-Eocene foreland basin evolution in the Himalaya of southern Tibet and Nepal:Implications for the age of initial India-Asia collision[J]. Tectonics, 33(5):824-849. doi: 10.1002/2014TC003522

    CrossRef Google Scholar

    Disnar J R. 1996. A comparison of mineralization histories for two MVT deposits, Trèves and Les Malines (Causses basin, France), based on the geochemistry of associated organic matter[J].Ore Geology Reviews, 11(1/3):133-156.

    Google Scholar

    Dong Lianhui, Xu Xingwang, Fan Tingbin, Qu Xun, Li Hao, Wan Jianling, An Haitao, Zhou Gang, Li Jihong, Chen Gang, Liu Chuan. 2015. Discovery of the Huoshaoyun super-Large exhalative-sedimentary carbonate Pb-Zn deposit in the Western Kunlun area and its great significance for regional metallogeny[J]. Xinjiang Geology, 33(1):41-50 (in Chinese with English abstract).

    Google Scholar

    Dzulynski S, Sass-Gustkiewicz M. 1977. Comments on the genesis of the eastern Alpine zinc-lead deposits[J]. Mineralium Deposita, 12:219-288. doi: 10.1007/BF00206028

    CrossRef Google Scholar

    Ehya F. 2014. The Paleozoic Ozbak-Kuh carbonate-hosted Pb-Zn deposit of East Central Iran:Isotope (C, O, S, Pb) geochemistry and ore genesis[J]. Mineralogy and Petrology, 108 (1):123-136. doi: 10.1007/s00710-013-0279-1

    CrossRef Google Scholar

    Ehya F, Lotfi M, Rasa I. 2010. Emarat carbonate-hosted Zn-Pb deposit, Markazi Province, Iran:A geological, mineralogical and isotopic (S, Pb) study[J]. Journal of Asian Earth Sciences, 37(2):186-194. doi: 10.1016/j.jseaes.2009.08.007

    CrossRef Google Scholar

    Emsbo P. 2000. Gold in sedex deposits[J]. SEG Reviews, 13:427-437.

    Google Scholar

    Fernandez F G, Both R A, Mangas J, Arribas A. 2000. Metallogenesis of Zn-Pb carbonate-hosted mineralization in the southeastern region of the Picos de Europa (central northern Spain) province:geologic, fluid inclusion, and stable isotope studies[J]. Economic Geology, 95(1):19-40. doi: 10.2113/gsecongeo.95.1.19

    CrossRef Google Scholar

    Fernandez-Martinez J, Velasco F. 1996. The Troya Zn-Pb carbonatehosted sedex deposit, northern Spain[J]. Carbonate-hosted leadzinc deposits.Society of Economic Geologists Special Publication, 4:364-377.

    Google Scholar

    Frizon de Lamotte D, Leturmy P, Missenard Y, Khomsi S, Ruiz G, Saddiqi O, Guillocheau F, Michard A. 2009. Mesozoic and Cenozoic vertical movements in the Atlas system (Algeria, Morocco, Tunisia):an overview[J]. Tectonophysics, 475(1):9-28. doi: 10.1016/j.tecto.2008.10.024

    CrossRef Google Scholar

    Gao Bingyu, Xue Chunji, Chi Guoxiang, Li Chao, Qu Wenjun, Du Andao. 2012. Re-Os dating of bitumen in the giant Jinding Zn-Pb deposit, Yunnan and its geological significance[J]. Acta petrologica Sinica, 28(5):1561-1567 (in Chinese with English abstract).

    Google Scholar

    Gao Guangli. 1989. Tehtyan evaporite zone and corresponding mineral deposits in China[J]. Earth Science-Journal of China University of Geosciences, 14(5):545-551 (in Chinese with English abstract).

    Google Scholar

    Gilg H A, Boni M, Hochleitner R, Struck U. 2008. Stable isotope geochemistry of carbonate minerals in supergene oxidation zones of Zn-Pb deposits[J]. Ore Geology Reviews, 33(2):117-133. doi: 10.1016/j.oregeorev.2007.02.005

    CrossRef Google Scholar

    Golonka J. 2004. Plate tectonic evolution of the southern margin of Eurasia in the Mesozoic and Cenozoic[J]. Tectonophysics, 381(1-4):235-273. doi: 10.1016/j.tecto.2002.06.004

    CrossRef Google Scholar

    Gorecka E. 2013. Geological setting of the Silesian-Cracow Zn-Pb deposits[J]. Geological Quarterly, 37(2):127-146.

    Google Scholar

    Gu Xuexiang, Zhang Yongmei, Li Baohua, Xue Chunji, Dong Shuyi, Fu Shaohong. 2010. The coupling relationship between metallization and hydrocarbon accumulation in sedimentary basins[J]. Earth Science Frontiers, 17(2):83-105 (in Chinese with English abstract).

    Google Scholar

    Guest B, Axen G J, Lam P S, Hassanzadeh J. 2006. Late cenozoic shortening in the west-central alborz mountains, northern Iran, by combined conjugate strike-slip and thin-skinned deformation[J]. Geosphere, 2(1):35-52. doi: 10.1130/GES00019.1

    CrossRef Google Scholar

    Han R S, Liu C Q, Huang Z L, Chen J, Ma D Y, Lei L, Ma G S. 2007, Geological features and origin of the Huize carbonate-hosted ZnPb-(Ag) district, Yunnan, South China[J]. Ore Geology Reviews, 31(1):360-383.

    Google Scholar

    Handy M R, Schmid S M, Bousquet R, Kissling E, Bernoulli D. 2010. Reconciling plate-tectonic reconstructions of Alpine Tethys with the geological-geophysical record of spreading and subduction in the Alps[J]. Earth-Science Reviews, 102(3):121-158.

    Google Scholar

    He Guoxing, Sun Qiwu, Xia Chuanjian, Deng Binwu. 2006. Probe to genesis of Paoma Pb-Zn deposit, Ningnan county, Sichuan province[J]. Contributions to Geology and Mineral Resources Research, 21(b10):81-84 (in Chinese with English abstract).

    Google Scholar

    He L Q, Song Y C, Chen K X, Hou Z Q, Yu F M, Yang Z S, Wei J Q, Li Z, Liu Y C. 2009. Thrust-controlled, sediment-hosted, Himalayan Zn-Pb-Cu-Ag deposits in the Lanping foreland fold belt, eastern margin of Tibetan Plateau[J]. Ore Geology Reviews, 36(1):106-132.

    Google Scholar

    He Shenghui, Rong Huifeng, Chen Xiansheng. 2014. Metallogenic geologic setting and mineralization process of the Maliping Pb-Zn deposit in Huize county, Yunnan[J]. Mineral Exploration, 5(5):712-719 (in Chinese with English abstract).

    Google Scholar

    Hitzman M W, Reynolds N A, Sangster D, Allen C R, Carman C E. 2003. Classification, genesis, and exploration guides for nonsulfide zinc deposits[J]. Economic Geology, 98(4):685-714. doi: 10.2113/gsecongeo.98.4.685

    CrossRef Google Scholar

    Hou Zengqian., Song Yucai, Li, Zheng, Wang Zhaolin, Yang Zhusen, Yang Zhiming, Liu Yingchao, Tian Shihong, He Longqing, Chen Kaixu, Wang Fuchun, Zhao Chengxiang, Xue Wanwen, Lu Haifeng. 2008. Thrust-controlled, sediments-hosted Pb-Zn-AgCu deposits in eastern and northern margins of Tibetan orogenic belt:Geological features and tectonic model[J]. Mineral Deposits, 27(2):123-144 (in Chinese with English abstract).

    Google Scholar

    Hou Z, Cook N J. 2009. Metallogenesis of the Tibetan collisional orogen:A review and introduction to the special issue[J]. Ore Geology Reviews, 36(1):2-24.

    Google Scholar

    Hou Z, Zhang H. 2015. Geodynamics and metallogeny of the eastern Tethyan metallogenic domain[J]. Ore Geology. Reviews, 70:346-384. doi: 10.1016/j.oregeorev.2014.10.026

    CrossRef Google Scholar

    Hu X, Garzanti E, Moore T, Raffi I. 2015. Direct stratigraphic dating of India-Asia collision onset at the Selandian (middle Paleocene, 59±1 Ma)[J]. Geology, 43(10):859-862 doi: 10.1130/G36872.1

    CrossRef Google Scholar

    Hu, X, Garzanti E, Wang J, Huang W, An W, Webb A. 2016a. The timing of India-Asia collision onset-Facts, theories, controversies[J]. Earth-Science Reviews, 160:264-299. doi: 10.1016/j.earscirev.2016.07.014

    CrossRef Google Scholar

    Hu X, Wang J, Boudagher-Fadel M, Garzanti E, An W. 2016b. New insights into the timing of the India-Asia collision from the Paleogene Quxia and Jialazi formations of the Xigaze forearc basin, South Tibet[J]. Gondwana Research, 32:76-92. doi: 10.1016/j.gr.2015.02.007

    CrossRef Google Scholar

    Jankovic S. 1984. Strata-bound low temperature Pb-Zn-Ba ±F deposits in carbonate rocks of western Asia:Geotectonic setting and main metallogenic features[C]. Berlin:Syngenesis and Epigenesis in the Formation of Mineral Deposits, Springer, 373-390.

    Google Scholar

    Khan A, Kelling G, Umar M, Kassi A. 2002. Depositional environments and reservoir assessment of Late Cretaceous sandstones in the south central Kirthar foldbelt, Pakistan[J]. Journal of Petroleum Geology, 25(4):373-406. doi: 10.1111/jpg.2002.25.issue-4

    CrossRef Google Scholar

    Kibitlewski S. 2013. Tectonic control of the origin of Zn-Pb deposits in the Chrzanów region[J]. Geological Quarterly, 37(2):229-240.

    Google Scholar

    Koptagel O, Ulusoy U, Fallick A E. 2007. Sulfur and Lead Isotope Investigations of the Carbonate-Hosted Pb-Zn Deposits in the Yahyalı Region, Kayseri, Southern Turkey[J]. Turkish Journal of Earth Sciences, 16(1):57-76.

    Google Scholar

    Le Guen M, Orgeval J J, Lancelot J. 1991. Lead isotope behaviour in a polyphased Pb-Zn ore deposit:Les Malines (Cévennes, France)[J]. Mineralium Deposita, 26(3):180-188. doi: 10.1007/BF00209256

    CrossRef Google Scholar

    Leach D L, Apodaca L E, Kozłowski A, Landis G P, Hofstra A H. 1996. Fluid-inclusion gases in sphalerite, galena, and dolomite from the Silesian-Cracow Zn-Pb district, Poland[J]. PracePanstwowego Instytutu Geologicznego, 154:104-111.

    Google Scholar

    Leach D L, Bradley D, Lewchuk M T, Symons D T, de Marsily G, Brannon J. 2001. Mississippi Valley-type lead-zinc deposits through geological time:implications from recent age-dating research[J]. Mineralium Deposita, 36(8):711-740. doi: 10.1007/s001260100208

    CrossRef Google Scholar

    Leach D L, Bradley D C, Huston D, Pisarevsky S A, Taylor R D, Gardoll S J. 2010. Sediment-hosted lead-zinc deposits in Earth history[J]. Economic Geology, 105(3):593-625. doi: 10.2113/gsecongeo.105.3.593

    CrossRef Google Scholar

    Leach D L, Sangster D F, Kelley K D, Large R R, Garven G, Allen C R, Gutzmer J, Walters S. 2005. Sediment-hosted lead-zinc deposits:A global prospective[J]. Economic Geology, 100th Anniversary Volume, 561-607.

    Google Scholar

    Leach D L, Song Y C, Hou Z Q. 2017. The world-class Jinding ZnPb deposit:ore formation in an evaporite dome, Lanping Basin, Yunnan, China[J]. Mineralium Deposita, 52(3):281-296. doi: 10.1007/s00126-016-0668-6

    CrossRef Google Scholar

    Li Fayuan, Gu Xuexiang, Fu Shaohong, Zhang Ming. 2002. The role of organic matter in the formation of MVT Pb-Zn deposit[J]. Bulletin of Mineralogy, Petrology and Geochemisty, 21(4):272-276 (in Chinese with English abstract).

    Google Scholar

    Li Lianting. 2014. The geological feature of Fulechang Pb-Zn deposit and inference of deep prospecting in Luoping, Yunnan[J]. Yunnan Geology, 33(2):240-244 (in Chinese with English abstract).

    Google Scholar

    Li Xiaoming, Tan Kaixuan, Gong Wenjun, Gong Gelian. 2000. Study on the metallogenic epoch of the Jinding lead-zinc deposit with apatite fission track analysis[J]. Geotectonica et Metallogenia, 24(3):282-286 (in Chinese with English abstract).

    Google Scholar

    Li Y L, Wang C S, Dai J, Xu G, Hou Y, Li X. 2015. Propagation of the deformation and growth of the Tibetan-Himalayan orogen:A review[J]. Earth-Science Reviews, 143:36-61. doi: 10.1016/j.earscirev.2015.01.001

    CrossRef Google Scholar

    Li Z, Ding L, Song P, Fu J, Yue Y. 2015. Paleomagnetic constraints on the paleolatitude of the Lhasa block during the early Cretaceous:implications for the onset of India-Asia collision and latitudinal shortening estimates across Tibet and stable Asia[J]. Gondwana Research, 41:352-372.

    Google Scholar

    Liaghat S, Moore F, Jami M. 2000. The Kuh-e-Surmeh mineralization, a carbonate-hosted Zn-Pb deposit in the simply folded belt of the Zagros Mountains, SW Iran[J]. Mineralium Deposita, 35(1):72-78. doi: 10.1007/s001260050007

    CrossRef Google Scholar

    Lin Fangcheng. 2005. Geological and geochemical characteristics and genesis of supper-large-scale Sedex-type stratiform lead-zinc deposits in the Dadu river valley on the western margin of the Yangtze craton[J]. Acta Geologica Sinica, 79(4):541-556 (in Chinese with English abstract).

    Google Scholar

    Liu Chenglin, Zhao Yanjun, Fang Xiaomin, Lu Fenglin, Wang Licheng, Yan Maodu, Zhang Hua, Ding Ting. Plate tectonics control on the distribution and formation of the marine potash deposits[J]. Acta Geologica Sinica, 89(11):1893-1907 (in Chinese with English abstract).

    Google Scholar

    Liu Jishun. 1996. Some problems in studies of the exhalative sedimentary mineralization[J]. Mineral Resources and Geology, 10(1):6-10 (in Chinese with English abstract).

    Google Scholar

    Liu Yingchao, Hou Zengqian, Yang Zhusen, Tian Shihong, Song Yucai, Yang Zhiming, Wang Zhaolin, Li Zheng. 2008. Some insights and advances in study of Mississippi Valley-type (MVT) lead-zinc deposits[J]. Mineral Deposits, 27(2):253-264(in Chinese with English abstract).

    Google Scholar

    Liu Y C, Hou Z Q, Yang Z S, Tian S H, Yang T N, Song Y C, Zhang H R, Carranza E J M. 2011. Formation of the Dongmozhazhua PbZn Deposit in the Thrust Fold Setting of the Tibetan Plateau, China:Evidence from Fluid Inclusion and Stable Isotope Data[J]. Resource Geology, 61(4):384-406. doi: 10.1111/rge.2011.61.issue-4

    CrossRef Google Scholar

    Liu Yingchao, Hou Zengqian, Yu Yushuai, Tian Shihong, Li Yulong, Yang Zhusen. 2013. Characteristics and genesis of Lalongla MVTlike deposit in Changdu region, Tibet[J]. Acta Petrologica Sinica, 29(4):1407-1426 (in Chinese with English abstract).

    Google Scholar

    Liu Y C, Yang Z S, Tian S H, Song Y C, Zhang H R. 2015. Fluid origin of fluorite-rich carbonate-hosted Pb-Zn mineralization of the Himalayan-Zagros collisional orogenic system:A case study of the Mohailaheng deposit, Tibetan Plateau, China[J]. Ore Geology Reviews. 70:546-561. doi: 10.1016/j.oregeorev.2014.08.004

    CrossRef Google Scholar

    Liu Yingying, Qi Liang, Huang Zhilong, Zhou Jiaxi, Zhu chuanwei, Huang Xiaowen. 2013. Re-Os dating of sulfides and geological implications in the Fule zinc-lead deposit, northeastern Yunnan[J]. Acta Mineralogica Sinica, S2:599-600 (in Chinese with English abstract).

    Google Scholar

    Liu Y Y, Qi L, Gao J F, Ye L, Huang Z L, Zhou J X. 2015. Re-Os dating of galena and sphalerite from lead-zinc sulfide deposits in Yunnan Province, SW China[J]. Journal of Earth Science, 26(3):343-351. doi: 10.1007/s12583-015-0539-6

    CrossRef Google Scholar

    Makhoukhi S, Marignac C, Pironon J, Schmitt J M, Marrakchi C, Bouabdelli M, Bastoul A. 2003. Aqueous and hydrocarbon inclusions in dolomite fromTouissit-Bou Beker district, Eastern Morocco:a Jurassic carbonate hosted Pb-Zn (Cu) deposit[J]. Journal of Geochemical Exploration, 78:545-551.

    Google Scholar

    Metcalfe I. 1996. Gondwanaland dispersion, Asian accretion and evolution of eastern Tethys[J]. Australian Journal of Earth Sciences, 43(6):605-623. doi: 10.1080/08120099608728282

    CrossRef Google Scholar

    Metcalfe I. 2006. Palaeozoic and Mesozoic tectonic evolution and palaeogeography of East Asian crustal fragments:the Korean Peninsula in context[J]. Gondwana Research, 9(1):24-46.

    Google Scholar

    Mirnejad H, Simonetti A, Molasalehi F. 2015. Origin and formational history of some Pb-Zn deposits from Alborz and Central Iran:Pb isotope constraints[J]. International Geology Review, 57(4):463-471. doi: 10.1080/00206814.2015.1013510

    CrossRef Google Scholar

    Mitsuishi M, Wallis S R, Aoya M, Lee J, Wang Y. 2012. E-W extension at 19Ma in the Kung Co area, S. Tibet:Evidence for contemporaneous E-W and N-S extension in the Himalayan orogen[J]. Earth and Planetary Science Letters, 325:10-20.

    Google Scholar

    Mladenova V, Valchev S. 1998. Ga/Ge ratio in sphalerite from the carbonate-hosted Sedmochislenitsi Deposit as a temperature indication of initial fluids[J]. Spis.Bulgar. Geol. Druzh, 59(2/3):49-54.

    Google Scholar

    Jazi M A, Karimpour M H, Shafaroudi A M. 2017. Nakhlak carbonatehosted Pb (Ag) deposit, Isfahan province, Iran:a geological, mineralogical, geochemical, fluid inclusion, and sulfur isotope study[J]. Ore Geology Reviews, 80:27-47. doi: 10.1016/j.oregeorev.2016.06.010

    CrossRef Google Scholar

    Montacer M, Disnar J R, Orgeval J J, Trichet J. 1988. Relationship between Zn-Pb ore and oil accumulation processes:Example of the Bou Grine deposit (Tunisia)[J]. Organic Geochemistry, 13(1):423-431.

    Google Scholar

    Mouthereau F, Lacombe O, Vergés J. 2012. Building the Zagros collisional orogen:timing, strain distribution and the dynamics of Arabia/Eurasia plate convergence[J]. Tectonophysics 532:27-60.

    Google Scholar

    Omar H, Abdelhak B, Madjid C, Saadia Y, Hanafi H, Djamel B. 2016. Pb-Zn (Ba) deposits of the oriental Saharan Atlas (north-east of Algeria):distribution, control and implications for mining exploration[J]. Arabian Journal of Geosciences, 9(5):1-10.

    Google Scholar

    Oszczypko N. 2010. Late Jurassic-Miocene evolution of the Outer Carpathian fold-and-thrust belt and its foredeep basin (Western Carpathians, Poland)[J]. Geological Quarterly, 50(1):169-194.

    Google Scholar

    Peng Song, Jin Zhongguo, Lin Guisheng, Zhu Youqing, Wang Bing. 2016. Analysis of pore-controlling factors and metallogenic model of Wuzhishan lead-zinc deposit, Guizhou:a case study of Nayongzhi deposit[J]. Mineral Exploration, 7(3):463-470 (in Chinese with English abstract).

    Google Scholar

    Pfaff K, Hildebrandt L H, Leach D L, Jacob D E, Markl G. 2010. Formation of the Wiesloch Mississippi Valley-type Zn-Pb-Ag deposit in the extensional setting of the Upper Rhinegraben, SW Germany[J]. Mineralium Deposita, 45(7):647-666. doi: 10.1007/s00126-010-0296-5

    CrossRef Google Scholar

    Plumlee G S, Leach D L, Hofstra A H, Landis G P, Rowan E L, Viets J G. 1994. Chemical reaction path modeling of ore deposition in Mississippi Valley-type Pb-Zn deposits of the Ozark region, U.S. Midcontinent[J]. Economic Geology, 89(6):1361-1383. doi: 10.2113/gsecongeo.89.6.1361

    CrossRef Google Scholar

    Puigdefabregas C, Muñoz J, Vergés J. 1992. Thrusting and foreland basin evolution in the southern Pyrenees[M]. Netherlands:Thrust tectonics, Springer, 247-254.

    Google Scholar

    Qiu Dongzhou, Xie Yuan, Li Xiaoqing, Huang Fuxi. 2009. Geological Characteristics of Lithofacies Paleogeography and Hydrocarbon Accumulation in Asian Tethyan Tectonic Domain[J]. Marine Origin Petroleum Geology, 14(2):41-51 (in Chinese with English abstract).

    Google Scholar

    Rajabi A, Rastad E, Canet C. 2012. Metallogeny of Cretaceous carbonate-hosted Zn-Pb deposits of Iran:geotectonic setting and data integration for future mineral exploration[J]. International Geology Review, 54(14):1649-1672. doi: 10.1080/00206814.2012.659110

    CrossRef Google Scholar

    Rajabi A, Rastad E, Canet C. 2013. Metallogeny of Permian-Triassic carbonate-hosted Zn-Pb and F deposits of Iran:A review for future mineral exploration[J]. Australian Journal of Earth Sciences, 60(2):197-216. doi: 10.1080/08120099.2012.754792

    CrossRef Google Scholar

    Rddad L, Bouhlel S. 2016. The Bou Dahar Jurassic carbonate-hosted Pb-Zn-Ba deposits (Oriental High Atlas, Morocco):Fluid-inclusion and C-O-S-Pb isotope studies[J]. Ore Geology Reviews, 72:1072-1087. doi: 10.1016/j.oregeorev.2015.08.011

    CrossRef Google Scholar

    Reichert J. 2007. A Metallogenetic Model for Carbonate-hosted Nonsulphide Zinc Deposits Based on Observations of Mehdi Abad and Irankuh, Central and Southwestern Iran[D]. Unpublished Ph.D. thesis, Martin-Luther-Universität, Halle-Wittenberg, 152P.http://hdl.handle.net/11858/00-1735-0000-0001-3146-2

    Google Scholar

    Reichert J, Borg G. 2008. Numerical simulation and a geochemical model of supergene carbonate-hosted non-sulphide zinc deposits[J]. Ore Geology Reviews, 33(2):134-151. doi: 10.1016/j.oregeorev.2007.02.006

    CrossRef Google Scholar

    Reynolds N A, Chisnall T W, Kaewsang K, Keesaneyabutr C, Taksavasu T. 2003. The padaeng supergene nonsulfide zinc deposit, Mae Sod, Thailand[J]. Economic Geology, 98(4):773-785. doi: 10.2113/gsecongeo.98.4.773

    CrossRef Google Scholar

    Rouvier H, Perthuisot V, Mansouri A. 1985. Pb-Zn deposits and saltbearing diapirs in Southern Europe and North Africa[J]. Economic Geology, 80(3):666-687. doi: 10.2113/gsecongeo.80.3.666

    CrossRef Google Scholar

    Sarkarinejad K, Azizi A. 2008. Slip partitioning and inclined dextral transpression along the Zagros Thrust System, Iran[J].. Journal of Structural Geology, 30(1):116-136. doi: 10.1016/j.jsg.2007.10.001

    CrossRef Google Scholar

    Sass-Gustkiewicz M, Dzulynski S, Ridge J D. 1982. The emplacement of zinc-lead sulfide ores in the Upper Silesian District; a contribution to the understanding of mississippi valleytype deposits[J]. Economic Geology, 77(2):392-412. doi: 10.2113/gsecongeo.77.2.392

    CrossRef Google Scholar

    Schroll E, Rantitsch G. 2005. Sulphur isotope patterns from the Bleiberg deposit (Eastern Alps) and their implications for genetically affiliated lead-zinc deposits[J]. Mineralogy and Petrology, 84(1/2):1-18.

    Google Scholar

    Selby D, Creaser R A. 2005. Direct radiometric dating of the Devonian-Mississippian time-scale boundary using the Re-Os black shale geochronometer[J]. Geology, 33(7):545-548. doi: 10.1130/G21324.1

    CrossRef Google Scholar

    Sengor A M C. 1987. Tectonics of the Tethysides:orogenic collage development in a collisional setting[J]. Annual Review of Earth and Planetary Sciences, 15(1):213-244. doi: 10.1146/annurev.ea.15.050187.001241

    CrossRef Google Scholar

    Singer D A. 1995, World class base and precious metal deposits:A quantitative analysis[J]. Economic Geology, 90(1):88-104. doi: 10.2113/gsecongeo.90.1.88

    CrossRef Google Scholar

    Song Yucai, Hou Zengqian, Yang Tiannan, Tian Shihong, Liu Yingchao, Wang Xiaohu, Liu Yanxue, Xue Chuandong, Wang Guanghui, Li Zheng. 2011. Sediment-hosted Himalayan base metal deposits in Sanjiang area, S.W. China:characteristics and genetic types[J]. Acta Petrologica et Mineralogica, 30 (3):355-380(in Chinese with English abstract).

    Google Scholar

    Song Yucai, Hou Zengqian, Yang Tiannan, Li Shijing, Wang Fuchun, Gao Yongwang, Gong Xiugang, Yang Zhusen, Zhang Hongrui, Li Liansong, Wang Guiren, Wang Yuanquan, Liu Qun, Hao Hongda. 2013. Mineral prospecting and its related approaches in Duocaima Pb-Zn deposit, Tuotuohe, Qinghai Province, China[J]. Mineral Deposits, 32(4):744-756 (in Chinese with English abstract).

    Google Scholar

    Song Yucai, Hou Zengqian, Wang Guiren, Li Liansong, Yang Tiannan, Zhang Hongrui, Liu Yanxue, Yang Zhusen, Tian Shihong, Liu Yingchao, Jia Zongyong, Wang Yuankui, Liu Qun, Yan Ming, He Li. 2015. Metallogenic features and guidelines for ore exploration in Tuotuohe area, northern Sanjiang orogenic belt, China[J]:Mineral Deposits, 34(1):1-20 (in Chinese with English abstract).

    Google Scholar

    Song Y C, Yang T N, Zhang H R, Liu Y C, Hao H D, Li Z. 2015. The Chaqupacha Mississippi Valley-type Pb-Zn deposit, central Tibet:Ore formation in a fold and thrust belt of the India-Asia continental collision zone[J]. Ore Geology Reviews, 70:533-545. doi: 10.1016/j.oregeorev.2014.12.021

    CrossRef Google Scholar

    Spangenberg J E, Herlec U. 2006. Hydrocarbon biomarkers in the Topla-Mežica zinc-lead deposits, northern Karavanke/Drau Range, Slovenia:Paleoenvironment at the site of ore formation[J]. Economic Geology, 101(5):997-1021. doi: 10.2113/gsecongeo.101.5.997

    CrossRef Google Scholar

    Spurlin M S, Yin A, Horton B K, Zhou J, Wang, J. 2005. Structural evolution of the Yushu-Nangqian region and its relationship to syncollisional igneous activity, east-central Tibet[J]. Geological Society of America Bulletin, 117(9/10):1293-1317.

    Google Scholar

    Stampfli G M. 2000. Tethyan oceans[J]. Geological Society, London, Special Publications, 173(1):1-23. doi: 10.1144/GSL.SP.2000.173

    CrossRef Google Scholar

    Stampfli G M, Borel G D. 2002. A plate tectonic model for the Paleozoic and Mesozoic constrained by dynamic plate boundaries and restored synthetic oceanic isochrones[J]. Earth Planet. Sci. Lett., 196 (1/2):17-33.

    Google Scholar

    Suess E. 1893. Are great ocean depths permanent[J]. Nat. Sci., 2:180-187.

    Google Scholar

    Symons D, Sangster D, Leach D. 1995. A Tertiary age from paleomagnetism for Mississippi Valley-type zinc-lead mineralization in Upper Silesia, Poland[J]. Econ. Geol., 90(4):782-794. doi: 10.2113/gsecongeo.90.4.782

    CrossRef Google Scholar

    Symons D T, Lewchuk M T, Kawasaki K, Velasco F, Leach D L. 2009. The Reocín zinc-lead deposit, Spain:paleomagnetic dating of a late Tertiary ore body[J]. Mineralium Deposita, 44(8):867-880. doi: 10.1007/s00126-009-0253-3

    CrossRef Google Scholar

    Talbot C, Aftabi P. 2004. Geology and models of salt extrusion at Qum Kuh, central Iran[J]. J. Geol. Soc., 161(2):321-334. doi: 10.1144/0016-764903-102

    CrossRef Google Scholar

    Tang Yongyong, Bi Xianwu, Wu Liyan, Wang Lei, Zou Zhichao, He Liping. 2013. Re-Os isotopic dating of pyrite from Jinding Zn-Pb ore deposit and its geological significance[J]. Acta Mineralogica Sinica, 33(3):287-294 (in Chinese with English abstract).

    Google Scholar

    Taylor R D, Leach D L, Bradley D C, Pisarevsky S A. 2009. Compilation of mineral resource data for Mississippi Valley-type and clastic-dominated sediment-hosted lead-zinc deposits[R]. Open-File Reprot 2009-1297, U.S. Geological Survey, 1-42.

    Google Scholar

    Thom J, Anderson G M. 2008. The role of thermochemical sulfate reduction in the origin of Mississippi Valley-type deposits. I. Experimental results[J]. Geofluids, 8(1), 16-26.

    Google Scholar

    Van Hinsbergen D J, Lippert P C, Dupont-Nivet G, McQuarrie N, Doubrovine P V, Spakman W, Torsvik T H. 2012. Greater India Basin hypothesis and a two-stage Cenozoic collision between India and Asia[J]. PNAS, 109(20):7659-7664. doi: 10.1073/pnas.1117262109

    CrossRef Google Scholar

    Vandeginste V, Swennen R, Gleeson S A, Ellam R M, Osadetz K, Roure F. 2010. Zebra dolomitization as a result of focused fluid flow in the rocky mountains fold and thrust belt, Canada[J]. Sedimentology, 52(5):1067-1095.

    Google Scholar

    Velasco F, Herrero J M, Yusta I, Alonso J A, Seebold I, Leach D. 2003. Geology and geochemistry of the Reocin zinc-lead deposit, Basque-Cantabrian Basin, Northern Spain[J]. Econ. Geol., 98(7):1371-1396. doi: 10.2113/gsecongeo.98.7.1371

    CrossRef Google Scholar

    Verges J, Fernàndez M, Martínez A. 2002. The Pyrenean orogen:Pre-, syn-, and postcollisional evolution[J]. J. Virtual Explor., 8:55-74.

    Google Scholar

    Wan Zhifeng, Xia Bin, Cai Zhourong, Liu Ping, Zhang Yi. 2008. Controls of the Tethyan tectonic evolution on the hydrocarbon accumulation in Northwest Africa[J]. Sedimentary Geology and Tethyan Geology, 28(4): 24-27 (in Chinese with English abstract).

    Google Scholar

    Wang Licheng, Liu Chenglin, Zhang Hua. 2013. Tectonic and Sedimentary Settings of Evaporites in the Dengying Formation, South China Block: Implications for the Potential of Potash Formation[J]. Acta Geoscientica Sinica, 34(5): 585-593.

    Google Scholar

    Wang C S, Zhao X, Liu Z, Lippert P C, Graham S A, Coe R S, Yi H, Zhu L, Liu S, Li Y. 2008. Constraints on the early uplift history of the Tibetan Plateau[J]. PNAS, 105: 4987-4992. doi: 10.1073/pnas.0703595105

    CrossRef Google Scholar

    Wang J H, Yin A, Harrison T M, Grove M, Zhang Y Q, Xie G H. 2001. A tectonic model for Cenozoic igneous activities in the eastern Indo-Asian collision zone[J]. Earth Planet. Sci. Lett., 188(1):123-133.

    Google Scholar

    Wang Z, Wang A. 1985. Study of genesis of paleocave in the Tianbaoshan and Daliangzi deposits, Sichuan Province[J]. Geology and Prospecting, 10: 8-15 (in Chinese with English abstract).

    Google Scholar

    Warren J K. 2006. Evaporites: sediments, resources and hydrocarbons[M]. Würzburg: Springer Science & Business Media, 1-1035.

    Google Scholar

    Warren J K. 2016. Evaporites: A Geological Compendium[M]. Bangkok: Springer, 1-1813.

    Google Scholar

    Wei A Y, Xue C D, Xiang K, Li J, Liao C, Akhter Q J. 2015. The oreforming process of the Maoping Pb-Zn deposit, northeastern Yunnan, China: Constraints from cathodoluminescence (CL)petrography of hydrothermal dolomite[J]. Ore Geology Reviews, 70: 562-577. doi: 10.1016/j.oregeorev.2015.02.007

    CrossRef Google Scholar

    Wilkinson J J. 2014. Sediment-hosted zinc-lead mineralization:Processes and Perspectives[C]//Turekian HDHK (ed.). Treatise on Geochemistry (Second Edition), Oxford. Elsevier, 219-249.

    Google Scholar

    Williams H, Turner S, Kelley S, Harris N. 2001. Age and composition of dikes in Southern Tibet: New constraints on the timing of eastwest extension and its relationship to postcollisional volcanism[J]. Geology, 29(4): 339-342. doi: 10.1130/0091-7613(2001)029<0339:AACODI>2.0.CO;2

    CrossRef Google Scholar

    Wu F Y, Ji W Q, Wang J G, Liu C Z, Chung S L, Clift P D. 2014. Zircon U-Pb and Hf isotopic constraints on the onset time of India-Asia collision[J]. Am. J. Sci., 314: 548-579. doi: 10.2475/02.2014.04

    CrossRef Google Scholar

    Wu Yue. 2013. The Age and Ore-forming Process of MVT Deposits in the Boundary Zrea of Sichuan-Yunnano-Guizhou Provinces, Southwest China[D]. Beijing: Ph.D. thesis, China University of Geosciences (Beijing), 1-167(in Chinese with English abstract).

    Google Scholar

    Xue C, Chi G, Li Z, Dong X. 2014. Geology, geochemistry and genesis of the Cretaceous and Paleocene sandstone-and conglomerate-hosted Uragen Zn-Pb deposit, Xinjiang, China: A review[J]. Ore Geology Reviews, 63: 328-342. doi: 10.1016/j.oregeorev.2014.06.005

    CrossRef Google Scholar

    Xue C, Zeng R, Liu S, Chi G, Qing H, Chen Y, Wang D. 2007. Geologic, fluid inclusion and isotopic characteristics of the Jinding Zn-Pb deposit, western Yunnan, South China: A review[J]. Ore Geology Reviews, 31(1): 337-359.

    Google Scholar

    Xue C J, Gao Y B, Chi G X, Leach D L. 2009. Possible former oil-gas reservoir in the giant Jinding Pb-Zn deposit, Lanping, NW Yunnan: the role in the ore accumulation[J]. Journal Earth Science Environoment, 31: 221-229 (in Chinese with English abstract).

    Google Scholar

    Yalikun Y, Xue C, Symons D T A. 2017. Paleomagnetic age and tectonic constraints on the genesis of the giant Jinding Zn-Pb deposit, Yunnan, China[J]. Mineralium Deposita, doi: 10.1007/s00126-017-0733-9.

    CrossRef Google Scholar

    Yan Zhigui, Xia Chuanjian, He Guangxing, Deng Binwu. 2006. Geological characteristics and ore potential analysis of Paoma PbZn deposit, Ningnan county, Sichuan province[J]. Contributions to Geology and Mineral Resources Research, 21: 77-80 (in Chinese with English abstract).

    Google Scholar

    Ye Hefei, Luo Jianning, Li Yongtie, Tong Zhenyan, Yu Qian, Wang Xiaolong, Zhu Tongxing, Feng Xintao. 1999. Tethyan tectonic domain and petroleum exploration[J]. Sedimentary Geology and Tethyan Geology, 20(1):1-27 (in Chinese with English abstract).

    Google Scholar

    Yigit O. 2009. Mineral deposits of Turkey in relation to Tethyan metallogeny: Implications for future mineral exploration[J]. Geology, 104(1): 19-51.

    Google Scholar

    Yin A, 2010. Cenozoic tectonic evolution of Asia: A preliminary synthesis[J]. Tectonophysics, 488(1): 293-325.

    Google Scholar

    Yuan B, Mao J W, Yan X H, Wu Y, Zhang F, Zhao L L. 2014. Sources of metallogenic materials and metallogenic mechanism of Daliangzi ore field in Sichuan Province: Constraints from geochemistry of S, C, H, O, Sr isotope and trace element in sphalerite[J]. Acta Petrologica Sinica, 30: 209-220 (in Chinese with English abstract).

    Google Scholar

    Zeng Daoguo, Zhang Yingwen, Liu Kaikun. 2007. Geological characteristics and ore prospecting orientation of the Maomaochang-Zhazichang lead-zinc ore field in Northwestern Guizhou[J]. Mineral Resources and Geology, 21(4): 410-414 (in Chinese with English abstract).

    Google Scholar

    Zhang H, Hou Z. 2015. Pattern and Process of Continent-Continent Collision Orogeny:A Case Study of the Tethys Collisional Orogen[J]. Acta Geologica Sinica, 89(9):1539-1559 (in Chinese with English abstract).

    Google Scholar

    Zhang Changqing, Yu Jinjie, Mao Jingwen, Rui Zongyao. 2009. Advances in the study of Mississippi Valley-type deposits[J]. Mineral Deposis, 28(2): 195-210(in Chinese with English abstract).

    Google Scholar

    Zhang C Q, Wu Y, Hou L, Mao J W. 2015. Geodynamic setting of mineralization of Mississippi Valley-type deposits in world-class Sichuan-Yunnan-Guizhou Zn-Pb triangle, southwest China:Implications from age-dating studies in the past decade and the Sm-Nd age of Jinshachang deposit[J]. Journal of Asian Earth Sciences, 103: 103-114. doi: 10.1016/j.jseaes.2014.08.013

    CrossRef Google Scholar

    Zhang Zhiyang. 2003. An analysis of geology and genesis of Lehong Pb-Zn deposit[J]. Yunnan Geology, 22: 97-106 (in Chinese with English abstract).

    Google Scholar

    Zheng M H, Wang X C. 1991. Genesis of the Daliangzi Pb-Zn deposit in Sichuan, China[J].Economic Geology, 86: 831-846. doi: 10.2113/gsecongeo.86.4.831

    CrossRef Google Scholar

    Zheng Mianping, Qi Wen, Zhang Yongsheng. 2006. Present situation of potash resources and direction of potash search in China[J]. Geological Bulletin of China, 25(11): 1239-1246 (in Chinese with English abstract).

    Google Scholar

    Zhou Chaoxian, Wei Chunsheng. 1997. The Mississippi Valley-type lead-zinc deposits[J]. Geology-Geochemistry, 1: 65-75(in Chinese with English abstract).

    Google Scholar

    Zhou J X, Bai J H, Huang Z L, Zhu D, Yan Z F, Lv ZC. 2015. Geology, isotope geochemistry and geochronology of the Jinshachang carbonate-hosted Pb-Zn deposit, southwest China[J]. Journal of Asian Earth Sciences, 98: 272-284. doi: 10.1016/j.jseaes.2014.11.024

    CrossRef Google Scholar

    Zhou J X, Gao J G, Chen D, LiuX K. 2013a. Ore genesis of the Tianbaoshan carbonate-hosted Pb-Zn deposit, Southwest China:geologic and isotopic (C-H-O-S-Pb) evidence[J]. International Geology Review, 55: 1300-1310. doi: 10.1080/00206814.2013.782973

    CrossRef Google Scholar

    Zhou J X, Huang Z L, Bao G P. 2013b. Geological and sulfur-leadstrontium isotopic studies of the Shaojiwan Pb-Zn deposit, southwest China: Implications for the origin of hydrothermal fluids[J]. Journal of Geochemical Exploration, 128: 51-61. doi: 10.1016/j.gexplo.2013.01.007

    CrossRef Google Scholar

    Zhou J X, Huang Z L, Gao J G, Yan Z F. 2013c. Geological and C-OS-Pb-Sr isotopic constraints on the origin of the Qingshan carbonate-hosted Pb-Zn deposit, Southwest China[J]. International Geology Review, 55: 904-916. doi: 10.1080/00206814.2013.767496

    CrossRef Google Scholar

    Zhou J X, Huang Z L, Zhou M F, Li X B, Jin Z G. 2013d. Constraints of C-O-S-Pb isotope compositions and Rb-Sr isotopic age on the origin of the Tianqiao carbonate-hosted Pb-Zn deposit, SW China[J]. Ore Geology Reviews, 53: 77-92. doi: 10.1016/j.oregeorev.2013.01.001

    CrossRef Google Scholar

    Zhou J X, Huang Z L, Yan Z F. 2013e. The origin of the Maozu carbonate-hosted Pb-Zn deposit, southwest China: constrained by C-O-S-Pb isotopic compositions and Sm-Nd isotopic age[J]. Journal of Asian Earth Sciences, 73: 39-47. doi: 10.1016/j.jseaes.2013.04.031

    CrossRef Google Scholar

    Zhou J X, Huang Z L, Lv Z C, Zhu X K, Gao JG, Mirnejad H. 2014. Geology, isotope geochemistry and ore genesis of the Shanshulin carbonate-hosted Pb-Zn deposit, southwest China[J]. Ore Geology Reviews, 63: 209-225. doi: 10.1016/j.oregeorev.2014.05.012

    CrossRef Google Scholar

    Zhou J Y, Wang J H, Horton B K, Yin A, Spurlin M S. 2011. The closure of Paleogene basins of east-central Tibet in response to tectonic, sedimentation, magmatism and paleoclimate[J]. Acta Geologica Sinica, 85(2): 172-178 (in Chinese with English abstract).

    Google Scholar

    Zhu Xinyou, Wang Dongbo, Wang Shulai. 1998. Geology and sulfur isotope geochemistry of the Tamu-Kalangu lead-zinc deposits, Akto county, Xinjiang[J]. Mineral Deposits, 17(3): 204-214 (in Chinese with English abstract).

    Google Scholar

    Zhu D C, Zhao Z D, Niu Y, Dilek Y, Hou Z Q, Mo X X. 2013. The origin and pre-Cenozoic evolution of the Tibetan Plateau[J]. Gondwana Res., 23 (4): 1429-1454. doi: 10.1016/j.gr.2012.02.002

    CrossRef Google Scholar

    Zhu Xinyou, Wang Jjingbin, Liu Zengren, Fang Tonghui. 2010. Geological characteristics and the genesis of the Wulagen leadzinc deposit, Xinjiang, China[J]. Acta Geologica Sinica, 84: 694-702 (in Chinese with English abstract).

    Google Scholar

    安徽省地质调查局. 2005. 1: 25万温泉幅-松西幅地质图[R]. 合肥.

    Google Scholar

    陈伟, 孔志岗, 刘凤祥, 王学武, 邓明国, 赵剑星. 2017.贵州纳雍枝铅锌矿床地质、地球化学及矿床成因[J].地质学报, 91(6):1269-1284.

    Google Scholar

    董连慧, 徐兴旺, 范廷宾, 屈迅, 李昊, 万建领, 安海涛, 周刚, 李基宏, 陈刚, 刘川. 2015.喀喇昆仑火烧云超大型喷流-沉积成因碳酸盐型Pb-Zn矿的发现及区域成矿学意义[J].新疆地质, 33: 42-50.

    Google Scholar

    高炳宇, 薛春纪, 池国祥, 李超, 屈文俊, 杜安道. 2012.云南金顶超大型铅锌矿床沥青Re-Os法测年及地质意义[J].岩石学报, 28(5):1561-1567.

    Google Scholar

    高广立. 1989.我国的特提斯聚盐带及有关矿产[J].地球科学, (5):545-551.

    Google Scholar

    顾雪祥, 章永梅, 李葆华, 薛春纪, 董树义, 付绍洪. 2010.沉积盆地中金属成矿与油气成藏的耦合关系[J].地学前缘, 17(2):83-105.

    Google Scholar

    贺光兴, 孙启武, 夏传见, 邓斌武. 2006.四川省宁南县跑马铅锌矿成因浅析[J].地质找矿论丛, 21(S1): 81-84.

    Google Scholar

    贺胜辉, 荣惠锋, 陈贤胜. 2014.云南麻栗坪铅锌矿床成矿地质背景及成矿作用[J].矿产勘查, 5(5): 712-719.

    Google Scholar

    侯增谦, 宋玉财, 李政, 王召林, 杨志明, 杨竹森, 刘英超, 田世红, 何龙清, 陈开旭, 王富春, 赵呈祥, 薛万文, 鲁海峰. 2008.青藏高原碰撞造山带Pb-Zn-Ag-Cu矿床新类型:成矿基本特征与构造控矿模型[J].矿床地质, 27(2): 123-144.

    Google Scholar

    李发源, 顾雪祥, 付绍洪, 章明. 2002.有机质在MVT铅锌矿床形成中的作用[J].矿物岩石地球化学通报, 21(4): 272-276.

    Google Scholar

    李连廷. 2014.云南罗平富乐厂铅锌矿床地质特征及深部找矿推测[J].云南地质, 33(2): 240-244.

    Google Scholar

    李小明, 谭凯旋, 龚文君, 龚革联. 2000.利用磷灰石裂变径迹法研究金顶铅锌矿成矿时代[J].大地构造与成矿学, 24(3):283-286.

    Google Scholar

    林方成. 2005.扬子地台西缘大渡河谷超大型层状铅锌矿床地质地球化学特征及成因[J].地质学报, 79(4): 540-556.

    Google Scholar

    刘成林, 赵艳军, 方小敏, 吕凤琳, 王立成, 颜茂都. 2015.板块构造对海相钾盐矿床分布与成矿模式的控制[J].地质学报, 89(11):1893-1907.

    Google Scholar

    刘继顺. 1996.喷流沉积成矿作用研究的若干问题[J].矿产与地质, 10(1): 6-10.

    Google Scholar

    刘英超, 侯增谦, 杨竹森, 田世洪, 宋玉财, 杨志明. 2008.密西西比河谷型(MVT)铅锌矿床:认识与进展[J].矿床地质, 27(2): 253-264.

    Google Scholar

    刘英超, 侯增谦, 于玉帅, 田世洪, 李玉龙, 杨竹森. 2013.西藏昌都地区拉拢拉类MVT铅锌矿床矿化特征与成因研究[J].岩石学报, 29(4): 1407-1426.

    Google Scholar

    刘莹莹, 漆亮, 黄智龙, 周家喜, 朱传威, 黄小文. 2013.滇东北富乐铅锌矿床硫化物Re-Os同位素年龄及其地质意义[J].矿物学报, S2: 599-600.

    Google Scholar

    彭松, 金中国, 林贵生, 朱尤青, 王兵. 2016.贵州五指山铅锌矿区控矿因素及成矿模式研究——以纳雍枝矿床为例[J].矿产勘查, 7(3): 463-470.

    Google Scholar

    丘东洲, 谢渊, 李晓清, 黄福喜. 2009.亚洲特提斯域岩相古地理与油气聚集地质特征[J].海相油气地质, 14(2): 41-51.

    Google Scholar

    宋玉财, 侯增谦, 王贵仁, 李连松, 杨天南, 张洪瑞, 刘燕学, 杨竹森, 田世洪, 刘英超, 贾宗涌, 汪元奎, 刘群, 闫明, 何利. 2015."三江"北段沱沱河地区的成矿规律与找矿方向[J].矿床地质, 34(1): 1-20.

    Google Scholar

    宋玉财, 侯增谦, 杨天南, 张洪瑞, 杨竹森, 田世洪, 刘英超, 王晓虎, 刘燕学, 薛传东, 王光辉, 李政. 2011."三江"喜马拉雅期沉积岩容矿贱金属矿床基本特征与成因类型[J].岩石矿物学杂志, 30(3): 355-380.

    Google Scholar

    宋玉财, 侯增谦, 杨天南, 李世金, 王富春, 高永旺, 巩秀钢, 杨竹森, 张洪瑞, 李连松, 王贵仁, 汪元奎, 刘群, 郝宏达. 2013.青海沱沱河多才玛特大型Pb-Zn矿床—定位预测方法与找矿突破过程[J].矿床地质, 32: 744-756.

    Google Scholar

    唐永永, 毕献武, 武丽艳, 邹志超, 和利平. 2013.云南金顶超大型铅锌矿床碳、氧、锶、铅同位素地球化学[J].地球化学, 42(5):467-480.

    Google Scholar

    万志峰, 夏斌, 蔡周荣, 刘平, 张毅. 2008.特提斯构造演化对西北非地区油气成藏的控制作用[J].沉积与特提斯地质, 28(4): 24-27.

    Google Scholar

    王立成, 刘成林, 张华. 2013.华南地块震旦纪晚期—早寒武世古大陆位置暨灯影组蒸发岩成钾条件分析[J].地球学报, 34(5):585-593.

    Google Scholar

    王则江, 汪岸儒. 1985.四川天宝山、大梁子铅锌矿床古岩溶洞穴沉积成因研究[J].地质与勘探, 10: 10-17.

    Google Scholar

    吴越. 2013. 川滇黔地区MVT铅锌矿床大规模成矿作用的时代与机制[D]. 中国地质大学(北京)博士学位论文. 北京: 中国地质大学, 1-167.

    Google Scholar

    薛春纪, 高永宝, ChiG X, Leach D L. 2009.滇西北兰坪金顶可能的古油气藏及对铅锌大规模成矿的作用[J].地球科学与环境学报, 31(3):221-229.

    Google Scholar

    晏子贵, 夏传见, 贺光兴, 邓斌武. 2006.四川省宁南县跑马铅锌矿地质特征及找矿前景分析[J].地质找矿论丛, 21(S1): 77-80.

    Google Scholar

    叶和飞, 罗建宁, 李永铁, 童箴言, 余谦, 王小龙, 朱同兴, 冯心涛. 1999.特提斯构造域与油气勘探[J].沉积与特提斯地质, 20(1):1-27.

    Google Scholar

    袁波, 毛景文, 闫兴虎, 吴越, 张锋, 赵亮亮. 2014.四川大梁子铅锌矿成矿物质来源与成矿机制:硫、碳、氢、氧、锶同位素及闪锌矿微量元素制约[J].岩石学报, 30(1):209-220.

    Google Scholar

    张洪瑞, 侯增谦. 2015.大陆碰撞造山样式与过程:来自特提斯碰撞造山带的实例[J].地质学报, 89(9):1539-1559.

    Google Scholar

    张长青, 余金杰, 毛景文, 芮宗瑶. 2009.密西西比型(MVT)铅锌矿床研究进展[J].矿床地质, 28(2): 195-210.

    Google Scholar

    张自洋. 2003.乐红铅锌矿矿床地质与成因分析[J].云南地质, 22(1):97-106.

    Google Scholar

    曾道国, 张应文, 刘开坤. 2007.对黔西北猫猫厂—榨子厂铅锌矿区地质特征及找矿方向的几点不同认识[J].矿产与地质, 21(4):410-414.

    Google Scholar

    郑绵平, 齐文, 张永生. 2006.中国钾盐地质资源现状与找钾方向初步分析[J].地质通报, 25(11): 1239-1246.

    Google Scholar

    周朝宪, 魏春生, 叶造军. 1997.密西西比河谷型铅锌矿床[J].地质地球化学, 1: 65-75.

    Google Scholar

    祝新友, 汪东波, 王书来. 1998.新疆阿克陶县塔木—卡兰古铅锌矿带矿床地质和硫同位素特征[J].矿床地质, 17(3):204-214.

    Google Scholar

    祝新友, 王京彬, 刘增仁, 方同辉. 2010.新疆乌拉根铅锌矿床地质特征与成因[J].地质学报, 84(5): 694-702.

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(3)

Tables(1)

Article Metrics

Article views(5561) PDF downloads(1848) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint