2017 Vol. 44, No. 4
Article Contents

CUI Minli, ZHANG Zuolun, CHEN Yuming, CHEN Fangge. 2017. Geology and metallogenic process of large and super-large gold deposits in South America[J]. Geology in China, 44(4): 642-663. doi: 10.12029/gc20170402
Citation: CUI Minli, ZHANG Zuolun, CHEN Yuming, CHEN Fangge. 2017. Geology and metallogenic process of large and super-large gold deposits in South America[J]. Geology in China, 44(4): 642-663. doi: 10.12029/gc20170402

Geology and metallogenic process of large and super-large gold deposits in South America

    Fund Project: Supported by China Geological Survey Programs(No. DD20160118, No. DD20160119)
More Information
  • Author Bio: CUI Minli, male, born in 1981, doctor, senior engineer, mainly engages in research on mineral deposits abroad; E-mail:cuiminli5189@163.com
  • Gold is a dominant mineral species in South America, whose importance is only second to that of copper. According to gold reserves statistics from the USGS, the gold reserves were 2800 tons in Peru and 2400 tons in Brazil in 2016, and 3900 tons in Chile in 2014. The main 31 large and superlarge gold deposits were comprehensively studied in this paper on the basis of the geological background analysis of gold deposits in South American Andean metallogenic belt and South American platform. The spatial and temporal distribution and geological characteristics of gold deposits, such as porphyry copper-gold deposits, epithermal gold deposits, IOCG gold deposits, and orogenic gold deposits, were analyzed in detail. The authors rearranged the characteristics of the metallogenic region and found out the relationship between regional tectonic magmatic and mineralization evolution, with the purpose of providing scientific basis for future exploration and exploitation of gold mines in South America. In the Andean metallogenic belt, the gold mineralization was closely related to the subduction of the Pacific plate to the South American Plate. The large and superlarge gold deposits are mainly porphyry copper-gold deposits, epithermal gold deposits, IOCG gold deposits and so on. The main gold mineralization is concentrated in the new generation, forming a number of famous gold deposits in the world. In the South America platform, the gold metallogenic belt is located at the edge of the Amazonian block and was influenced by the Trans-Amazonian cycle in Paleoproterozoic (2.5-1.8 Ga), which had undergone repeated subduction and orogeny. The large and superlarge gold deposits are main orogenic gold deposits. The metallogenic period is mainly the Archean-Late Proterozoic period. The gold resources are quite rich in South America, and it has great potential for exploration and exploitation in the future.

  • 加载中
  • Arenson L U, Jakob M, Wainstein P. 2014. Effects of dust deposition on Glacier Ablation and Runoff at the Pascua-Lama Mining Project, Chile and Argentina[C]. Engineering Geology for Society and Territory, 27-32.

    Google Scholar

    Behn G, Camus F, Carrasco P, Ware H. 2001. Aeromagnetic signature of porphyry copper systems in northern Chile and its geologic implications[J]. Economic Geology, 96:239-248. doi: 10.2113/gsecongeo.96.2.239

    CrossRef Google Scholar

    Bernasconi A. 1985. Archaean gold mineralization in central eastern Brazil:a review[J]. Mineralium Deposita, 20(4):277-283.

    Google Scholar

    Bissig T, Cooke D R. 2014. Introduction to the special issue devoted to alkalic porphyry Cu-Au and epithermal Au deposits[J]. Economic Geology, 109(4):819-825. doi: 10.2113/econgeo.109.4.819

    CrossRef Google Scholar

    Bouzari F, Clark A H. 2002. Anatomy, evolution, and metallogenic significance of the supergene orebody of the cerro Colorado porphyry copper deposit, I Region, Northern Chile[J]. Economic Geology, 97:1701-1740. doi: 10.2113/gsecongeo.97.8.1701

    CrossRef Google Scholar

    Cabello J. 1986. Precious metals and cenozoic volcanism in the Chilean Andes[J]. Journal of Geochemical Exploration, 25(1-2):1-19.

    Google Scholar

    Cabral A R, Lehmann B, Kwitko R, Costa C H C. 2002. The Serra Pelada Au-Pd-Pt Deposit, Carajas Mineral Province, Northern Brazil:Reconnaissance mineralogy and chemistry of very high grade Palladian gold mineralization[J]. Economic Geology & the Bulletin of the Society of Economic Geologists, 97(5):1127-1138.

    Google Scholar

    Cannell J, Cooke D R, Walshe J L, Stein H. 2005. Geology, mineralization, alteration, and structural evolution of the El Teniente porphyry Cu-Mo deposit[J]. Economic Geology, 100:979-1003. doi: 10.2113/gsecongeo.100.5.979

    CrossRef Google Scholar

    Cerpa L M, Bissig T, Kyser K, McEwan C, Macassi A, Rios H W. 2013. Lithologic controls on mineralization at the Lagunas Norte high-sulfidation epithermal gold deposit, northern Peru[J]. Mineralium Deposita, 48(5):653-673. doi: 10.1007/s00126-013-0455-6

    CrossRef Google Scholar

    Charchaflie D, Tosdal R M, Mortensen J K. 2007. Geologic framework of the Veladero high-sulfidation epithermal deposit area, Cordillera Frontal, Argentina[J]. Economic Geology, 102(2):171-192. doi: 10.2113/gsecongeo.102.2.171

    CrossRef Google Scholar

    Chouinard A, Paquette J, Williams-Jones A E. 2005. Crystallographic controls on trace-element incorporation in Auriferous pyrite from the Pascua epithermal high-sulfidation deposit, ChileArgentina[J]. Canadian Mineralogist, 43(3):951-963. doi: 10.2113/gscanmin.43.3.951

    CrossRef Google Scholar

    Daoust C, Voicu G, Brisson H, Gauthier M. 2011. Geological setting of the Paleoproterozoic Rosebel gold district, Guiana Shield, Suriname[J]. Journal of South American Earth Sciences, 32(3):222-245. doi: 10.1016/j.jsames.2011.07.001

    CrossRef Google Scholar

    Davies R C, Williams P J. 2005. The El Galeno and Michiquillay porphyry Cu-Au-Mo deposits:geological descriptions and comparison of Miocene porphyry systems in the Cajamarca district, northern Peru[J]. Mineralium Deposita, 40(5):598-616. doi: 10.1007/s00126-005-0026-6

    CrossRef Google Scholar

    De Oliveira C G, de Oliveira F B, Della Giustina M E S, Marques G C, Dantas E L, Pimentel M M, Buhn B M. 2016. The Chapada CuAu deposit, Mara Rosa magmatic arc, Central Brazil:Constraints on the metallogenesis of a Neoproterozoic large porphyry-type deposit[J]. Ore Geology Reviews, 72, 1-21. doi: 10.1016/j.oregeorev.2015.06.021

    CrossRef Google Scholar

    Deyell C L, Leonardson R, Rye R O, Thompson J F H, Bissig T, Cooke D R. 2005. Alunite in the Pascua-Lama High-Sulfidation Deposit:Constraints on Alteration and Ore Deposition Using Stable Isotope Geochemistry[J]. Economic Geology, 100(1):131-148. doi: 10.2113/100.1.0131

    CrossRef Google Scholar

    Dong Yongguan, Zeng Yong, Yao Chunyan, Gao Weihua, Guo Weimin. 2015. Geological tectonic evolution and mineralization of metallic minerals in the South America platform[J]. Resources Survey and Environment, 36(2):116-122(in Chinese with English abstract).

    Google Scholar

    Fang weixuan, Li jianxu. 2012. The distribution, control factors and mineralization evolution of iron-oxide copper gold deposits in Chile[C]//Conference on Intelligence Professional Committee of Science and Technology, Geological Society of China (in Chinese).

    Google Scholar

    Fifarek R H, Rye R O. 2005. Stable-isotope geochemistry of the Pierina high-sulfidation Au-Ag deposit, Peru:influence of hydrodynamics on SO42-H2S sulfur isotopic exchange in magmatic-steam and steam-heated environments[J]. Chemical Geology, 215(1):253-279.

    Google Scholar

    Gair J E. 1962. Geology and ore deposits of the Nova Lima and Rio Acima quadrangles, Minas Gerais, Brazil[M]. Washington:Vsgovt. Print. Off.

    Google Scholar

    Gao Qianlan. 1991. Metallogenic characteristics and types of low temperature hydrothermal gold deposits in Chile[J]. Gold Science and Technology, (7):20-21 (in Chinese with English abstract).

    Google Scholar

    Goldie M. 2002. Self-potentials associated with the Yanacocha highsulfidation gold deposit in Peru[J]. Geophysics, 67(3):684-689. doi: 10.1190/1.1484511

    CrossRef Google Scholar

    Goyzueta C J S. 2015. O pórfiro de Cu Cuajone, Perú:geoquímica, petrologia e evolução da alteração hidrotermal e sua relação com a fase fluída[J]. Biblioteca Digital De Teses E Dissertações Da Universidade De São Paulo. Grainger C J, Groves D I, Tallarico F H B, Fletcher I R. 2008.

    Google Scholar

    Metallogenesis of the carajás mineral province, southern amazon craton, brazil:varying styles of archean through paleoproterozoic to neoproterozoic base-and precious-metal mineralisation[J]. Ore Geology Reviews, 33(3):451-489.

    Google Scholar

    Harris A C, Allen C M, Bryan S E, Campbell I H, Holcombe R J, Palin J M. 2004. ELA-ICP-MS U-Pb zircon geochronology of regional volcanism hosting the Bajo de la Alumbrera Cu-Au deposit:implications for porphyry-related mineralization[J]. Mineralium Deposita, 39(1):46-67. doi: 10.1007/s00126-003-0381-0

    CrossRef Google Scholar

    Holley E A. 2012. The Veladero High-sulfidation Epithermal Au-Ag Deposit, Argentina:Volcanic Stratigraphy, Alteration, Mineralization, and Quartz Paragenesis[M]. Dissertations & Theses-Gradworks.

    Google Scholar

    Hou Zengqian, Mo Xuanxue, Gao Yongfeng, Gu Xiaoming, Meng Xiangjin. 2003. Adakite, A Possible Host Rock for Porphyry Copper deposits:Case studies of Porphyry Copper belts in Tibetan Plateau and in Northern Chile[J]. Mineral Deposits, 22(1):1-12(in Chinese with English abstract).

    Google Scholar

    Jannas R R, Beane R E, Ahler B A, Brosnahan D R. 1990. Gold and copper mineralization at the El Indio deposit, Chile[J]. Journal of Geochemical Exploration, 36(1):233-266.

    Google Scholar

    Kerrich R, Goldfarb R, Groves D, Garwin S, Jia Y. 2000. The characteristics, origins, and geodynamic settings of supergiant gold metallogenic provinces[J]. Chinese Science:Earth Science, 43(s1), 1-68.

    Google Scholar

    Klein E L, Harris C, Giret A, Moura C A V, Angélica R S. 2005. Geology and stable isotope (O, H, C, S) constraints on the genesis of the Cachoeira gold deposit, Gurupi Belt, northern Brazil[J]. Chemical Geology, 221(3/4):188-206.

    Google Scholar

    Kuyumjian R M. 1995. Diversity of fluids in the origin of the Chapada Cu-Au deposit, Goias[J]. Brazilian Journal of Geology, 25(3):203-205.

    Google Scholar

    Lapoint D. 2012. Gold exploration methods in deeply weathered environments:A comparison of southeastern US and suriname[C]//2012 GSAAnnual Meeting in Charlotte.

    Google Scholar

    Li shangsen. 1996. Gold deposit in Precambrian iron formation, Brazil[J]. Precambrian Geology Abroad, (4):32-36 (in Chinese).

    Google Scholar

    Liao weidong. 1993. Marte porphyry gold deposit in northern Chile[J]. World Nuclear Geoscience, (03):99(in Chinese with English abstract).

    Google Scholar

    Lobato L M, Vieira F W R, Ribeiro-Rodrigues L C, Pereira L M M, Menezes M G, Junqueiraet P A, Pereira S L M. 1998. Styles of hydrothermal alteration and gold mineralization associated with the Nova Lima Group of the Quadrilátero Ferrífero:Part I, description of selected gold deposits[J]. Revista Brasileira De Geociencias, 28(3):339-354.

    Google Scholar

    Lobato L M, Santos J O S, Mcnaughton N J, Fletcher I R, Noce C M. 2007. U-Pb Shrimp monazite ages of the giant morro velho and cuiabá gold deposits, rio das velhas greenstone belt, quadrilátero ferrífero, minas gerais, brazil[J]. Ore Geology Reviews, 32(3), 674-680.

    Google Scholar

    Longo A A, Dilles J H, Grunder A L, Duncan R. 2010. Evolution of calc-alkaline volcanism and associated hydrothermal gold Deposits at Yanacocha, Peru[J]. Economic Geology, 105(7):1191-1241. doi: 10.2113/econgeo.105.7.1191

    CrossRef Google Scholar

    Longo A A, Teal L. 2005. A summary of the volcanic stratigraphy and the geochronology of magmatism and hydrothermal activity in the Yanacocha gold district, northern Peru[C]. Symposium, 797-808.

    Google Scholar

    Lu minjie, Zhu xiaosan, Guo weimin. 2016. Division of Andean metallogenic domain in South America[J]. Mineral Deposits, 35(5):1073-1083(in Chinese with English abstract).

    Google Scholar

    Mao jingwen. 2012. Major foreign odeposit types, characteristics and prospecting exploration[M]. Beijing:Geological Publishing House(in Chinese with English abstract).

    Google Scholar

    Marinov D. 2011. Re-Os dating of molybdenite mineralisation from Michiquillay and Galeno porphyry copper deposits, Cajamarca, Perú[C]. Biennial Meeting, Sga 2011 Antofagasta, Chile.

    Google Scholar

    Monteiro L V S, Xavier R P, Carvalho E R D, Hitzman M W, Johnson C A, Souza C R D, Torresi F. 2008. Spatial and temporal zoning of hydrothermal alteration and mineralization in the Sossego iron oxide-copper-gold deposit, Carajás Mineral Province, Brazil:paragenesis and stable isotope constraints[J]. Mineralium Deposita, 43(2):129-159. doi: 10.1007/s00126-006-0121-3

    CrossRef Google Scholar

    Monteiro L V S, Xavier R P, Carvalho E R D, Hitzman M W, Juliani C, Filho C R D S, Carvalhoa E D R. 2008. Mineral chemistry of ore and hydrothermal alteration at the Sossego iron oxide-coppergold deposit, Carajás Mineral Province, Brazil[J]. Ore Geology Reviews, 34(3):317-336. doi: 10.1016/j.oregeorev.2008.01.003

    CrossRef Google Scholar

    Montgomery A T. 2012. Metallogenetic controls on miocene highsulphidation epithermal gold mineralization, Alto Chicama district, La Libertad, northern Perú.[J].

    Google Scholar

    Moroni M, Girardi V A, Ferrario A. 2001. The Serra Pelada Au-PGE deposit, Serra dos Carajás (Pará State, Brazil):geological and geochemical indications for a composite mineralising process[J]. Mineralium Deposita, 36(8):768-785.

    Google Scholar

    Muntean J L. 2000. Porphyry gold deposits of the Refugio District, Maricunga Belt, Northern Chile[J]. Economic Geology, 95(7):1445-1472. doi: 10.2113/gsecongeo.95.7.1445

    CrossRef Google Scholar

    Netunovillas R, Santos M. 2001. Gold deposits of the carajás mineral province:deposit types and metallogenesis[J]. Mineralium Deposita, 36(3/4):300-331.

    Google Scholar

    Noble D C, and McKee E H. 1999. The Miocene metallogenic belt of central and northern Peru[M]. Society of Economic Geologists Special Publication, 7:155-193.

    Google Scholar

    Oviedo L, Fuster N, Tschischow N, Ribba L, Zuccone A, Grez E, Aguilar A. 1991. General geology of La Coipa precious metal deposit, Atacama, Chile[J]. Economic Geology, 86(6):1287-1300. doi: 10.2113/gsecongeo.86.6.1287

    CrossRef Google Scholar

    Padoan M, Rossetti P, Rubatto D. 2014. The Choco 10 gold deposit (El Callao, Bolivar State, Venezuela):Petrography, geochemistry and U-Pb geochronology[J]. Precambrian Research, 252(5):22-38.

    Google Scholar

    Palacios C, Herail G, Townley B, Maksaev V, Sepulveda F, Parseval D P, Rivas P, Lahsen A, Parada M. 2001. The composition of gold in the cerro casale gold-rich porphyry deposit, maricunga belt, Northern Chile[J]. Canadian Mineralogist, 39(3):907-915. doi: 10.2113/gscanmin.39.3.907

    CrossRef Google Scholar

    Petersen U. 1970. Metallogenic provinces in south America[J]. Geologische Rundschau, 59(3):834-897. doi: 10.1007/BF02042275

    CrossRef Google Scholar

    Proffett J M. 2003. Geology of the Bajo de la Alumbrera porphyry copper-gold deposit, Argentina[J]. Economic Geology, 98(8):1535-1574. doi: 10.2113/gsecongeo.98.8.1535

    CrossRef Google Scholar

    Qu Hongyin, Pei Rongfu, Mei Yanrong, Wang Haolin, Li Jinwen, Wang Yonglei. 2013. Metallogenic characteristics of superlarge and exceptional superlarge Cu deposit abroad[J]. Geology in China, 40(2):371-390 (in Chinese).

    Google Scholar

    Rainbow A, Clark A H, Kyser T K, Gaboury F, Hodgson C J. 2005. The Pierina epithermal Au-Ag deposit, Ancash, Peru:Paragenetic relationships, alunite textures, and stable-isotope geochemistry[J]. Chemical Geology, 215(1):235-252.

    Google Scholar

    Reich M, Parada M A, Palacios C, Dietrich A, Schultz F, Lehmann B. 2003. Adakite-like signature of Late Miocene intrusions at the Los Pelambres giant porphyry copper deposit in the Andes of central Chile:metallogenic implications[J]. Mineralium Deposita, 38(7):876-885. doi: 10.1007/s00126-003-0369-9

    CrossRef Google Scholar

    Richardson S V, Jones L M, Kesler S E. 1988. Strontium isotopic geochemistry of Pan-African/Brasiliano rocks, Chapada copper deposit, Goiás, Brazil[J]. Geologische Rundschau, 77(3):763-770. doi: 10.1007/BF01830182

    CrossRef Google Scholar

    Ryan P J, Lawrence A I, Jenkins R A, Matthews J P, Zamora J C, Marino E, Urqueta I. 1994. The Candelaria copper-gold deposit, Chile:Congreso Geológico Chileno, 7 th, Concepción[J]. Actas, 2:1616-1617.

    Google Scholar

    Ryan P J. 1996. The Candelaria copper-gold deposit, Chile[M]. University of the Witwatersrand, Economic Geology Research Unit.

    Google Scholar

    Sanematsu K. 2011. Caspiche porphyry Au-Cu deposit in the Maricunga belt, northern Chile[J]. Resource Geology, 61:Ⅶ-Ⅷ.

    Google Scholar

    Shaver S A. 2009. The Sierra Gorda porphyry Cu-Mo(Au) deposit, region Ⅱ, northern Chile, part 2:intrusive relations and 40Ar/39Ar and Re-Os molybdenite geochronology of the Catalina and 281-zone mineralization centers.[J]. Portland GSA Annual Meeting. Paper:No. 26-7.

    Google Scholar

    Siddeley G, Araneda R, Tian shuwen. 1989. El Indio gold mine, Chile[J]. Geological Survey and Research, (1):61-74 (in Chinese).

    Google Scholar

    Sillitoe R H, Perello J. 2005. Andean Copper Province:Tectonomagmatic settings, deposit types, metallogeny, exploration, and discovery[J]. Economic Geology, 100:845-890.

    Google Scholar

    Sillitoe R H, Tolman J, Kerkvoort G V. 2013. Geology of the Caspiche Porphyry Gold-copper deposit, Maricunga belt, northern Chile[J]. Economic Geology, 108(4):585-604. doi: 10.2113/econgeo.108.4.585

    CrossRef Google Scholar

    Sillitoe R H. 1973. Geology of the Los Pelambres Porphyry Copper Deposit, Chile[J]. Economic Geology, 68(1):1-10. doi: 10.2113/gsecongeo.68.1.1

    CrossRef Google Scholar

    Sillitoe R H. 1988. A plate tectonic model for the origin of porphyry copper deposits[J]. Economic Geology, 67:184-197.

    Google Scholar

    Sillitoe R H.1991. Gold metallogeny of Chile-an introduction[J]. Economic Geology, 86(6):1187-1205. doi: 10.2113/gsecongeo.86.6.1187

    CrossRef Google Scholar

    Stump N, Fang Jiansheng, Gui Yuli. 1998. Alumbrera Cu-Au deposit[J]. Mineral Engineering Research, (6):12-14 (in Chinese).

    Google Scholar

    Tassinari C C G, Pinzon F D, Ventura J B. 2008. Age and sources of gold mineralization in the marmato mining district, nw colombia:A miocene-pliocene epizonal gold deposit[J]. Ore Geology Reviews, 33(3), 505-518.

    Google Scholar

    Tazava E, de Oliveira C G. 2000. The Igarape Bahia Au-Cu (REE-U) deposit, Caraja mineral province, Northan Brazil, geochemistry and monazite geochronology[J]. Mineralogical Magazine, 71:347-363.

    Google Scholar

    Teixeira J B G, Misi A., da Silva M D G. 2007. Supercontinent evolution and the Proterozoic metallogeny of South America[J]. Gondwana Research, 11(3):346-361. doi: 10.1016/j.gr.2006.05.009

    CrossRef Google Scholar

    Thournout F V, Salemink J, Valenzuela G, Merlyn M, Boven A, Muchez P. 1996. Portovelo:a volcanic-hosted epithermal veinsystem in Ecuador, South America[J]. Mineralium Deposita, 31(4):269-276. doi: 10.1007/BF02280791

    CrossRef Google Scholar

    U.S. Geological Survey. 2017. Mineral Commodity Summaries[R].

    Google Scholar

    Vial D S, Dewitt E, Lobato L M, Thorman C H. 2007. The geology of the Morro Velho gold deposit in the Archean Rio das Velhas greenstone belt, Quadrilátero Ferrífero, Brazil[J]. Ore Geology Reviews, 32(32):511-542.

    Google Scholar

    Vila T, Sillitoe R H, Betzhold J, Viteri E. 1991. The porphyry gold deposit at Marte, northern Chile[J]. Economic Geology, 86(6):1271-1286. doi: 10.2113/gsecongeo.86.6.1271

    CrossRef Google Scholar

    Vry Helen V. 2010. Geological and Hydrothermal Fluid Evolution at El Teniente, Chile[D]. Imperial College London.

    Google Scholar

    Wang Jiaxin, Nie Fengjun, Zhang Xueni, Liu Chunhua, Song Chongyu, Duan Peixin, Yu Miao. 2015. El Teniente porphyry CuMo deposit in Chile[J]. Mineral Deposits, 34(1):200-203(in Chinese with English abstract).

    Google Scholar

    Warren I, Archibald D A, Simmons S F. 2008. Geochronology of epithermal Au-Ag mineralization, magmatic-hydrothermal alteration, and supergene weathering in the el penon district, northern chile[J]. Economic Geology, 103(4):851-864. doi: 10.2113/gsecongeo.103.4.851

    CrossRef Google Scholar

    Warren P I. 2005. Geology, geochemistry, and genesis of the El Peñón epithermal Au-Ag deposit, northern Chile:Characteristics of a bonanza-grade deposit and techniques for exploration[J]. Health Technology Assessment, 9(7):1-238, ⅲ-ⅳ.

    Google Scholar

    Zappettini E O. 2005. Metallogeny of South America[M]. Beenos Aires:Servico Geologico Minero Argentino, 1-274.

    Google Scholar

    Zeng Yong, Guo Weimin, Xiang Hongli, Yao Chunyan, Dong Yongguan. 2015. Massive Fe-Cu-Au polymetallic deposits metallogenesis in Carajás mineral province of Brazil[J]. Mineral Deposits, 34(4):828-841(in Chinese with English abstract).

    Google Scholar

    Zeng Yong, Guo Weiming, Yao Chunyan, Xiang Hongli, Xing Guangfu, Dong Yongguan. 2013. Research Progress on Iron Oxide-Cu-Au Deposit in Carajás, Brazil[J]. Geological Science and Technology Information, (05):72-78(in Chinese with English abstract).

    Google Scholar

    Zhang Chao. 2017. Division of Metallogenic Units and Geological Characteristics in South America[D]. Postdoctor Report, 1-147(in Chinese with English abstract).

    Google Scholar

    Zhou Dean. 1993. Hydrothermal exhalation genesis of Chapada CuAu deposit[J]. World Nuclear Geoscience, (2):140-142(in Chinese with English abstract).

    Google Scholar

    Zuo Tengxinping, Bai Hua. 1984. El intao gold deposit, in Andes Mountains, Central Chile[J]. Geological Science and Technology Information, (1):104-107 (in Chinese with English abstract).

    Google Scholar

    曾勇, 郭维民, 姚春彦, 项红莉, 邢光福, 董永观. 2013.巴西卡拉加斯地区氧化铁型铜-金矿床研究进展[J].地质科技情报, (5):72-78.

    Google Scholar

    曾勇, 郭维民, 项红莉, 姚春彦, 董永观.2015.巴西卡拉加斯地区大规模铁-铜-金多金属矿床的成矿作用[J].矿床地质, 34(4):828-841.

    Google Scholar

    董永观, 曾勇, 姚春彦, 高卫华, 郭维民. 2015.南美地台地质构造演化与主要金属矿产成矿作用[J].资源调查与环境, 36(2):116-122.

    Google Scholar

    方维萱, 李建旭. 2012. 智利铁氧化物铜金矿床分布规律、控制因素与成矿演化[C]. 中国地质学会科技情报专业委员会学术研讨会.

    Google Scholar

    高乾兰. 1991.智利低温热液金矿床的成矿特征及类型[J].黄金科学技术, (7):20-21.

    Google Scholar

    候增谦, 莫宣学, 高永丰, 曲晓明, 孟详金. 2003.埃达克岩:斑岩铜矿的一种可能的重要含矿母岩——以西藏和智利斑岩铜矿为例[J].矿床地质, 22(1):1-12.

    Google Scholar

    李上森. 1996.巴西前寒武纪含铁建造中的金矿床[J].国外前寒武纪地质, (4):32-36.

    Google Scholar

    卢民杰, 朱小三, 郭维民. 2016.南美安第斯地区成矿区带划分探讨[J].矿床地质, 35(5):1073-1083.

    Google Scholar

    毛景文. 2012.国外主要矿床类型、特点及找矿勘查[M].北京:地质出版社.

    Google Scholar

    缪卫东. 1993.智利北部Marte斑岩金矿床[J].世界核地质科学, (03):99.

    Google Scholar

    瞿泓滢, 裴荣富, 梅燕雄, 王浩琳, 李进文, 王永磊. 2013.国外超大型-特大型铜矿床成矿特征[J].中国地质, 40(02):371-390. doi: 10.3969/j.issn.1000-3657.2013.02.002

    CrossRef Google Scholar

    斯顿普N, 房俭生, 硅誉漓. 1998.阿伦布雷拉铜金矿[J].矿业工程, (6):12-14.

    Google Scholar

    Siddeley G, Araneda R, 田书文. 1989.智利的埃尔印第奥-坦博金矿床[J].地质调查与研究, (1):61-74.

    Google Scholar

    王佳新, 聂凤军, 张雪旎, 刘春花, 宋崇宇, 段培新, 于淼. 2015.智利埃尔特尼恩特斑岩型铜-钼矿床[J].矿床地质, 34(1):200-203.

    Google Scholar

    张潮.2017.南美洲成矿区带划分及其地质矿产特征.博士后出站报告.1-147.

    Google Scholar

    周德安. 1993.巴西Chapada铜-金矿床热液喷气成因[J].世界核地质科学, (02):140-142.

    Google Scholar

    佐藤兴平, 白桦. 1984.安第斯山中部智利的埃尔印第奥金矿床[J].地质科技情报, (01):104-107.

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(14)

Tables(1)

Article Metrics

Article views(4065) PDF downloads(1187) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint