2017 Vol. 44, No. 1
Article Contents

YAN Shengwu, BAI Xianzhou, WU Wenxiang, ZHU Bing, ZHAN Qiongyao, WEN Long, YANG Hui, WANG Yuting. 2017. Genesis and geological implications of the Neoproterozoic A-type granite from the Lugu area, western Yangtze block[J]. Geology in China, 44(1): 136-150. doi: 10.12029/gc20170110
Citation: YAN Shengwu, BAI Xianzhou, WU Wenxiang, ZHU Bing, ZHAN Qiongyao, WEN Long, YANG Hui, WANG Yuting. 2017. Genesis and geological implications of the Neoproterozoic A-type granite from the Lugu area, western Yangtze block[J]. Geology in China, 44(1): 136-150. doi: 10.12029/gc20170110

Genesis and geological implications of the Neoproterozoic A-type granite from the Lugu area, western Yangtze block

    Fund Project: Supported by China Geological Survey Project (No. 121201010000150016)
More Information
  • Author Bio: YAN Shengwu, male, born in 1985, engineer, engages in geological survey and mineral resources exploration; E-mail:ysw191052@163.com
  • Previous studies have deeply examined the Neoproterozoic I-type and S-type granites on the western margin of the Yangtze Plate, whereas very insufficient attention has been paid to A-type granites, and hence their petrogenetic nature and tectonic implications are still controversial. In this paper, the authors report the results of a detailed study of the newly discovered Lugu Atype granites in the Yangtze Plate, using LA-ICP-MS zircon U-Pb geochronology, petrology, and whole-rock geochemistry, with emphasis placed on the petrogenesis and tectonic setting of the A-type granites. The Lugu granitoid consists of alkali feldspar granite and monzonitic granite that yielded zircon U-Pb ages of (806±5) Ma and (815±5) Ma by LA-ICP-MS, respectively. The Lugu granitoid is deduced as the Neoproterozoic magmatic product. The Lugu granitoid is characterized by high SiO2 (71.2%-76.1%), high total alkali values (K2O + Na2O values from 6.73% to 8.95%), high K2O/Na2O ratios (1.89-3.60) and peraluminous features (A/CNK=1.07-1.49). Both[FeOT/(FeOT+MgO)] versus SiO2 and[(Na2O+K2O)-CaO] versus SiO2 plots indicate ferroan and alkali-calcic signatures typical of A-type granitoids. The content of rare earth elements of alkali feldspar granite and monzonitic granite is high (∑REE=221×10-6-387×10-6), and both rocks show enrichment of LREE rather than HREE with a right-inclined REE patterns for (La/Yb)N ratios from 3.42 to 9.69. Both type rocks have obvious negative Eu anomaly (δEu=0.10-0.34). Meanwhile, the Lugu granitoid has relative high content of Zr, Nb, Ce and Y with high ratios of Ga/Al, Y/Nb, Yb/Ta and Ce/Nb, showing that it is a typical A2-type granite. Combined with the data on geochemistry and regional geology, the authors hold that the Lugu Neoproterozoic A2-type granite was derived from the partial melting of pelitic rock in early Neoproterozoic subduction orogeny.

  • 加载中
  • Altherr R, Siebel W. 2002. I-type plutonism in a continental back-arc setting:Miocene granitoids and monzonites from the central Aegean Sea, Greece[J]. Contributions to Mineralogy and Petrology, 143(4):397-415. doi: 10.1007/s00410-002-0352-y

    CrossRef Google Scholar

    Anderson J L, Thomas W M. 1985. Proterozoic anorogenic two-mica granites:Silver Plume and St. Vrain batholiths of Colorado[J]. Geology, 13(3):177-180. doi: 10.1130/0091-7613(1985)13<177:PATGSP>2.0.CO;2

    CrossRef Google Scholar

    Bonin B. 2007. A-type granites and related rocks:Evolution of a concept, problems and prospects[J]. Lithos, 97(1-2):1-29. doi: 10.1016/j.lithos.2006.12.007

    CrossRef Google Scholar

    Cai Y F, Wang Y J, Cawood P A, Fan W M, Liu H C, Xing X W. Zhang Y Z. 2014. Neoproterozoic subduction along the Ailaoshan zone, South China:Geochronological and geochemical evidence from amphibolite[J]. Precambrian Research, 245:13-28. doi: 10.1016/j.precamres.2014.01.009

    CrossRef Google Scholar

    Castro A, Fernández C, Vigneresse J L. 1999. Understanding granites:Integrating new and classical techniques[J]. Geological Society, London, Special Publications, 168(1):1-5. doi: 10.1144/GSL.SP.1999.168

    CrossRef Google Scholar

    Chappell B W, White A J R. 1974. Two contrasting granite types[J]. Pacific Geology, 8:173-174.

    Google Scholar

    Chappell B W, White A J R. 1992. I-and S-type granites in the Lachlan Fold Belt[J]. Transactions of the Royal Society of Edinburgh:Earth Sciences, 83:1-26. doi: 10.1017/S0263593300007720

    CrossRef Google Scholar

    Du Lilin, Geng Yuansheng, Yang Chonghui, Wang Xinshe, Ren Liudong, Zhou Xiwen, Wang Yanbin, Yang Zhusheng. 2006. The stipulation of Neoproterozoic TTG in western Yangtze block and its significance[J]. Acta Petrologica et Mineralogica, 25(4):273-281(in Chinese with English abstract).

    Google Scholar

    Du L L, Guo J H, Nutman A P, Wyman D, Geng Y S, Yang C H, Liu F L, Ren L D, Zhou X W. 2014. Implications for Rodinia reconstructions for the initiation of Neoproterozoic subduction at~860Ma on the western margin of the Yangtze Block:Evidence from the Guandaoshan Pluton[J]. Lithos, 196-197:67-82. doi: 10.1016/j.lithos.2014.03.002

    CrossRef Google Scholar

    Du L L, Yang C H, Geng Y S, Wang X S, Ren L D, Zhou X W. 2009. Petrogenesis of the Gaojiacun mafic-ultramafic Pluton at the southwestern margin of Yangtze Block:Evidence from Petrology, geochemistry and geochronology. Acta Petrologica Sinica, 25(8):165-176(in Chinese with English abstract).

    Google Scholar

    Eby G N. 1992. Chemical subdivision of the A-type granitoids:petrogenetic and tectonic implications[J]. Geology, 20(7):641-644. doi: 10.1130/0091-7613(1992)020<0641:CSOTAT>2.3.CO;2

    CrossRef Google Scholar

    Foden J, Sossi P A, Wawryk C M. 2015. Fe isotopes and the contrasting petrogenesis of A-, I-and S-type granite[J]. Lithos, 212:32-44.

    Google Scholar

    Frost B R, Barnes C G, Collins W J, Arculus R J, Ellis D J, Frost C D. 2001. A geochemical classification for granitic rocks[J]. Journal of Petrology, 42(11):2033-2048. doi: 10.1093/petrology/42.11.2033

    CrossRef Google Scholar

    Frost C D, Frost B R. 2011. On ferroan (A-type) granitoids:Their compositional variability and modes of origin[J]. Journal of Petrology, 52(1):39. doi: 10.1093/petrology/egq070

    CrossRef Google Scholar

    Guo Chunli, Wang Denghong, Chen Yuchuan, Zhao Zhigang, Wang Yanbin, Fu Xiaofang, Fu Deming. 2007. SHRIMP U-Pb zircon ages and major element, trace element and Nd-Sr isotope geochemical studies of a Neoproterozoic granitic complex in ewstern Sichuan:Petrogenesis and tectonic significance[J]. Acta Petrologica Sinica, 23(10):2457-2470(in Chinese with English abstract).

    Google Scholar

    Hoskin P W O, Schaltegger U, 2003. The Composition of Zircon and Igneous and Metamorphic Petrogenesis[J]. Reviews in Mineralogy and Geochemistry, 53:27-55. doi: 10.2113/0530027

    CrossRef Google Scholar

    Huang X L, Xu Y G, Li X H, Li W X, Lan J B, Zhang H H, Liu Y S, Wang Y B, Li H Y, Luo Z Y, Yang Q J. 2008. Petrogenesis and tectonic implications of Neoproterozoic, highly fractionated Atype granites from Mianning, South China[J]. Precambrian Research, 165(3):190-204.

    Google Scholar

    Huang X L, Xu Y G, Lan J B, Yang Q J, Luo Z Y. 2009. Neoproterozoic adakitic rocks from Mopanshan in the western Yangtze Craton:Partial melts of a thickened lower crust[J]. Lithos, 112(3):367-381.

    Google Scholar

    Jackson S E, Pearson N J, Griffin W L, Belousova E A. 2004. The application of laser ablation-inductively coupled plasma-mass spectrometry to in situ U-Pb zircon geochronology[J]. Chemical Geology, 211(1):47-69.

    Google Scholar

    Jia Xiaohui, Wang Qiang, Tang Gongjian. 2009. A-typeGranites:Research Progress and Implications[J]. Geotectonica et Metallogenia, 33(3):465-480(in Chinese with English abstract).

    Google Scholar

    Kaygusuz A, Siebel W, Sen C, Satir M. 2008. Petrochemistry and petrology of I-type granitoids in an arc setting:the composite Torul pluton, Eastern Pontides, NE Turkey[J]. International Journal of Earth Sciences, 97(4):739-764. doi: 10.1007/s00531-007-0188-9

    CrossRef Google Scholar

    King P L, White A, Chappell B W, Allen C M. 1997. Characterization and origin of aluminous A-type granites from the Lachlan Fold Belt, southeastern Australia[J]. Journal of Petrology, 38(3):371. doi: 10.1093/petroj/38.3.371

    CrossRef Google Scholar

    Lai Shaocong, Qin Jiangfeng, Zhu Renzhi, Zhao Shaowei. 2015. Petrogenesis and tectonic implication of the Neoproterozoic peraluminous granitoids from the Tianquan area, western Yangtze Block, South China. Acta Petrologica Sinica, 31(8):2245-2258(in Chinese with English abstract).

    Google Scholar

    Li X H, Li Z X, Ge W C, Zhou H W, Li W X, Liu Y, Michael T D W. 2003. Neoproterozoic granitoids in South China:crustal melting above a mantle plume at ca. 825 Ma?[J]. Precambrian Research, 122(1/4):45-83.

    Google Scholar

    Li Xianhua, Li Zhengxiang, Zhou Hanwen, Liuying, Liang Xirong, Li Wuxian. 2002. SHRIMP U-Pb zircon age, geochemistry and Nd isotope of the Guandaoshan pluton in SW Sichuan:Petrogenesis and tectonic significance[J]. Science in China Series D-Earth Sciences, 46(S2), 73-83.

    Google Scholar

    Li Z X, Li X H, Kinny P D, Wang J, Zhang S, Zhou H. 2003. Geochronology of Neoproterozoic syn-rift magmatism in the Yangtze Craton, South China and correlations with other continents:evidence for a mantle superplume that broke up Rodinia[J]. Precambrian Research, 122(1):85-109.

    Google Scholar

    Liu Y S, Zong K Q, Kelemen P B, Gao S. 2008. Geochemistry and magmatic history of eclogites and ultramafic rocks from the Chinese continental scientific drill hole:Subduction and ultrahighpressure metamorphism of lower crustal cumulates[J]. Chemical Geology, 247(1/2):133-153.

    Google Scholar

    Loiselle M C, Wones D R. 1979. Characteristics and origin of anorogenic granites[C]//Abstracts with Programs-Geological Society of America 11(7):468.

    Google Scholar

    Maniar P D, Piccoli P M. 1989. Tectonic discrimination of granitoids[J]. Geological Society of America Bulletin, 101(5):635-643. doi: 10.1130/0016-7606(1989)101<0635:TDOG>2.3.CO;2

    CrossRef Google Scholar

    Middlemost E A K. 1994. Naming materials in the magma/igneous rock system[J]. Earth-Science Reviews, 37(3/4):215-224.

    Google Scholar

    Patiño Douce A E. 1997. Generation of metaluminous A-type granites by low-pressure melting of calc-alkaline granitoids[J]. Geology, 25(8):743-746. doi: 10.1130/0091-7613(1997)025<0743:GOMATG>2.3.CO;2

    CrossRef Google Scholar

    Patiño Douce A E, Johnston A D. 1991. Phase equilibria and melt productivity in the pelitic system:implications for the origin of peraluminous granitoids and aluminous granulites[J]. Contributions to Mineralogy and Petrology, 107(2):202-218. doi: 10.1007/BF00310707

    CrossRef Google Scholar

    Pitcher W S. 1983. Granite type and tectonic environment[J]. Mountain building processes, 19:40.

    Google Scholar

    Poitrasson F, Pin C, Duthou J L, Platevoet. 1994. Aluminous subsolvus anorogenic granite genesis in the light of Nd isotopic heterogeneity[J]. Chemical Geology, 112(3/4):199-219.

    Google Scholar

    Qi X X, Santosh M, Zhu L H, Zhao Y H, Hu Z C, Zhang C, Ji F B. 2014. Mid-Neoproterozoic arc magmatism in the northeastern margin of the Indochina block, SW China:Geochronological and petrogenetic constraints and implications for Gondwana assembly[J]. Precambrian Research, 245:207-224. doi: 10.1016/j.precamres.2014.02.008

    CrossRef Google Scholar

    Rapp R P, Watson E B. 1995. Dehydration melting of metabasalt at 8-32 kbar:Implications for continental growth and crust-mantle recycling[J]. Journal of Petrology, 36(4):891-931. doi: 10.1093/petrology/36.4.891

    CrossRef Google Scholar

    Shen Weizhou, Li Huimin, Xu Shijin, Wang Rucheng. 2000. U-Pb chronological study of zircons from the Huangcaoshan and Xiasuozi granites in the western margin of Yangtze plate[J]. Geological Journal of China Universities, 6(3):412-416(in Chinese with English abstract).

    Google Scholar

    Shen Weizhou, Zhao Zifu. 2000. Geochemical Characteristics and Genesis of Some Neoproterozoic Granitoids in the Northern Part of the Western Margin of the Yangtze Block[J]. Geological Review, (05):512-519(in Chinese with English abstract).

    Google Scholar

    Skierlie K P, Johnston A D. 1996. Vapour-absent melting from 10 to 20 kbar of crustal rocks that contain multiple hydrous phases:implications for anatexis in the deep to very deep continental crust and active continental margins[J]. Journal of Petrology, 37(3):661-691. doi: 10.1093/petrology/37.3.661

    CrossRef Google Scholar

    Sun S S, Mcdonough W F. 1989. Chemical and isotopic systematics of oceanic basalts:implications for mantle composition and processes[J]. Geological Society, London, Special Publications, 42:313-345. doi: 10.1144/GSL.SP.1989.042.01.19

    CrossRef Google Scholar

    Sun W H, Zhou M F, Yan D P, Li J W, Ma Y X. 2008. Provenance and tectonic setting of the Neoproterozoic Yanbian Group, western Yangtze Block (SW China)[J]. Precambrian Research, 167(1/2):213-236.

    Google Scholar

    Sylvester P J. 1998. Post-collisional strongly peraluminous granites[J]. Lithos, 45(1):29-44.

    Google Scholar

    Taylor S R, Mclennan S M. 1985. The Continental Crust:Its Composition and Evolution[M]. Oxford:Blackwell Scientific Publications.

    Google Scholar

    Wang Dezi, Shu Liangshu. 2007. On Granitic Tectono-Magmatic Assemblages[J]. Geological Journal of China Universities, 13(3):362-370(in Chinese with English abstract).

    Google Scholar

    Wang Shengwei, Liao Zhenwen, Sun Xiaoming, Zhou Bangguo, Guo Yang, Jang Xiaofang, Zhu Huaping, Sun Zhiming, Luo Maojin, Ma Dong, Shen Zhanwu, Zhang Hai. 2013. Age and Geochemistry of the Caiyuanzi granite in Sichuan, SW China:Mechanism of the Grenvillian Orogenic Movement in the Western Margin of Yangtze Block[J]. Acta Geologica Sinica, 87(1):55-70(in Chinese with English abstract).

    Google Scholar

    Watson E B, Harrison T M. 1983. Zircon saturation revisited:temperature and composition effects in a variety of crustal magma types[J]. Earth and Planetary Science Letters, 64(2):295-304. doi: 10.1016/0012-821X(83)90211-X

    CrossRef Google Scholar

    Whalen J B, Currie K L, Chappell B W. 1987. A-type granites:geochemical characteristics, discrimination and petrogenesis[J]. Contributions to mineralogy and petrology, 95(4):407-419. doi: 10.1007/BF00402202

    CrossRef Google Scholar

    Wu Suoping, Wang Meiying, Qi Kaijing. 2007. Present situation of researches on A-type granites:A review[J]. Acta Petrologica et Mineralogica, 26(1):57-66(in Chinese with English abstract).

    Google Scholar

    Wu Yuanbao, Zheng Yongfei. 2004. Genesis of zircon and its constraints on interpretation of U-Pb age[J]. Chinese Science Bulletin, 49(15):1554-1569. doi: 10.1007/BF03184122

    CrossRef Google Scholar

    Xiao Qinghui. 2002. The Ways of Investigation on Granitoids[M].Beijing:Geological Publishing House (in Chinese with English abstract).

    Google Scholar

    Xu Shijin, Wang Rucheng, Shen Weizhou, Zhong Hong, Lu Jianjun, Hou Liwei, Fu Xiaofang, Huang Minghua, Yang Jiedong, Wang Yinxi, Tao Xiancong. 1996. U-Pb, Rb-Sr isotopic chronology of Jinning granites in the Songpan-Ganze Orogenic Belt and its tectonic significances[J]. Science in China Series D-Earth Sciences, (1):52-58.

    Google Scholar

    Yang Chonghui, Geng Yuansheng, Du Lilin, Ren Liudong, Wang Xinshe, Zhou Xiwen, Yang Zhusheng. 2009. The identification of the Grenvillian granite on the western margin of the Yangtze Block and its geological implications[J]. Geology in China, 26(3):647-657(in Chinese with English abstract).

    Google Scholar

    Zhao J H, Zhou M F. 2007. Neoproterozoic adakitic plutons and arc magmatism along the western margin of the Yangtze Block, South China[J]. The Journal of Geology, 115(6):675-689. doi: 10.1086/521610

    CrossRef Google Scholar

    Zhao J H, Zhou M F, Yan D P, Yang Y H. 2008. Zircon Lu-Hf isotopic constraints on Neoproterozoic subduction-related crustal growth along the western margin of the Yangtze Block, South China[J]. Precambrian Research, 163(3):189-209.

    Google Scholar

    Zhou M F, Ma Y X, Yan D P, Xia X P, Zhao J H, Sun M. 2006. The Yanbian Terrane (Southern Sichuan Province, SW China):A Neoproterozoic arc assemblage in the western margin of the Yangtze Block[J]. Precambrian Research, 144(1/2):19-38.

    Google Scholar

    Zhou M F, Yan D P, Kennedy A K, Li Y, Ding J. 2002. SHRIMP U-Pb zircon geochronological and geochemical evidence for Neoproterozoic arc-magmatism along the western margin of the Yangtze Block, South China[J]. Earth and Planetary Science Letters, 196(1):51-67.

    Google Scholar

    Zhou M F, Yan D P, Wang C L, Qi L, Kennedy A. 2006. Subductionrelated origin of the 750 Ma Xuelongbao adakitic complex (Sichuan Province, China):Implications for the tectonic setting of the giant Neoproterozoic magmatic event in South China[J]. Earth and Planetary Science Letters, 248(1/2):286-300.

    Google Scholar

    杜利林, 耿元生, 杨崇辉, 王新社, 任留东, 周喜文, 王彦斌, 杨铸生. 2006.扬子地台西缘新元古代TTG的厘定及其意义[J].岩石矿物学杂志, 25(4):273-281.

    Google Scholar

    杜利林, 杨崇辉, 耿元生, 王新社, 任留东, 周喜文. 2009.扬子地台西南缘高家村岩体成因:岩石学、地球化学和年代学证据[J].岩石学报, 25(8):165-176.

    Google Scholar

    郭春丽, 王登红, 陈毓川, 赵支刚, 王彦斌, 付小芳, 傅德明. 2007.川西新元古代花岗质杂岩体的锆石SHRIMP U-Pb年龄, 元素和Nd-Sr同位素地球化学研究:岩石成因与构造意义[J].岩石学报, 23(10):2457-2470. doi: 10.3969/j.issn.1000-0569.2007.10.014

    CrossRef Google Scholar

    贾小辉, 王强, 唐功建. 2009. A型花岗岩的研究进展及意义[J].大地构造与成矿学, 33(3):465-480.

    Google Scholar

    赖绍聪, 秦江锋, 朱韧之, 赵少伟. 2015.扬子地块西缘天全新元古代过铝质花岗岩类成因机制及其构造动力学背景[J].岩石学报, 31(8):2245-2258.

    Google Scholar

    李献华, 李正祥, 周汉文, 刘颖, 梁细荣, 李武显. 2002.川西南关刀山岩体的SHRIMP锆石U-Pb年龄、元素和Nd同位素地球化学——岩石成因与构造意义[J].中国科学D辑, 32(z1):60-68. doi: 10.3969/j.issn.1674-7240.2002.z1.007

    CrossRef Google Scholar

    沈渭洲, 李惠民, 徐士进, 王汝成. 2000.扬子板块西缘黄草山和下索子花岗岩体锆石U-Pb年代学研究[J].高校地质学报, 6(3):412-416.

    Google Scholar

    沈渭洲, 赵子福. 2000.扬子板块西缘北段新元古代花岗岩类的地球化学特征和成因[J].地质论评, (5):512-519.

    Google Scholar

    王德滋, 舒良树. 2007.花岗岩构造岩浆组合[J].高校地质学报, 13(3):362-370.

    Google Scholar

    王生伟, 廖震文, 孙晓明, 周邦国, 郭阳, 蒋小芳, 朱华平, 孙志明, 罗茂金, 马东, 沈战武, 张海. 2013.会东菜园子花岗岩的年龄, 地球化学——扬子地台西缘格林威尔造山运动的机制探讨[J].地质学报, 87(1):55-70.

    Google Scholar

    吴锁平, 王梅英, 戚开静. 2007. A型花岗岩研究现状及其述评[J].岩石矿物学杂志, 26(1):57-66.

    Google Scholar

    吴元保, 郑永飞. 2004.锆石成因矿物学研究及其对U-Pb年龄解释的制约[J].科学通报, 49(16):1589-1604. doi: 10.3321/j.issn:0023-074X.2004.16.002

    CrossRef Google Scholar

    肖庆辉. 2002.花岗岩研究思维与方法[M].北京:地质出版社.

    Google Scholar

    徐士进, 王汝成, 沈渭洲, 钟宏, 陆建军, 侯立玮, 付小方, 黄明华, 杨杰东, 王银喜, 陶仙聪. 1996.松潘-甘孜造山带中晋宁期花岗岩的U-Pb和Rb-Sr同位素定年及其大地构造意义[J].中国科学 (D辑:地球科学), (1):52-58.

    Google Scholar

    杨崇辉, 耿元生, 杜利林, 任留东, 王新社, 周喜文, 杨铸生. 2009.扬子地块西缘Grenville期花岗岩的厘定及其地质意义[J].中国地质, 26(3):647-657.

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(10)

Tables(2)

Article Metrics

Article views(3124) PDF downloads(1847) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint