2017 Vol. 44, No. 1
Article Contents

PAN Dapeng, WANG Di, WANG Xiaolei. 2017. Petrogenesis of granites in Shimensi in northwestern Jiangxi Province and its implications for tungsten deposits[J]. Geology in China, 44(1): 118-135. doi: 10.12029/gc20170109
Citation: PAN Dapeng, WANG Di, WANG Xiaolei. 2017. Petrogenesis of granites in Shimensi in northwestern Jiangxi Province and its implications for tungsten deposits[J]. Geology in China, 44(1): 118-135. doi: 10.12029/gc20170109

Petrogenesis of granites in Shimensi in northwestern Jiangxi Province and its implications for tungsten deposits

    Fund Project: Supported by National Key Research and Development Program of China (No. 2016YFC0600203) and China Geological Survey Project (No.[2014] 04-025-024))
More Information
  • Author Bio: PAN Dapeng, male, born in 1983, engineer, master candidates, engages in the study of petrology; E-mail:31520727@qq.com
  • Corresponding author: WANG Di, male, born in 1988, doctor candidate, engages in the study of petrology; E-mail:Edisonwangnju@gmail.com 
  • The Late Mesozoic Dahutang tungsten deposit, as one of the largest tungsten deposits in the world, is a recently discovered deposit in Jiangxi Province. It is situated in border area of Wuning, Xiushui and Jing'an counties, and also located in the eastern part of the Neoproterozoic Jiangnan orogen. This area belongs to Mesozoic W-Cu-Mo polymetallic ore-forming belt in South China Block with widespread Jinningian diorites and Yanshanian granites. In this study, the authors investigated the petrography, mineralogy, zircon and cassiterite U-Pb geochronology and trace element concentrations of the Neoproterozoic and Yanshannian granitic intrusions in the Shimenshi ore district. Zircon U-Pb dating results of the Neoproterozoic biotite granodiorites and Yanshannian biotite granite porphyry, greisenized fine-grained granites and greisenized biotite granite porphyry are (829.9±4.7) Ma, (145.5±3.6) Ma, (152.6±2.0) Ma and (154.2±1.7) Ma, respectively. In particular, the crystallization ages of the Yanshannian granites are consistent with the new cassiterite U-Pb age results obtained by the authors. The tungsten content in cassiterite from the ore-related fine-grained biotite granites is obviously higher then tungsten content of other Yanshannian intrusions. This implies a higher tungsten concentration in the fine-grained biotite granitic magmas. Apparent temperatures for zircon crystallization calculated by Ti-in-zircon thermometer suggest lower temperatures of Yanshannian magmas with weighted average temperature ranging from 734℃ to 788℃. Trace element concentrations of zircon exhibit that fine-grained biotite granites were formed under low oxygen fugacity condition, which was favorable for the formation of tungsten ores.

  • 加载中
  • Andersen T. 2002. Correction of common lead in U-Pb analyses that do not report 204Pb[J]. Chemical Geology, 192:59-79. doi: 10.1016/S0009-2541(02)00195-X

    CrossRef Google Scholar

    Ballard J R, Palin, M J, Campbell I H. 2002. Relative oxidation states of magmas inferred from Ce (Ⅳ)/Ce (Ⅲ) in zircon:Application to porphyry copper deposits of northern Chile[J]. Contributions to Mineralogy and Petrology, 144(3):347-364. doi: 10.1007/s00410-002-0402-5

    CrossRef Google Scholar

    Black L P, Gulson B L. 1978. The age of the Mud Tank carbonatite, Strangways Range, Northern Territory[J]. BMR Journal of Australian Geology and Geophysics, 3:227-232.

    Google Scholar

    Black L P, Kamo S L, Allen C M, Aleinikoff J N, Davis D W, Korsch R J, Foudoulis C. 2003. TEMORA 1:a new zircon standard for Phanerozoic U-Pb geochronology[J]. Chemical Geology, 200(1/2):155-170.

    Google Scholar

    Chen Peirong, Zhou Xinmin, Zhang Wenlan, Li Huimin, Fan Chunfang, Sun Tao, Chen Weifeng, Zhang Min. 2004. Origin of Early Yanshanian syenite-granitic complexes in eastern Nanling region and its implication[J]. Science in China (Series D), 34(6):493-503(in Chinese).

    Google Scholar

    Cherniak D J, Watson E B. 2001. Pb diffusion in zircon[J]. Chemical Geology, 172(1):5-24.

    Google Scholar

    Ding Xing, Chen Peirong, Chen Weifeng, Huang Hongye, Zhou Xinmin. 2005. LA-ICPMS U-Pb dating of zircon from Weishan granite in Hunan[J].Science in China (Series D:Earth Sciences), 37:606-616(in Chinese).

    Google Scholar

    Feng Chengyou, Zhang Dequan, Xiang Xinkui, Li Daxin, Qu Hongyin, Liu Jiannan, Xiao Ye. Re-Os isotopic dating of molybdenite from the Dahutang tungsten deposit in northwestern Jiangxi Province and its geological implication[J]. Acta Petrologica Sinica, 28(12):3858-3868(in Chinese with English abstract).

    Google Scholar

    Gao Shan, Liu Xiaomin, Yuan Honglin, Hattendorf B, Günther D, Chen Liang, Hu Shenhong. 2002. Determination of forty two major and trace elements in USGS and NIST SRM glasses by laser ablation-inductively coupled plasma-mass spectrometry[J]. Geostandards Newsletter, 26(2):181-196. doi: 10.1111/ggr.2002.26.issue-2

    CrossRef Google Scholar

    Griffin W L, Powell W J, Pearson N J, O'Reily S Y. 2008. GLITTER:data reduction software for laser ablation ICP-MS[M]//Sylvester, P. (ed.). Laser Ablation-ICP-MS in the Earth Sciences:Mineralogical Association of Canada Short Course Series, 40:204-207.

    Google Scholar

    Han Li, Huang Xiaolong, Li Jie, He Pengli, Yao Junming. 2016. Oxygen fugacity variation recorded in apatite of the granite in the Dahutang tungsten deposit, Jiangxi Province, South China[J]. Acta Petrologica Sinica, 32(3):746-758(in Chinese with English abstract).

    Google Scholar

    Hoskin P W, Schaltegger U. 2003. The composition of zircon and igneous and metamorphic petrogenesis[J]. Reviews in Mineralogy and Geochemistry, 53(1):27-62. doi: 10.2113/0530027

    CrossRef Google Scholar

    Hua Renmin, Chen Peirong, Zhang Wenlan, Liu Xiaodong, Lu Jianjun, Lin Jinfu, Yao Junming, Qi Huawen, Zhang Zhanshi, Gu Shengyan. 2003. Ore-forming system in Mesozoic and Cenzoic in South China[J]. Science in China (Series D), 33(44):335-343(in Chinese).

    Google Scholar

    Huang Lanchun, Jiang Shaoyong. 2013. Zircon U-Pb geochronology, geochemistry and petrogenesis of the porphyric-like muscovite granite in the Dahutang tungsten deposit, Jiangxi Province[J]. Acta Petrologica Sinica, 28(12):3887-3900(in Chinese with English abstract).

    Google Scholar

    Jackson S E, Pearson N J, Griffin W L, Belousova E A. 2004. The application of laser ablation-inductively coupled plasma-mass spectrometry to in situ U-Pb zircon geochronology[J]. Chemical Geology, 211:47-69. doi: 10.1016/j.chemgeo.2004.06.017

    CrossRef Google Scholar

    Bureau of Geology and Mineral Resources of Jiangxi Province. 1984. Regional geology of Jiangxi Province[M]. Beijing:Geological Publishing House, 1-273(in Chinese with English Abstract).

    Google Scholar

    Kempe U, Wolf D. 2006. Anomalously high Sc contents in ore minerals from Sn-W deposits:possible economic significance and genetic implications[J]. Ore Geology Reviews, 28(1):103-122. doi: 10.1016/j.oregeorev.2005.04.004

    CrossRef Google Scholar

    Lamarão C N, Pinho S C C, de Paiva A L, Galarza, M A. 2012. Mineralogy and geochemistry of the Paleoproterozoic, tinmineralized Bom Jardim granite of the Velho Guilherme Suite, eastern Amazonian craton[J]. Journal of South American Earth Sciences, 38:159-173. doi: 10.1016/j.jsames.2012.05.004

    CrossRef Google Scholar

    Li Xianhua, Li Wuxian, Li Zhenxian. 2007. Re-discussion on genetic type of Nanling granitoid and its tectonic significance[J]. Chinese Science Bulletin, 52(9):981-991(in Chinese).

    Google Scholar

    Li Xianhua, Li Wuxian, Wang Xuance, Li Qiuli, Liu Yu, Tang Guoqiang. 2009. Role of mantle-derived magma in genesis of early Yanshanian granites in the Nanling Range, South China:in situ zircon Hf-O isotopic constraints[J]. Science in China (series D), 39(7):872-887(in Chinese).

    Google Scholar

    Li Jie, Zhong Junwei, Yu Yang, Huang Xiaolong. 2013. Insights on magmatism and mineralization from micas in the Xihuashan granite, Jiangxi Province, South China[J]. Geochimica, 42(5):393-404(in Chinese with English abstract).

    Google Scholar

    Lin Li, Zhan Gangle, Yu Xiaoping. 2006. Geological characteristics and ore-search prospect of Dahutang tungsten (tin) orefield in Jiangxi[J]. Resources Survey & Environment, 27(1):25-32(in Chinese with English abstract).

    Google Scholar

    Lin Li, Yu Zhongzhen, Luo Xiaohong, Ding Shaohui. 2006. The Metallogenic Prognosis of Dahutang Tungsten Ore Field in Jiangxi[J]. Journal of East China Institute of Technology, z1:139-142(in Chinese with English abstract).

    Google Scholar

    Liu Yingjun, Li Zhaolin, Ma Dongsheng. 1982. Geochemical research of tungsten formation in South China[J]. Science in China (B series), 10:939-950(in Chinese).

    Google Scholar

    Li Zhenzhen, Qin Kezhang, Li Guangming, Ishihara Shunso, Jin Luying, Song Guoxue, Meng Zhaojun. 2014. Formation of the giant Chalukou porphyry Mo deposit in northern Great Xing'an Range, NE China:Partial melting of the juvenile lower crust in intra-plate extensional environment[J]. Lithos, 202:138-156.

    Google Scholar

    Ludwig K R. 1999. User's Manual for Isoplot/Ex Version 2.06:a Geochronological Toolkit for Microsoft Excel, vol. 1a (Special Publication)[M]. Geochronology Center, Berkeley, 1-49.

    Google Scholar

    Mao Zhihao, Cheng Yanbo, Liu Jianjun, Yuan Shunda, Wu Shenghua, Xiang Xinkui, Luo Xiaohong. 2013. Geology and molybdenite ReOs age of the Dahutang granite-related veinlets-disseminated tungsten ore field in the Jiangxin Province, China[J]. Ore Geology Reviews, 53:422-433. doi: 10.1016/j.oregeorev.2013.02.005

    CrossRef Google Scholar

    Miles A J, Graham C M, Hawkesworth C J, Gillespie M R, Hinton R W, Bromiley G D, EMMAC. 2014. Apatite:A new redox proxy for silicic magmas?[J]. Geochimica et Cosmochimica Acta, 132:101-119. doi: 10.1016/j.gca.2014.01.040

    CrossRef Google Scholar

    Mcdonough W F, Sun S S. 1995. The composition of the Earth[J]. Chemical Geology, 120:223-253. doi: 10.1016/0009-2541(94)00140-4

    CrossRef Google Scholar

    Qiu Junting, Yu Xinqi, Santosh M, Zhang Dehui, Chen Shuaiqi, Li Pengju. 2013. Geochronology and magmatic oxygen fugacity of the Tongcun molybdenum deposit, northwest Zhejiang, SE China[J]. Mineralium Deposita, 48(5):545-556. doi: 10.1007/s00126-013-0456-5

    CrossRef Google Scholar

    Shu Xujie, Wang Xiaolei, Sun Tao, Chen Weifeng, Shen Weizhou. 2013. Crustal formation in the Nanling Range, South China Block:Hf isotope evidence of zircons from Phanerozoic granitoids[J]. Journal of Asian Earth Sciences, 74:210-224. doi: 10.1016/j.jseaes.2013.01.016

    CrossRef Google Scholar

    Sun Weidong, Yang Xiaoyong, Fan Weiming, Wu Fuyuan. 2012. Mesozoic large scale magmatism and mineralization in South China:Preface[J]. Lithos, 150:1-5. doi: 10.1016/j.lithos.2012.06.028

    CrossRef Google Scholar

    Sylvester P J. 1998. Post-collisional strongly peraluminous granites[J]. Lithos, 45(1):29-44.

    Google Scholar

    Trail D, Watson E B, Tailby N D. 2012. Ce and Eu anomalies in zircon as proxies for the oxidation state of magmas[J]. Geochimica et Cosmochimica Acta, 97:70-87. doi: 10.1016/j.gca.2012.08.032

    CrossRef Google Scholar

    Watson E B, Harrison T M. 2005. Zircon thermometer reveals minimum melting conditions on earliest Earth[J]. Science, 308(5723):841-844. doi: 10.1126/science.1110873

    CrossRef Google Scholar

    Watson E B, Wark D A, Thomas J B. 2006. Crystallization thermometers for zircon and rutile[J]. Contributions to Mineralogy and Petrology, 151(4):413-433. doi: 10.1007/s00410-006-0068-5

    CrossRef Google Scholar

    Wones D R, Eugster H P. 1965. Stability of biotite-experiment theory and application[J]. American Mineralogist, 50:1228-1272.

    Google Scholar

    Wu Yuanbao, Zhen Yongfei. 2004. Genesis of zircon an d its constraint on interpretation of U-Pb age[J]. Chinese Science Bulletin, 49(15):544-1569(in Chinese).

    Google Scholar

    Xiang Xinkui, Liu Xianmu, Zhan Guonian. 2012. Discovery of Shimensi super-large tungsten deposit and its prospecting significance in Dahutang area, Jiangxi Province[J]. Resources Survey & Environment, 33(3):141-151(in Chinese with English abstract).

    Google Scholar

    Zhang Wei, Lentz D R, Thorne K G, McFarlane C. 2016. Geochemical characteristics of biotite from felsic intrusive rocks around the Sisson Brook W-Mo-Cu deposit, west-central New Brunswick:An indicator of halogen and oxygen fugacity of magmatic systems[J]. Ore Geology Reviews, 77:82-96. doi: 10.1016/j.oregeorev.2016.02.004

    CrossRef Google Scholar

    Zhong Yufang, Ma Changqian, She Zhenbing, Lin Guangchun, Xu Haijin, Wang Renjing, Yang Kunguang, Liu Qiang. 2006. SHRIMP U-Pb Zircon geochronology of the Jiuling granitic complex batholith in Jiangxi Province[J]. Earth Science——Journal of China University of Geosciences, 30(6):685-691(in Chinese with English abstract).

    Google Scholar

    Zhou Xinmin, Sun Tao, Shen Weizhou, Shu Liangshu, Niu Yaoling. 2006. Petrogenesis of Mesozoic granitoids and volcanic rocks in South China:A response to tectonic evolution[J]. Episode, 29(1):26-21.

    Google Scholar

    陈培荣, 周新民, 张文兰, 李惠民, 范春芳, 孙涛, 陈卫锋, 张敏. 2004.南岭东段燕山早期正长岩-花岗岩杂岩的成因和意义[J].中国科学 (D辑), 34(6):493-503.

    Google Scholar

    丁兴, 陈培荣, 陈卫锋, 黄宏业, 周新民. 2005.湖南沩山花岗岩中锆石LA-ICPMS U-Pb定年:成岩启示和意义[J].中国科学 (D辑), 35(7):606-616.

    Google Scholar

    丰成友, 张德全, 项新葵, 李大新, 瞿泓莹, 刘建楠, 肖晔. 2012.赣西北大湖塘钨矿床辉钼矿Re-Os同位素定年及其意义[J].岩石学报, 28(12):3858-3868.

    Google Scholar

    韩丽, 黄小龙, 李洁, 贺鹏丽, 姚军明. 2016.江西大湖塘钨矿花岗岩的磷灰石特征及其氧逸度变化指示[J].岩石学报, 2016, 32(3):746-758.

    Google Scholar

    华仁民, 陈培荣, 张文兰, 刘晓东, 陆建军, 林锦富, 姚军明, 戚华文, 张展适, 顾晟彦. 2003.华南中新生代与花岗岩类有关的成矿系统[J].中国科学 (D辑), 33(4):335-343.

    Google Scholar

    黄兰椿, 蒋少涌. 2013.江西大湖塘富钨花岗斑岩年代学、地球化学特征及成因研究[J].岩石学报, 29(12):4323-4335.

    Google Scholar

    江西省地质矿产局. 1984.江西省区域地质志[M].北京:地质出版社, 1-273.

    Google Scholar

    李献华, 李武显, 李正祥. 2007.再论南岭燕山早期花岗岩的成因类型与构造意义[J].科学通报, 52(9):981-991.

    Google Scholar

    李献华, 李武显, 王选策, 李秋立, 刘宇, 唐国强. 2009.幔源岩浆在南岭燕山早期花岗岩形成中的作用:锆石原位Hf-O同位素制约[J].中国科学 (D辑), (7):872-887.

    Google Scholar

    李洁, 钟军伟, 于洋, 黄小龙. 2013.赣南西华山花岗岩的云母成分特征及其对岩浆演化与成矿过程的指示[J].地球化学, 42(5):393-404.

    Google Scholar

    林黎, 占岗乐, 喻晓平. 2006.江西大湖塘钨 (锡) 矿田地质特征及远景分析[J].资源调查与环境, 27(1):25-32.

    Google Scholar

    林黎, 余忠珍, 罗小洪, 丁少辉. 2006.江西大湖塘钨矿田成矿预测[J].东华理工学院学报, 3(增):139-14.

    Google Scholar

    刘英俊, 李兆麟, 马东升. 1982.华南含钨建造的地球化学研究[J].中国科学B辑, 10:939-950.

    Google Scholar

    吴元保, 郑永飞. 2004.锆石成因矿物学研究及其对U-Pb年龄解释的制约[J].科学通报, 49(16):1589-1604. doi: 10.3321/j.issn:0023-074X.2004.16.002

    CrossRef Google Scholar

    项新葵, 刘显沐, 詹国年. 2012.江西省大湖塘石门寺矿区超大型钨矿的发现及找矿意义[J].资源调查与环境, 33(3):141-151.

    Google Scholar

    钟玉芳, 马昌前, 佘振兵, 林广春, 续海金, 王人镜, 杨坤光, 刘强. 2006.江西九岭花岗岩类复式岩基锆石SHRIMP U-Pb年代学[J].地球科学——中国地质大学学报, 2006, 30(6):685-691.

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(8)

Tables(4)

Article Metrics

Article views(2022) PDF downloads(997) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint