2017 Vol. 44, No. 1
Article Contents

GU Yuchao, CHEN Renyi, JIA Bin, SONG Wanbing, YU Changtao, JU Nan. 2017. Zircon U-Pb dating and geochemistry of the syenogranite from the Bianjiadayuan Pb-Zn-Ag deposit of Inner Mongolia and its tectonic implications[J]. Geology in China, 44(1): 101-117. doi: 10.12029/gc20170108
Citation: GU Yuchao, CHEN Renyi, JIA Bin, SONG Wanbing, YU Changtao, JU Nan. 2017. Zircon U-Pb dating and geochemistry of the syenogranite from the Bianjiadayuan Pb-Zn-Ag deposit of Inner Mongolia and its tectonic implications[J]. Geology in China, 44(1): 101-117. doi: 10.12029/gc20170108

Zircon U-Pb dating and geochemistry of the syenogranite from the Bianjiadayuan Pb-Zn-Ag deposit of Inner Mongolia and its tectonic implications

    Fund Project: Supported by Land and Resources for Public Sector Research and Special Funds (No.201311018)
More Information
  • Author Bio: GU Yuchao, born in 1986, engineer, doctor candidate, engages in the study of mineral deposits and regional metallogeny; E-mail:guyi1224@126.com
  • Corresponding author: CHEN Renyi, born in 1966, senior researcher, doctor, engages in the study of mineral deposits and mineral exploration plan; E-mail: cgschenry@126.com 
  • In this study, a series of analyses such as LA-ICP-MS zircon U-Pb isotopic dating and major elements, trace elements and Sr-Nd isotope composition investigation were performed for the syenogranite located in the deep layer of the Bianjiadayuan Pb-Zn-Ag polymetallic deposit, Inner Mongolia. Formed during the magmatic concentration period of early Cretaceous in southern Da Hinggan Mountains, the syenogranite in this deposit has age of (140.31±0.34) Ma. There were at least two periods of magmatic activity in the study area:Acid magma invaded in the early period, whereas intermediate magma and basic magma invaded about 10 Ma later. Ore-forming and rock-forming activities occurred over the same period. Geochemistry of major elements in the syenogranite is characterized by high SiO2 and K2O and low MgO, CaO and TiO2 with A/CNK ratio between 0.98 and 1.19, suggesting metaluminous-weakly peraluminous series. The syenogranite is enriched in LILE such as Rb, Th, U and K and depleted in HFSE such as Sr, P and Ti. The ΣREE values are slightly high. The δEu lies between 0.12 and 0.14, exhibiting significant negative Eu anomalies. The initial ratio of (87Sr/86Sr)i is between 0.7066 and 0.7077, while the initial ratio of (143Nd/144Nd)i is between 0.5121 and 0.5122 (t=140 Ma); εNd(t) values vary in the range of-5.0 to-6.6. Therefore, the petrogenetic materials were the products of partial melting of mafic-ultramafic source rock in middle Proterozoic lower crust. The analyses reveal that the syenogranite in the Bianjiadayuan deposit is A-type granite formed in the environment of high temperature and low pressure with the impact of the post-orogenic extension of Mongolia-Okhotsk scissor-type closed orogeny and lithospheric thinning in early Cretaceous. The high temperature and low pressure environment was probably related to the regional lithosphere demolition effect.

  • 加载中
  • Andersen T. 2002. Correction of common lead in U-Pb analyses that do not report 204Pb[J]. Chemical Geology, 192:59-79. doi: 10.1016/S0009-2541(02)00195-X

    CrossRef Google Scholar

    Andersen T. 2005. Detrital zircons as tracers of sedimentary provenance:Limiting conditions from statistics and numerical simulation[J]. Chemical Geology, 216:249-270. doi: 10.1016/j.chemgeo.2004.11.013

    CrossRef Google Scholar

    Batchelor R A, Bowden P. 1985. Petrogenetic interprelation of granitoid rock series using muhication[J]. Chemical Geology, 48(1):43-55.

    Google Scholar

    Beard J S, Lofgren G E. 1991. Dehydration melting and watersaturated melting of basaltic and andesitic greenstones and amphibolites at 1.3 and 6.9 kbar[J]. Journal of Petrology, 32:365-402. doi: 10.1093/petrology/32.2.365

    CrossRef Google Scholar

    Briqueu L, Lancelot J R. 1979. Rb-Sr systematics and crustal contamination models for calc-alkeline igneous rocks[J]. Earth Planet. Sci. lett., 43:385-396. doi: 10.1016/0012-821X(79)90093-1

    CrossRef Google Scholar

    Brown G C. 1982. Calc-alkaline intrusive rocks:Their diversity, evolution and relation to volcanic arcs[C]//Thorpe RS (ed.). Andesites-Orogenic Andesites and Related Rocks. New York:John Wiley & Sons, 437-461.

    Google Scholar

    Chen Peirong, Zhang Bangtong, Kong Xinggong, Cai Bicong, Ling Hongfei, Ni Qisheng. 1998. Geochemical characteristics and tectonic implication of Zhaibei A-type granitic intrusives in South Jiangxi Province[J]. Acta Petrologica Sinica, 14(3):289-298(in Chinese with English abstract).

    Google Scholar

    Chu Xuelei, Huo Weiguo, Zhang Xun. 2001. Sulfur, carbon and lead isotope studies of the Dajing polymetallic deposit in Linxi County, Inner Mongolia, China-Implication for metallogenic elements from hypo-magmatic Source[J]. Resource Geology, 51(4):333-344. doi: 10.1111/rge.2001.51.issue-4

    CrossRef Google Scholar

    Cocherie A, Rossi P, Fouillac A M, Vidal P. 1994. Crust and mantle contributions to granite genesis-An example from the Variscan batholith of Corsica, France, studied by trace-element and Nd-SrO isotope systematics[J]. Chemical Geology, 115:173-211. doi: 10.1016/0009-2541(94)90186-4

    CrossRef Google Scholar

    Collins W J, Beams S D, White A J R, Chappell B W. 1982. Nature and origin of A-type granites with particular reference to southeastern Australia[J]. Contributions to Mineralogy and Petrology, 80:189-200. doi: 10.1007/BF00374895

    CrossRef Google Scholar

    Defant M J, Drummond M S. 1990. Derivation of some modem arc magmas by melting of young subduction lithosphere[J]. Nature, 347:662-665. doi: 10.1038/347662a0

    CrossRef Google Scholar

    Eby G N. 1992. Chemical subdivision of the A-type granitoids:Petrogenetic and tectonic implications[J]. Geology, 20(7):641-644. doi: 10.1130/0091-7613(1992)020<0641:CSOTAT>2.3.CO;2

    CrossRef Google Scholar

    Foley S, Amand N. 1992. Potassic and ultrapotassic magmas and their orogin[J]. Lithos, 28:182-185.

    Google Scholar

    Gu Yuchao, Jia Bin, Yu Changtao, Zhang Chunhui, Shi Yi, Li Yupeng, Cong Longjiang. 2016. Geochemistry and Sr-Nd isotopic characteristics of volcanic rocks in the Dazuozishanin copper polymetallic deposit, Inner Mongolia, and their geological implications[J]. Geology in China, 43(2):66-79(in Chinese with English abstract).

    Google Scholar

    Graham S A, Hendrix M S, Johnson C L, Badamgarav D, Badarch G, Amory J, Porter M, Barsbold, R, Webb L E, Hacker B R. 2001. Sedimentary record and tectonic implications of Mesozoic rifting in southeast Mongolia[J]. Geol. Soc. Am. Bull., 113:1560-1579. doi: 10.1130/0016-7606(2001)113<1560:SRATIO>2.0.CO;2

    CrossRef Google Scholar

    Jahn B M, Wu Fuyuan, Capdevila R, Martineau F, Zhao Zhenhua, Wang Yixian. 2001. Highly evolved juvenile granites with tetrad REE patterns:The Woduhe and Baerzhe granites from the Great Xing'an (Khingan) Mountains in NE China[J]. Lithos, 59:171-198. doi: 10.1016/S0024-4937(01)00066-4

    CrossRef Google Scholar

    Jacobsen S B, Wasserburg G J. 1979. The mean age of mantle and crustal reservoirs[J]. Journal of Geophysical Research, 84(B13):7411-7428. doi: 10.1029/JB084iB13p07411

    CrossRef Google Scholar

    Jacobsen S B, Wasserbury G J. 1984. Sm-Nd isotopic evolution of chondrites and achondrites, Ⅱ[J]. Earth Planet. Sci. Lett., 67:137-150. doi: 10.1016/0012-821X(84)90109-2

    CrossRef Google Scholar

    Jiang Sihong, Liang Qingling, Liu Yifei, Liu Yan. 2012. Zircon U-Pb ages of the magmatic rocks occurring in and around the Dajing CuAg-Sn polymetallic deposit of Inner Mongolia and constrains to the ore-forming age[J]. Acta Petrologica Sinica, 28(2):495-513(in Chinese with English abstract).

    Google Scholar

    Jiang Sihong, Nie Fengjun, Bai Daming, Liu Yifei, Liu Yan. 2011. Geochronology evidence for Indosinian mineralization in Baiyinnuoer Pb-Zn deposit of Inner Mongolia[J]. Mineral Deposits, 30(5):787-798(in Chinese with English abstract).

    Google Scholar

    Jiang Sihong, Nie Fengjun, Liu Yifei, Yun Fei. 2010. Sulfur and lead isotopic compositions of Bairendaba and Weilasituo silverpolymetallic deposits, Inner Mongolia[J]. Mineral deposits, 28(1):101-112(in Chinese with English abstract).

    Google Scholar

    Johannes W, Holtz F. 1996. Petrogenesis and Experiment Petrology of Granitic Rocks[M]. Berlin:Springer, 1-254.

    Google Scholar

    Larson R L, Pitman, W C, Golovchenko X, Cande S C, Dewey J F, Haxby W F, La Brecque J L 1985. The bedrock geology of the world[Z]. New York:W.H. Freeman and Company.

    Google Scholar

    Li X H, McCulloch M T. 1996. Secular variation in the Nd isotopic composition of Neoproterozic sediments from the southern margin of the Yangtze block:evidence for a proterozoic continental collision in southeast China[J]. Precambrian Research, 76:67-76. doi: 10.1016/0301-9268(95)00024-0

    CrossRef Google Scholar

    Lin Qiang, Ge Wenchun, Sun Deyou, Wu Fuyuan, Yuan Zhongkuan, Li Wenyuan, Yin Chengxiao, Chen Mingzhi, Min Gengde, Quan Zhichun. 2000. Genetic relationships between two types of Mesozoic rhyolite and basalts in great Xing an ridge[J]. Journal of Changchun University of Science and Technology, 30(4):322-328(in Chinese with English abstract).

    Google Scholar

    Liu Changshi, Chen Xiaoming, Chen Peirong, Wang Rucheng, Hu Huan. 2003. Subdivision, discrimination criteria and genesis for A type rock suites[J]. Geological Journal of China Universites, 9(4):573-591(in Chinese with English abstract).

    Google Scholar

    Liu Jiajun, Xing Yongliang, Wang Jianping, Zhai Degao, Yao Meijuan, Wu Shenghua, Fu Chao. 2010. Discovery of falkmanite from the Bairendaba superlarge Ag-Pb-Zn polymetallic deposit, Inner Mongolia and its origin significance[J]. Journal of Jilin University (Earth Science Edition), 40(3):565-572(in Chinese with English abstract).

    Google Scholar

    Liu Wei, Siebel W, Li Xinjun, Pan Xiaofei. 2005. Petrogenesis of the Linxi granitoids, northern Inner Mongolia of China:Constraints on basaltic underplating[J]. Chem. Geol., 219:5-35. doi: 10.1016/j.chemgeo.2005.01.013

    CrossRef Google Scholar

    Liu Yifei, Fan Zhiyong, Jiang Hucan, Nie Fengjun, Jiang Sihong, Ding Chengwu, Wang Fengxiang. 2014. Genesis of the Weilasituo-Bairendaba porphyry-hydrothermal vein type system in Mongolia, China[J]. Acta Geologica Sinica, 88(12):2373-2385(in Chinese with English abstract).

    Google Scholar

    Loiselle M C, Wones D R. 1979. Characterisics and origin of anorogenic granites[J]. Geological Society of America Abstract Progressing, 11:468.

    Google Scholar

    Ludwig K R. 2003. Isoplot 3.0-A Geochronological Toolkit for Micro-Soft Excel[M]. Bekeley Geochronology Center, Special Publication, 4:1-70.

    Google Scholar

    Lv Zhicheng, Duan Guozheng, Hao Libo, Li Dianchao, Pan Jun, Wu Fengchang. 2004. Petrological and geochemical studies on the intermediate-basic volcanic rocks from the middle-south part of the Da Hinggan Mountains[J]. Geological Journal of China Universities, 10(2):186-198(in Chinese with English abstract).

    Google Scholar

    Ma Xinghua, Chen Bin, Lai Yong, Lu Yinghuai. 2009. Petrogenesis and mineralization chronology study on the Aolunhua porphyry Mo deposit, Inner Mongolia, and its geological implications[J]. Acta Petrologica Sinica, 25(11):2939-2950(in Chinese with English abstract).

    Google Scholar

    Metelkin D V, Vemikovsky V A, Kazansky A Y. 2010. Late Mesozoic tetonics of Central Asia based on paleomagnetic evidence[J]. Gondwana Research, 18(2/3):400-419.

    Google Scholar

    Middlemost E A K. 1994. Naming materials in the magma/igneous rock system[J]. Earth Planet. Sci. Lett., 67:137-150.

    Google Scholar

    Patino-Douce A E, Harris N. 1998. Experimental constraints on Himalayan anatexis[J]. Journal of Petrology, 1998, 39:689-710. doi: 10.1093/petroj/39.4.689

    CrossRef Google Scholar

    Pearce J A. Harris N B W, Tindle A G. 1984. Trace element discrimination diagrams for the tectonic interpretation of granitic rocks[J]. Journal of Petrology, 25:956-983. doi: 10.1093/petrology/25.4.956

    CrossRef Google Scholar

    Peccerillo R, Taylor S R. 1976. Geochemistry of Eocene calc-alkaline volcanic rocks from the Kastamonu area, northern Turkey[J]. Contrib. Mineral. Petrol., 50:63-81.

    Google Scholar

    Ruan BanXiao, Lv XinBiao, Liu ShenTai, Yang Wu. 2013. Genesis of Bianjiadayuan Pb-Zn-Ag deposit in Inner Mongolia:Constraints from U-Pb dating of zircon and multi-isotope geochemistry[J]. Mineral Deposits, 32(3):501-514(in Chinese with English abstract).

    Google Scholar

    Shao Ji'an, Liu Futian, Chen Hui, Han Qingjun. 2001. Relationship between Mesozoic magmatism and subduction in Da HingganYanshan area[J]. Acta Geologica Sinica, 37(1):48-55(in Chinese with English abstract).

    Google Scholar

    Shao Ji'an, Zhang Lvqiao, Mu Baolei. 1998. Tectono-thermal evolution of middle-south section of the Da Hinggan Mountains[J]. Science in China (Series D), 28(3):193-200(in Chinese).

    Google Scholar

    Shao Ji'an, Zhang Lvqiao, Mu Baolei. 1999. Magmatism in the Mesozoic extending orogenic process of Da Hinggan Mts.[J]. Earth Science Frontiers (China University of Geosciences, Beijing), 6(4):339-346(in Chinese with English abstract).

    Google Scholar

    Shi Changyi, Yan Mingcai, Chi Qinghua. 2007. Abundances of chemical elements of granitoids in different geotectonic units of China and their characteristics[J]. Acta Geologica Sinica, 81(1):48-59(in Chinese with English abstract).

    Google Scholar

    Shi Changyi, Yan Mingcai, Liu Chongmin, Chi Qinghua, Hu Shuqi, Gu Tiexin, Bu Wei, Yan Weidong. 2005. Abundances of chemical elements in granitoids of China and their characteristics[J]. Geochimica, 34(5):470-482(in Chinese with English abstract).

    Google Scholar

    Shu Qihai, Lai Yong, Wei Liangmin, Sun Yi, Wang Chao. 2011. Fluid inclusion study of the Baiyinnuo'er Zn-Pb deposit, south segment of the Great Xing'an Mountain, northeastern China[J]. Acta Petrologica Sinica, 27(5):1467-1482(in Chinese with English abstract).

    Google Scholar

    Su Yuping, Tang Hongfeng. 2005. Trace element geochemistry of Atype granites[J]. Bulletin of Mineralogy, Petrology and Geochemistry, 24(3):245-251(in Chinese with English abstract).

    Google Scholar

    Sun S S, McDonough W F. 1989. Chemical and isotopic systematics of oceanic basalts:Implications for mantle composition and processes[C]//Saunders A D, Norry M J (eds.). Magmatism in Oceanic Basins. Geological Society Special Publication, 42:313-345.

    Google Scholar

    Thornton C, Tuttle O. 1960. Chemistry of igneous rocks, part1:Differentiation index.America[J]. Journal of Science, 280:664-684.

    Google Scholar

    Wang Lijuan, Wang Jingbin, Wang Yuwang, Long Lingli. 2015. Metallogenic mechanism of fluid and prospecting forecast of Dajing Sn-Cu polymetallic deposit, Inner Mongolia[J]. Acta Petrologica Sinica, 31(4):991-1001(in Chinese with English abstract).

    Google Scholar

    Wang Lijuan, Wang Yuwang, Wang Jingbing, Jin Xindi, Zhu Heping. 2000. Study of tin and copper metallogenetic fluid from Dajing deposit and its genetic significance[J]. Acta Petrologica Sinica, 16(4):609-614(in Chinese with English abstract).

    Google Scholar

    Wang Xilong, Liu Jiajun, Zhai Degao, Yang Yongqiang, Wang Jianping, Zhang Qibin, Zhang Anli. 2014. U-Pb dating, geochemistry and tectonic implications of Bianjiadayuan quartz porphyry, Inner Monglia, China[J]. Bulletin of Mineralogy, Petrology and Geochemistry, 33(5):654-665(in Chinese with English abstract).

    Google Scholar

    Wang Xilong, Liu Jiajun, Zhai Degao, Yang Yongqiang, Wang Jianping, Zhang Qibin, Zhang Anli, Wang Xiaoliang. 2013. LAICP-MS zircon U-Pb dating, geochemistry of the intrusive rocks from the Bianjiadayuan Pb-Zn-Ag deposit, Inner Mongolia, China and tectonic implications[J]. Geotectonica et Metallogenia, 37(4):730-742(in Chinese with English abstract).

    Google Scholar

    Watson E B, Harrison T M. 1983. Zircon saturation revisited:Temperature and composition effect in avariety of crustal magmas types[J]. Earth Planet. Sci. Lett., 64:295-304. doi: 10.1016/0012-821X(83)90211-X

    CrossRef Google Scholar

    Whalen J B, Currie K L, Chappell B W. 1987. A-type granites:Geochemical characteristcs, discriminations and petrogenesis[J]. Contributions to Mineralogy and Petrology, 95:407-419. doi: 10.1007/BF00402202

    CrossRef Google Scholar

    Wolf M B, Wyllie P J. 1992. The formation of tonalitic liquids during the vapor-absent partial melting of amphibolite at 10 kbar[J]. Eos, 70:506-518.

    Google Scholar

    Wu Fuyuan, Li Xianhua, Yang Jinhui, Zheng Yongfei. 2007. Discussions on the Petrogenesis of granites[J]. Acta Petrologica Sinica, 23(6):1217-1238(in Chinese with English abstract).

    Google Scholar

    Wu Fuyuan, Lin Jingqian, Wilde S A, Zhang Xiao' ou, Yang Jinhui. 2005. Nature and significance of the early Cretaceous giant igneous event in eastern China[J]. Earth Planet Sci. Lett., 233:103-119. doi: 10.1016/j.epsl.2005.02.019

    CrossRef Google Scholar

    Wu Fuyuan, Sun Deyou, Lin Qiang. 1999. Petrogenesis of the Phanerozoic granites and crustal growth in Northeast China[J]. Acta Petrologica Sinica, 15(2):181-189(in Chinese with English abstract).

    Google Scholar

    Wyllie P J. 1977. Effects of H2O and CO2 on magma generation in the crust and mantle[J]. Journal of the Gelogical Society, 134:215-234. doi: 10.1144/gsjgs.134.2.0215

    CrossRef Google Scholar

    Xu Wenliang, Sun Deyou, Zhou Yan. 1994. The Magmatism and Crustal Structure of Geoscience Transect, Manzhouli-Suifenhe, China[M]. Beijing:Geological Publishing House, 1-94.

    Google Scholar

    Zeng Qingdong, Liu Jianming. 2010. Zircon SHRIMP U-Pb dating and geological significance of the granite porphyry from Banlashan porphyry molybdenum deposit in Xilamulun molybdenum metallogenic belt[J]. Journal of Jilin University (Earth Science Edition), 40(4):828-834(in Chinese with English abstract).

    Google Scholar

    Zhang Hongfei, Jin Lanlan, Zhang Li, Harris N, Zhou Lian, Hu Shenghong, Zhang Benren. 2005. The Nature of the Substrate and Structure Property Limited by Geochemistry and Pb-Sr-Nd isotopic composition from West Qinling Granites[J]. Science in China (Series D), 35(10):914-926(in Chinese).

    Google Scholar

    Zhang Qi. 2014. Geodynamic implications of continental granites[J]. Acta Petrologica et Mineralogica, 33(4):785-798(in Chinese with English abstract).

    Google Scholar

    Zhang Qi, Jin Weijun, Li Chengdong, Wang Yuanlong. 2009. Reason for Gold and Copper Discovery in Mountain with Tungsten and Tin Discovery on Plain[J]. Earth Science——Journal of China University of Geosciences, 34(4):548-566(in Chinese with English abstract).

    Google Scholar

    Zhang Qi, Jin Weijun, Li Chengdong, Wang Yan, Wang Yuanlong. 2011. Granitic rocks and their formation depth in the Crust[J]. Geotectonica et Metallogenia, 35(2):259-269(in Chinese with English abstract).

    Google Scholar

    Zhang Qi, Ran Hao, Li Chengdong. 2012. A-type granite:What is the essence[J]? Acta Petrologica et Mineralogica, 31(4):621-626(in Chinese with English abstract).

    Google Scholar

    Zhang Qi, Wang Yan, Li Chengdong, Wang Yuanlong, Jin Weijun, Jia Xiuqin. 2006. Granite classification on the basis of Sr and Yb contents and its implications[J]. Acta Petrologica Sinica, 22(9):2249-2269(in Chinese with English abstract).

    Google Scholar

    Zhang Qi, Wang Yan, Xiong Xiaolin, Li Chengdong. 2008. Adakites and Granites:Challenges and Opportunities[M]. Beijing:China Land Press, 1-344.

    Google Scholar

    Zhang Yongbei, Sun Shihua, Hongma H, Mao Qian. 2003. Magma contamination of acidic rocks in Linxi area in southern Da Hinggan Mountains, northeast China[J]. Acta Petrologica Sinica, 19(3):369-384(in Chinese with English abstract).

    Google Scholar

    Zhao Zhenhua, Xiong Xiaolin, Han Xiaodong. 1999. The formation mechanism study of tetrad effects of Rare-Earth Elements in granites-in case of Qianlishan and Baerzhe granites[J]. Science in China (Series D), 29(4):331-338(in Chinese).

    Google Scholar

    Zhou Zhenhua, Lv Linsu, Yang Yongjun, Li Tao. 2010. Petrogenesis of the Early Cretaceous A-type granite in the Huanggang Sn-Fe deposit, Inner Mongolia:Constraintsfrom zircon U-Pb dating and geochemistry[J]. Acta Petrologica Sinica, 26(12):3521-3537(in Chinese with English abstract).

    Google Scholar

    Zhou Zhenhua, Ouyang Hegen, Wu Xinli, Liu Jun, Che Hewei. 2014. Geochronology and geochemistry study of the biotite granite from the Daolundaba Cu-W polymetallic deposit in the Inner Mogolia and its geological significance[J]. Acta Petrologica Sinica, 30(1):79-94(in Chinese with English abstract).

    Google Scholar

    Zorin Y A. 1999. Geodynam ics of the western part of the MongoliaOkhotsk collisional belt, Trans-Baikal region (Russia) and Mongolia[J]. Tectonophysics, 306:33-56. doi: 10.1016/S0040-1951(99)00042-6

    CrossRef Google Scholar

    陈培荣, 章邦桐, 孔兴功, 蔡笔聪, 凌洪飞, 倪琦生. 1998.赣南寨背A型花岗岩体的地球化学特征及其构造地质意义[J].岩石学报, 14(3):289-298.

    Google Scholar

    顾玉超, 贾斌, 余昌涛, 张春晖, 时溢, 李玉鹏, 丛龙江. 2016.内蒙古大座子山铜多金属矿火山岩地球化学、Sr-Nd同位素特征及地质意义[J].中国地质, 43(2):66-79.

    Google Scholar

    江思宏, 梁清玲, 刘翼飞, 刘妍. 2012.内蒙古大井矿区及外围岩浆岩锆石U-Pb年龄及其对成矿时间的约束[J].岩石学报, 28(2):495-513.

    Google Scholar

    江思宏, 聂凤军, 白大明, 刘翼飞, 刘妍. 2011.内蒙古白音诺尔铅锌矿床印支期成矿的年代学证据[J].矿床地质, 30(5):787-798.

    Google Scholar

    江思宏, 聂凤军, 刘翼飞, 云飞. 2010.内蒙古拜仁达坝及维拉斯托银多金属矿床的硫和铅同位素研究[J].矿床地质, 28(1):101-112.

    Google Scholar

    林强, 葛文春, 孙德有, 吴福元, 元钟宽, 李文远, 尹成孝, 陈明植, 闵庚德, 权致纯. 2000.大兴安岭中生代两类流纹岩与玄武岩的成因联系[J].长春科技大学学报, 30(4):322-328.

    Google Scholar

    刘昌实, 陈小明, 陈培荣, 王汝成, 胡欢. 2003. A型岩套的分类、判别标志和成因[J].高校地质学报, 9(4):573-591.

    Google Scholar

    刘家军, 邢永亮, 王建平, 翟德高, 要梅娟, 吴胜华, 付超. 2010.内蒙拜仁达坝超大型Ag-Pb-Zn多金属矿床中针硫锑铅矿的发现与成因意义[J].吉林大学学报 (地球科学版), 40(3):565-572.

    Google Scholar

    刘翼飞, 樊志勇, 蒋胡灿, 聂凤军, 江思宏, 丁成武, 王丰翔. 2014.内蒙古维拉斯托-拜仁达坝斑岩-热液脉状成矿体系研究[J].地质学报, 88(12):2373-2385.

    Google Scholar

    吕志成, 段国正, 郝立波, 李殿超, 潘军, 吴丰昌. 2004.大兴安岭中南段中生代中基性火山岩岩石学地球化学研究[J].高校地质学报, 10(2):186-198.

    Google Scholar

    马星华, 陈斌, 赖勇, 鲁颖淮. 2009.内蒙古敖仑花斑岩钼矿床成岩成矿年代学及地质意义[J].岩石学报, 25(11):2939-2950.

    Google Scholar

    阮班晓, 吕新彪, 刘申态, 杨梧. 2013.内蒙古边家大院铅锌银矿床成因-来自锆石U-Pb年龄和多元同位素的制约[J].矿床地质, 32(3):501-514.

    Google Scholar

    邵济安, 刘福田, 陈辉, 韩庆军. 2001.大兴安岭-燕山晚中生代岩浆活动与俯冲作用关系[J].地质学报, 75(1):56-63.

    Google Scholar

    邵济安, 张履桥, 牟保磊. 1998.大兴安岭中南段中生代的构造热演化[J].中国科学 (D辑), 28(3):193-200.

    Google Scholar

    邵济安, 张履桥, 牟保磊. 1999.大兴安岭中生代伸展造山过程中的岩浆作用[J].地学前缘, 6(4):339-346.

    Google Scholar

    史长义, 鄢明才, 迟清华. 2007.中国不同构造单元花岗岩类元素丰度及特征[J].地质学报, 81(1):48-59.

    Google Scholar

    史长义, 鄢明才, 刘崇民, 迟清华, 胡树起, 顾铁新, 卜维, 鄢卫东. 2005.中国花岗岩类化学元素丰度及特征[J].地球化学, 34(5):470-482.

    Google Scholar

    舒启海, 赖勇, 魏良民, 孙艺, 王潮. 2011.大兴安岭南段白音诺尔铅锌矿床流体包裹体研究[J].岩石学报, 27(5):1467-1482.

    Google Scholar

    苏玉平, 唐红峰. 2005. A型花岗岩的微量元素地球化学[J].矿物岩石地球化学通报, 24(3):245-251.

    Google Scholar

    王莉娟, 王京彬, 王玉往, 龙灵利. 2015.内蒙古大井锡铜多金属矿床流体成矿机理及外围找矿预测[J].岩石学报, 31(4):991-1001.

    Google Scholar

    王莉娟, 王玉往, 王京彬, 靳新娣, 朱和平. 2000.大井矿床锡铜矿体成矿流体研究及其成因意义[J].岩石学报, 16(4):609-614.

    Google Scholar

    王喜龙, 刘家军, 翟德高, 杨永强, 王建平, 张琪彬, 张安立. 2014.内蒙古边家大院矿区石英斑岩U-Pb年代学、岩石地球化学特征及其地质意义[J].矿物岩石地球化学通报, 33(5):654-665.

    Google Scholar

    王喜龙, 刘家军, 翟德高, 杨永强, 王建平, 张琪彬, 张安立, 王晓亮. 2013.内蒙古边家大院铅锌银矿区侵入岩LA-ICP-MS锆石UPb年龄、地球化学特征及地质意义[J].大地构造与成矿学, 37(4):730-742.

    Google Scholar

    吴福元, 李献华, 杨进辉, 郑永飞. 2007.花岗岩成因研究的若干问题[J].岩石学报, 23(6):1217-1238.

    Google Scholar

    吴福元, 孙德有, 林强. 1999.东北地区显生宙花岗岩的成因与地壳增生[J].岩石学报, 15(2):181-189.

    Google Scholar

    许文良, 孙德有, 周燕. 1994.满洲里-绥芬河地学断面岩浆作用和地壳结构[M].北京:地质出版社, 1-94.

    Google Scholar

    曾庆栋, 刘建明. 2010.西拉沐伦钼矿带半拉山斑岩钼矿床花岗斑岩锆石SHRIMP U-Pb测年及其地质意义[J].吉林大学学报 (地球科学版), 40(4):828-834.

    Google Scholar

    张宏飞, 靳兰兰, 张利, Harris N, 周炼, 胡圣虹, 张本仁. 2005.西秦岭花岗岩类地球化学和Pb-Sr-Nd同位素组成对基底性质及其构造属性的限制[J].中国科学 (D辑, 35(10):914-926.

    Google Scholar

    张旗. 2014.大陆花岗岩的地球动力学意义[J].岩石矿物学杂志, 33(4):785-798.

    Google Scholar

    张旗, 金惟俊, 李承东, 王焰, 王元龙. 2011.花岗岩与地壳厚度关系探讨[J].大地构造与成矿学, 35(2):259-269.

    Google Scholar

    张旗, 金惟俊, 李承东, 王元龙. 2009."上山"找金铜, "下山"找钨锡及其理由[J].地球科学——中国地质大学学报, 34(4):548-566.

    Google Scholar

    张旗, 冉皞, 李承东. 2012. A型花岗岩的实质是什么[J]?岩石矿物学杂志, 31(4):621-626.

    Google Scholar

    张旗, 王焰, 李承东, 王元龙, 金惟俊, 贾秀勤. 2006.花岗岩的Sr-Yb分类及其地质意义[J].岩石学报, 22(9):2249-2269.

    Google Scholar

    张旗, 王焰, 熊小林, 李承东. 2008.埃达克岩和花岗岩:挑战与机遇[M].北京:中国大地出版社, 1-344.

    Google Scholar

    张永北, 孙世华, 本间弘次, 毛骞. 2003.大兴安岭南段林西地区中生代酸性岩类岩浆的混染作用[J].岩石学报, 19(3):369-384.

    Google Scholar

    赵振华, 熊小林, 韩小东. 1999.花岗岩稀土元素四分组效应形成机理探讨-以千里山和巴尔哲花岗岩为例[J].中国科学, 29(4):331-338.

    Google Scholar

    周振华, 吕林素, 杨永军, 李涛. 2010.内蒙古黄岗锡铁矿区早白垩世A型花岗岩成因:锆石U-Pb年代学和岩石地球化学制约[J].岩石学报, 26(12):3521-3537.

    Google Scholar

    周振华, 欧阳荷根, 武新丽, 刘军, 车合伟. 2014.内蒙古道伦达坝铜钨多金属矿黑云母花岗岩年代学、地球化学特征及其地质意义[J].岩石学报, 30(1):79-94.

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(10)

Tables(3)

Article Metrics

Article views(3657) PDF downloads(1494) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint