2023 No. 3
Article Contents

JIANG Xiaozhen, FENG Tao, ZHENG Zhiwen, LEI Mingtang, ZHANG Wei, MA Xiao, YI Xiaojuan. A review of karst collapse mechanisms[J]. Carsologica Sinica, 2023, 42(3): 517-527. doi: 10.11932/karst20230304
Citation: JIANG Xiaozhen, FENG Tao, ZHENG Zhiwen, LEI Mingtang, ZHANG Wei, MA Xiao, YI Xiaojuan. A review of karst collapse mechanisms[J]. Carsologica Sinica, 2023, 42(3): 517-527. doi: 10.11932/karst20230304

A review of karst collapse mechanisms

  • Karst collapse is a global geohazard and has been reported to occur in 23 countries, including China, the United States of America, Canada, South Africa, Italy, France, the United Kingdom, Germany, Russia, and Turkey. The mechanism of karst collapse is the basis for its monitoring, early warning, prevention and treatment. For a long time, studies on the mechanism of karst collapse have been mainly based on the qualitative speculation of the investigation after karst collapse, involving geological conditions and influencing factors of the collapse. They lack support of scientifically defensible data, hence resulting in the hypothetical stage of current studies on karst collapse mechanism. This has become a technical bottleneck in the prediction and prevention of karst collapse hazard.

    Karst collapse hazards are characterized by concealment and suddenness. Among the existing collapse events in China, more than 90% are soil collapse. Studies on karst collapse in China started in the 1980s and have gone through approximately four phases, (1) The sporadic karst collapse research in selected mines; (2) The karst collapse inventory and small-scale physical modeling in Yangtze River Basin, and representative mines and railroads; (3) The karst collapse reconnaissance and large-scale physical modeling in urban areas including Wuhan, Yulin, Tangshan, Tongling, Guilin, and Shenzhen; (4) The systematic nation-wide karst collapse reconnaissance. Since 2000, National Natural Science Foundation of China has increased investment in the studies on karst collapse involving groundwater pumping, foundation piling, tunneling, drainage in mines, and train vibration and in the studies on karst collapse mechanisms induced by extreme climate. At present, there are about eight karst collapse mechanisms according to previous studies, such as subduction, vacuum negative pressure, pressure difference, hydraulic fracturing, gas explosion, chemical dissolution, resonance, liquefaction, etc. These processes are closely associated with changing underground hydrodynamic conditions.

    With a profound analysis of definitions and theoretical basis of karst collapse mechanism, this study proposes that most of the above mechanisms can be attributed to seepage deformation of soil. This means, under the action of groundwater seepage force or dynamic water pressure, some particles of the whole soil mass will move, causing deformation and destruction of soil or rock mass. During the formation of karst collapse, the action mode and direction of groundwater seepage force on karst cavities roof soil will be different because of the change of groundwater dynamic conditions. The limit equilibrium theory of soil mechanics considers the roof stability of karst cavities, which is the last stage in the development of karst collapse; the effect of surface load is only to shorten the time of ground collapse.

    Finally, it is pointed out that due to the practicability of water-air pressure with high-frequency sampling, accelerometer and acoustic wave sensors, the research direction on collapse mechanisms will be changed from hydrostatic pressure to hydrodynamic pressure, a challenge that should be faced with. The cavitation damage and resonance damage caused by pressure pulsation will also be the future research focus, and the corresponding critical seepage deformation or damage indicators need to be further studied the prevention and control of geological disasters of karst collapse.

  • 加载中
  • [1] 雷明堂, 戴建玲, 等. 湘西鄂东皖北地区岩溶塌陷1∶5万环境地质调查报告[R]. 中国地质科学院岩溶地质研究所, 2018.

    Google Scholar

    [2] 徐卫国. 试论岩溶矿区地面塌陷的真空吸蚀作用[J]. 地质论评, 1981, 27(2):174-180.

    Google Scholar

    XU Weiguo. The implication of suction action for ground subsidence in karst mining area[J]. Geological Review, 1981, 27(2):174-180.

    Google Scholar

    [3] 陈国亮. 岩溶地面塌陷的成因与防治[M]. 北京: 中国铁道出版社, 1994.

    Google Scholar

    CHEN Guoliang. Cause and prevention of karst collapse[M]. Beijing: China Railway Publishing House, 1994.

    Google Scholar

    [4] 苏建三. 岩溶水管道流的气、水压力问题[A]//中国地质学会第二届岩溶学术会议论文选集[C]. 科学出版社, 1982: 241.

    Google Scholar

    SU Jiansan. Discussions on the groundwater-air pressure in karst system[A]//Proc. 2nd Conference on karst, Geological Society of China[C]. Science Press, 1982: 241.

    Google Scholar

    [5] J R Little. Relationship of modern sinkhole development to large-scale photolinear features, Proc[A]//1st multidisciplinary conference on sinkholes and the engineering and environmental impacts of karst[C]. Balkema, Rottererdam, 1984, 189-196.

    Google Scholar

    [6] 康彦仁. 论岩溶塌陷形成的致塌模式[J]. 水文地质工程地质, 1992(4):32-34.

    Google Scholar

    KANG Yanren. Collapse causing models in karstic collapse process[J]. Hydrogeology and Engineering Geology, 1992(4):32-34.

    Google Scholar

    [7] 高宗军. 岩溶地面塌陷形成机理与成因模式研究:以山东泰安-莱芜为例[J]. 中国工程科学, 2008, 10(4):38-43.

    Google Scholar

    GAO Zongjun. Study on the mechanism and cause mode of the karst collapse: Taking Tai'an-Laiwu for example[J]. China Engineering Science, 2008, 10(4):38-43.

    Google Scholar

    [8] Thomas M Tharp. Mechanics of upward propagation of cover-collapse sinkhole[J]. Engineering Geology, 1999, 52:23-33. doi: 10.1016/S0013-7952(98)00051-9

    CrossRef Google Scholar

    [9] 王军玺, 陈金淑, 陶虎, 石喜. 土质心墙坝水力劈裂试验研究进展[J]. 应用基础与工程科学学报, 2018, 26(1):132-144.

    Google Scholar

    WANG Junxi, CHEN Jinshu, TAO Hu, SHI Xi. Advances in experimental research on hydraulic fracturing in earth-and-rockfill dam with central soil core[J]. Journal of Basic Science and Engineering, 2018, 26(1):132-144.

    Google Scholar

    [10] 牛起飞, 侯瑜京, 梁建辉, 彭翀. 坝肩变坡引起心墙裂缝和水力劈裂的离心模型试验研究[J]. 岩土工程学报, 2010, 32(12):1935-1941.

    Google Scholar

    NIU Qifei, HOU Yujing, LIANG Jianhui, PENG Chong. Centrifuge modeling of cracking and hydraulic fracturing in core dams induced by abrupt change of bank slope[J]. Chinese Journal of Geotechnical Engineering, 2010, 32(12):1935-1941.

    Google Scholar

    [11] 章定文, 刘松玉. 土体中水力劈裂研究进展[J]. 水利水运工程学报, 2006(2):71-78. doi: 10.3969/j.issn.1009-640X.2006.02.015

    CrossRef Google Scholar

    ZHANG Dingwen, LIU Songyu. State of hydraulic fracturing in soils[J]. Hydro-Science and Engineering, 2006(2):71-78. doi: 10.3969/j.issn.1009-640X.2006.02.015

    CrossRef Google Scholar

    [12] 刘得潭, 沈振中, 徐力群, 邱莉婷, 江婷. 岩体水力劈裂临界水压力影响因素及机理研究[J]. 水利水运工程学报, 2018, 4(4):30-37.

    Google Scholar

    LIU Detan, SHEN Zhenzhong, XU Liqun, QIU Liting, JIANG Ting. Experimental studies on influence factors and mechanism of critical water pressure of hydraulic splitting in rock mass[J]. Hydro-Science and Engineering, 2018, 4(4):30-37.

    Google Scholar

    [13] 谢兴华, 速宝玉. 裂隙岩体水力劈裂研究综述[J]. 岩土力学, 2004(2):330-336.

    Google Scholar

    XIE Xinghua, SU Baoyu. A review of fracture rock hydraulic fracturing research[J]. Rock and Soil Mechanics, 2004(2):330-336.

    Google Scholar

    [14] 何宇彬, 徐超. 论喀斯特塌陷的水动力因素[J]. 水文地质工程地质, 1993(5):39-42.

    Google Scholar

    HE Yubin, XU Chao. Discussions on the hydrodynamics of karst collapse[J]. Hydrogeology and Engineering Geology, 1993(5):39-42.

    Google Scholar

    [15] 姜伏伟, 雷明堂, 管正德, 吴远斌. 土洞发育水动力判据及应用研究[C]. 全国工程地质学术年会, 2014.

    Google Scholar

    JIANG Fuwei, LEI Mingtang, GUAN Zhengde, WU Yuanbin. Hydrodynamic criterion and application of karst soil cavities[C]. National Annual Conference on Engineering Geology, 2014.

    Google Scholar

    [16] 雷明堂, 李瑜, 蒋小珍, 甘伏平, 蒙彦. 岩溶塌陷灾害监测预报技术与方法初步研究:以桂林市柘木村岩溶塌陷监测为例[J]. 中国地质灾害与防治学报, 2004(Supp.1):148-152.

    Google Scholar

    LEI Mingtang, LI Yu, JIANG Xiaozhen, GAN Fuping, MENG Yan. Preliminary study on the technology and method of sinkhole collapse monitoring and prediction: As an example of sinkhole collapse monitoring station in Zhemu village, Guilin City[J]. The Chinese Journal of Geological Hazard and Control, 2004(Supp.1):148-152.

    Google Scholar

    [17] 蒋小珍, 雷明堂. 岩溶塌陷灾害的岩溶地下水气压力监测技术及应用[J]. 中国岩溶, 2018, 37(5):786-791.

    Google Scholar

    JIANG Xiaozhen, LEI Mingtang. Monitoring technique and its application of karst groundwater-air pressure in karst collapse[J]. Carsologica Sinica, 2018, 37(5):786-791.

    Google Scholar

    [18] JIANG Xiaozhen, LEI Mingtang. Formation mechanism of large sinkhole collapses in Laibin, Guangxi[J]. Environmental Earth Sciences, 2017, 76(24):1-13.

    Google Scholar

    [19] JIANG Xiaozhen, LEI Mingtang, GAO Yongli. New karst sinkhole formation mechanism discovered in a mine dewatering area in Hunan, China[J]. Mine Water and the Environment, 2018, 37(3):625-635. doi: 10.1007/s10230-017-0486-9

    CrossRef Google Scholar

    [20] PAN Zongyuan, JIANG Xiaozhen. Mechanism of sinkhole formation during groundwater-level recovery in karst mining area, Dachengqiao, Hunan Province, China[J]. Environmental Earth Sciences, 2018, 77(24):799-812. doi: 10.1007/s12665-018-7987-0

    CrossRef Google Scholar

    [21] 李瑜, 朱平, 雷明堂, 蒋小珍, 戴建玲, 蒙彦. 岩溶地面塌陷监测技术与方法[J]. 中国岩溶, 2005,24(2):103-108. doi: 10.3969/j.issn.1001-4810.2005.02.003

    CrossRef Google Scholar

    LI Yu, ZHU Ping, LEI Mingtang, JIANG Xiaozhen, DAI Jianling, MENG Yan. Monitoring technology for karst collapse[J]. Carsologica Sinica, 2005,24(2):103-108. doi: 10.3969/j.issn.1001-4810.2005.02.003

    CrossRef Google Scholar

    [22] 张丽芬, 曾夏生, 姚运生, 廖武林. 我国岩溶塌陷研究综述[J]. 中国地质灾害与防治学报, 2007(3):126-130.

    Google Scholar

    ZHANG Lifen, ZENG Xiasheng, YAO Yunsheng, LIAO Wulin. Summary of karst sinkhole in China[J]. The Chinese Journal of Geological Hazard and Control, 2007(3):126-130.

    Google Scholar

    [23] 杨荣山, 曹世豪, 谢露, 刘学毅, 江晓禹. 列车荷载与水耦合作用下的无砟轨道水力劈裂机理分析[J]. 铁道学报, 2017, 39(6):95-103.

    Google Scholar

    YANG Rongshan, CAO Shihao, XIE Lu, LIU Xueyi, JIANG Xiaoyu. Hydraulic fracturing mechanism of slab track under coupling effect of train load and water[J]. Journal of the China Railway Society, 2017, 39(6):95-103.

    Google Scholar

    [24] 曹细冲, 蒋小珍. 矿井疏干区岩溶塌陷的水击气爆作用研究[D]. 北京: 中国地质大学(北京), 2017.

    Google Scholar

    CAO Xichong, JIANG Xiaozhen. Water hammer and gas explosion of karst collapse in mine drainage area[D]. Beijing: China University of Geosciences (Beijing), 2017.

    Google Scholar

    [25] 马骁, 蒋小珍. 岩溶空腔水气压力脉动效应的发现及意义[J]. 中国岩溶, 2019, 38(3):404-410.

    Google Scholar

    MA Xiao, JIANG Xiaozhen. Discovery and significance of water-gas pressure pulsation effect within karst cavity[J]. Carsologica Sinica, 2019, 38(3):404-410.

    Google Scholar

    [26] 杨建东, 胡金弘, 曾威, 杨桀彬. 原型混流式水泵水轮机过渡过程中的压力脉动[J]. 水利学报, 2016, 47(7):858-864.

    Google Scholar

    YANG Jiandong, HU Jinhong, ZENG Wei, YANG Jiebin. Transient pressure pulsations of prototype francis pump-turbines[J]. Journal of Hydraulic Engineering, 2016, 47(7):858-864.

    Google Scholar

    [27] 钱忠东, 陆杰, 郭志伟, 张建军. 水泵水轮机在水轮机工况下压力脉动特性[J]. 排灌机械工程学报, 2016, 34(8):672-678.

    Google Scholar

    QIAN Zhongdong, LU Jie, GUO Zhiwei, ZHANG Jianjun. Characteristics of pressure fluctuation in pump-turbine under turbine mode[J]. Journal of Drainage and Irrigation Machinery Engineering, 2016, 34(8):672-678.

    Google Scholar

    [28] 李琪飞, 刘超, 王源凯, 权辉. 异常低水头下水泵水轮机压力脉动特性分析[J]. 兰州理工大学学报, 2017, 43(2):59-64.

    Google Scholar

    LI Qifei, LIU Chao, WANG Yuankai, QUAN Hui. Analysis of pressure fluctuation characteristics of pump-turbine under abnormally low head[J]. Journal of Lanzhou University of Technology, 2017, 43(2):59-64.

    Google Scholar

    [29] 宋希杰, 刘超, 杨帆, 查智力, 严天序, 黄佳卫. 水泵进水池底部压力脉动特性试验[J]. 农业机械学报, 2017, 48(11):196-203. doi: 10.6041/j.issn.1000-1298.2017.11.024

    CrossRef Google Scholar

    SONG Xijie, LIU Chao, YANG Fan, ZHA Zhili, YAN Tianxu, HUANG Jiawei. Experiment on characteristics of pressure fluctuation at bottom of pumping suction passage[J]. Transactions of the Chinese Society for Agricultural Machinery, 2017, 48(11):196-203. doi: 10.6041/j.issn.1000-1298.2017.11.024

    CrossRef Google Scholar

    [30] 郑源, 汪宝罗, 屈波. 混流式水轮机尾水管压力脉动研究综述[J]. 水力发电, 2007(2):66-69. doi: 10.3969/j.issn.0559-9342.2007.02.022

    CrossRef Google Scholar

    ZHENG Yuan, WANG Baoluo, QU Bo. Study on the pressure pulse in the draft tube of francis turbine[J]. Hydro Power, 2007(2):66-69. doi: 10.3969/j.issn.0559-9342.2007.02.022

    CrossRef Google Scholar

    [31] 孙淑清. 调压井水位波动会引起机组振动:天生桥水电厂机组振动试验结果与经验教训[J]. 水电站机电技术, 1997(4):68.

    Google Scholar

    SUN Shuqing. Flucturation of water level in surge shaft cause unit vibration–Results and lessons from vibration test of units in Tianshenqiao Hydropower Station[J]. Electromechanical Technology of Hydropower Station, 1997(4):68.

    Google Scholar

    [32] Yeon-Whan Kim, Young-Shin Lee. Damage prevention design of the branch pipe under pressure pulsation transmitted from main steam header[J]. Journal of Mechanical Science and Technology, 2008, 22(4): 647-652.

    Google Scholar

    [33] 李昕, 陈婧, 马震岳. 混凝土蜗壳结构在脉动压力作用下的疲劳破坏[J]. 黑龙江大学工程学报, 2018, 9(2):7-12, 51.

    Google Scholar

    LI Xin, CHEN Jing, MA Zhenyue. Fatigue failure on concrete spiral case structure under pulsation pressure[J]. Journal of Engineering of Heilongjiang University, 2018, 9(2):7-12, 51.

    Google Scholar

    [34] 李爱华, 朱江, 李成华. 缝隙中脉动压力传播模型的进一步探讨[J]. 水利学报, 2015, 46(5):626-630.

    Google Scholar

    LI Aihua, ZHU Jiang, LI Chenghua. Further discussion on propagation model of fluctuating pressure within cracks[J]. Journal of Hydraulic Engineering, 2015, 46(5):626-630.

    Google Scholar

    [35] 寇攀高, 邓磊, 刘平, 吴长利. 基于频域分段-时域反演法的抽水蓄能机组大波动过渡过程水压脉动信号分析[J]. 大电机技术, 2016(6):41-47.

    Google Scholar

    KOU Pangao, DENG Lei, LIU Ping, WU Changli. The pressure fluctuation signal analysis of pump hydraulic turbine based on segment in frequency domain and peak analysis in time domain[J]. Large Electric Machine and Hydraulic Turbine, 2016(6):41-47.

    Google Scholar

    [36] 杨雯, 欧阳于蓝, 宋子明, 孙亚全. 长距离多支线重力原水输水管道关阀水锤分析及防护措施[J]. 净水技术, 2018, 37(3):87-94.

    Google Scholar

    YANG Wen, OUYANG Yulan, SONG Ziming, SUN Yaquan. Analysis and prevention measures of valve-closure water hammer for gravity raw water pipelines system with long-distance and multi-branches[J]. Water Purification Technology, 2018, 37(3):87-94.

    Google Scholar

    [37] Sadanand T S D. Hydraulic transient analysis of kolar water pipeline using bently hammer V8i–A case study[J]. International Journal of Engineering Research & Technology, 2014, 3(9).

    Google Scholar

    [38] 王玉林, 刘元成. Bentley Hammer软件在泵站水锤防护中的应用[J]. 中国水运(下半月), 2012, 12(9):86-87.

    Google Scholar

    WANG Yulin, LIU Yuancheng. The application of bentley hammer software in water hammer protection of pump station[J]. China Water Transport (The second half of the month), 2012, 12(9):86-87.

    Google Scholar

    [39] 王琰, 康雅, 李政帅, 苏喆, 沈磊, 赵慧君, 巫京京. 基于Bentley Hammer V8i的长距离输水管道停泵水锤模拟分析[J]. 给水排水, 2013, 49(4):114-117.

    Google Scholar

    WANG Yan, KANG Ya, LI Zhengshuai, SU Zhe, SHEN Lei, ZHAO Huijun, WU Jingjing. Simulation analysis on water hammer caused by pump failure in long distance water transmission pipe line based on Bentley Hammer V8i[J]. Water & Wastewater Engineering, 2013, 49(4):114-117.

    Google Scholar

    [40] 史淑娟, 周浩洋, 陈二锋, 谷良贤, 赵涛. 输送管路低频压力脉动研究[J]. 强度与环境, 2014, 41(3):8-14. doi: 10.3969/j.issn.1006-3919.2014.03.002

    CrossRef Google Scholar

    SHI Shujuan, ZHOU Haoyang, CHEN Erfeng, GU Liangxian, ZHAO Tao. Research on pressure fluctuation of low frequency phenomenon in rocket[J]. Structure & Environment Engineering, 2014, 41(3):8-14. doi: 10.3969/j.issn.1006-3919.2014.03.002

    CrossRef Google Scholar

    [41] 黄继汤. 空化与空蚀的原理及应用[M]. 北京: 清华大学出版社, 1991.

    Google Scholar

    HUANG Jitang. Principle and application of cavitation and cavitation erosion[M]. Beijing: Tsinghua University Press, 1991

    Google Scholar

    [42] 王勇. 泵汽蚀研究现状及展望[J]. 水泵技术, 2018(1):1-10.

    Google Scholar

    WANG Yong. Research status and prospect of pump cavitaion[J]. Pump Technology, 2018(1):1-10.

    Google Scholar

    [43] 马富银, 杨国平, 吴伟蔚. 泵的空化现象研究进展[J]. 流体机械, 2011, 39(4):30-34.

    Google Scholar

    MA Fuyin, YANG Guoping, WU Weiwei. Development of cavitation study on pump[J]. Fluid Machinery, 2011, 39(4):30-34.

    Google Scholar

    [44] 刘凯, 杜润, 柯坚. 气蚀的CFD 评价方法[J]. 液压气动与密封, 2011(5):32-35. doi: 10.3969/j.issn.1008-0813.2011.05.010

    CrossRef Google Scholar

    LIU Kai, DU Run, KE Jian. Evaluation method of cavitation erosion with CFD[J]. Hydraulics Pneumatics & Seals, 2011(5):32-35. doi: 10.3969/j.issn.1008-0813.2011.05.010

    CrossRef Google Scholar

    [45] 秦耀东, 杜德军, 张海林. 垂直饱和流阶跃输入下稳态-瞬态-稳态过程研究: 均匀饱和土柱中水击现象分析[J]. 水利学报, 2001(9):28-34. doi: 10.3321/j.issn:0559-9350.2001.09.005

    CrossRef Google Scholar

    QIN Yaodong, DU Dejun, ZHANG Hailin. Analysis of water hammer in an uniform saturated soil column[J]. Journal of Hydraulic Engineering, 2001(9):28-34. doi: 10.3321/j.issn:0559-9350.2001.09.005

    CrossRef Google Scholar

    [46] 蒋明, 赵赋. 槽头式野战管线水击波速测量研究[J]. 后勤工程学院学报, 2004(4):21-25. doi: 10.3969/j.issn.1672-7843.2004.04.006

    CrossRef Google Scholar

    JIANG Ming, ZHAO Fu. Study on measurement of water hammer wave velocity in field pipeline with slot head[J]. Journal of Logistical Engineering University, 2004(4):21-25. doi: 10.3969/j.issn.1672-7843.2004.04.006

    CrossRef Google Scholar

    [47] Cameron Stanley, Gary Rosengarten, Brian Milton, Tracie Barber. Investigation of cavitation in a large-scale transparent nozzle[S]. F2008-SC-001, 2008.

    Google Scholar

    [48] A W Momber. Aggregate liberation from concrete by flow cavitation[J]. International Journal of Mineral, 2004, 74:177-187.

    Google Scholar

    [49] 吴道虎, 李朝晖. 基于声学的水轮机状态监测技术研究[D]. 武汉: 华中科技大学, 2006.

    Google Scholar

    WU Daohu, LI Zhaohui. Study on acoustics based condition monitoring technique of hydro turbines[D]. Wuhan: Huazhong University of Science and Technology, 2006.

    Google Scholar

    [50] 董志勇, 吕阳泉, 居文杰, 蔡新明, 丁春生. 高速水流空化区和空蚀区掺气特性的试验研究[J]. 水力发电学报, 2006, 25(4):63-65.

    Google Scholar

    DONG Zhiyong, LYU Yangquan, JU Wenjie, CHAI Xinming, DING Chunsheng. Experimental study of aerated characteristics in cavitation region of high velocity flow[J]. Journal of Hydroelectric Engineering, 2006, 25(4):63-65.

    Google Scholar

    [51] 马洪琪. 水力式新型升船机关键技术研究[J]. 水利学报, 2018, 49(4):446-455.

    Google Scholar

    MA Hongqi. Research on the key technologies of hydraulic new type ship lift[J]. Journal of Hydraulic Engineering, 2018, 49(4):446-455.

    Google Scholar

    [52] 王国玉. 通气对空蚀的影响及高速摄影观察[J]. 水力发电学报, 2001(1):48-57.

    Google Scholar

    WANG Guoyu. Ventilation effects on cavitation erosion around a hollow-jet valve[J]. Journal of Hydroelectric Engineering, 2001(1):48-57.

    Google Scholar

    [53] 赵云秀. 过水建筑物通风掺气设计[J]. 云南水力发电, 2016, 32(6):96-100.

    Google Scholar

    ZHAO Yunxiu. The ventilation and aeration design of overflow structures[J]. Yunnan Water Power, 2016, 32(6):96-100.

    Google Scholar

    [54] 熊水应, 关兴旺, 金锥. 多处水柱分离与断流弥合水锤综合防护问题及设计实例[J]. 给水排水, 2003, 29(7):1-6.

    Google Scholar

    XIONG Shuiying, GUAN Xingwang, JIN Zhui. Problems and design example of comprehensive protection for water hammer due to cavities collapsing with water column separation at multi-points[J]. Water & Wastewater Engineering, 2003, 29(7):1-6.

    Google Scholar

    [55] Caupin F, Herbert E. Cavitation in water: A review[J]. Comptes Rendus Physique, 2006(7):1000-1017.

    Google Scholar

    [56] K J McManus, R O Davis. Dilation-induced pore fluid cavitation in sands[J]. Geotechnique, 1997, 47(1):173-177. doi: 10.1680/geot.1997.47.1.173

    CrossRef Google Scholar

    [57] Dariusz Gawin, Lorenzo Sanavia. Simulation of cavitation in water saturated porous media considering effects of dissolved air[J]. Transport in Porous Media, 2010, 81(1):141-160. doi: 10.1007/s11242-009-9391-4

    CrossRef Google Scholar

    [58] Newman T G, Ghail R C, Skipper J A. Deoxygenated gas occurrences in the lambeth group of central London[J]. Quarterly Journal of Engineering Geology and Hydrology, 2013, 46:176-177.

    Google Scholar

    [59] J Standing, R Ghail, D Coyne. Gas generation and accumulation by aquifer drawdown and recharge in the London Basin[J]. Quarterly Journal of Engineering Geology and Hydrogeology, 2013, 46:293-302. doi: 10.1144/qjegh2013-030

    CrossRef Google Scholar

    [60] 夏禾, 郭薇薇, 张楠. 车桥系统共振机理和共振条件分析[J]. 铁道学报, 2006(5):52-58. doi: 10.3321/j.issn:1001-8360.2006.05.010

    CrossRef Google Scholar

    XIA He, GUO Weiwei, ZHANG Nan. Analysis of resonance mechanism and conditions of train-bridge system[J]. Journal of the China Railway Society, 2006(5):52-58. doi: 10.3321/j.issn:1001-8360.2006.05.010

    CrossRef Google Scholar

    [61] 周勇政. 高速铁路共振问题相关标准研究[J]. 铁道标准设计, 2018, 62(9):182-186.

    Google Scholar

    ZHOU Yongzheng. Study on specifications of high speed railway resonance[J]. Railway Standard Design, 2018, 62(9):182-186.

    Google Scholar

    [62] 李光旭, 李万平, 李环. 充液直圆管道水体固有频率分析[J]. 水动力学研究与进展(A辑), 2008(2):134-140.

    Google Scholar

    LI Guangxu, LI Wanping, LI Huan. Analysis of the inherent frequency of water in an cylinder pipe[J]. Chinese Journal of Hydrodynamics, 2008(2):134-140.

    Google Scholar

    [63] 郝励. 基于Bentley Autopipe的往复压缩机管线模拟及振动原因分析[J]. 机械研究与应用, 2017, 30(1):52-55.

    Google Scholar

    HAO Li. Pipeline simulation and vibration analysis of reciprocating compressor based on Autopipe Bentley[J]. Mechanical Research & Application, 2017, 30(1):52-55.

    Google Scholar

    [64] 罗小杰, 罗程. 岩溶地面塌陷三机理理论及其应用[J]. 中国岩溶, 2021, 40(2):171-178.

    Google Scholar

    LUO Xiaojie, LUO Cheng. Three-Mechanism Theory (TMT) of karst ground collapse and its application[J]. Carsologica Sinica, 2021, 40(2):171-178.

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(1)

Tables(1)

Article Metrics

Article views(1471) PDF downloads(44) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint