2023 No. 3
Article Contents

YU Yuefeng, ZENG Chengcheng, SONG Tongqing, PENG Wanxia, HE Tieguang. Spatial variation of limestone soil minerals in a karst area of northwestern Guangxi[J]. Carsologica Sinica, 2023, 42(3): 509-516, 527. doi: 10.11932/karst20230303
Citation: YU Yuefeng, ZENG Chengcheng, SONG Tongqing, PENG Wanxia, HE Tieguang. Spatial variation of limestone soil minerals in a karst area of northwestern Guangxi[J]. Carsologica Sinica, 2023, 42(3): 509-516, 527. doi: 10.11932/karst20230303

Spatial variation of limestone soil minerals in a karst area of northwestern Guangxi

More Information
  • As extremely important components of soil and constitutors of soil skeleton, soil minerals account for over 95% of the solid mass of soil. They directly participate in the entire process of soil weathering, soil formation, and plant growth and development, impacting significantly on the internal structure, exchange capacity, and fertility status of soil. Studying the spatial distribution of soil mineral elements is of great significance for understanding and mastering soil development, physical and chemical properties, and the supply status of plant nutrients. Because of the special formation matrix and ecological environment conditions of carbonate rock—the parent material of limestone soil in karst areas, soil in karst areas presents a high degree of spatial heterogeneity. At the same time, the shortage of mineral nutrients may be an important limiting factor for the growth and restoration of vegetation in mountainous areas of carbonate rock in southwestern China. However, the spatial distribution characteristics of soil minerals on a large scale in the karst area of northwestern Guangxi are currently unclear. Clarifying the spatial variation characteristics of limestone minerals in the karst area of northwestern Guangxi can provide reference for the effective utilization of mineral resources and ecological restoration and reconstruction. In order to explore the distribution pattern of the main soil mineral components in the karst area of northwestern Guangxi and to guide vegetation restoration and ecological reconstruction in the relevant area, the spatial heterogeneity of mineral components (SiO2, Fe2O3, CaO, MgO, Al2O3, and MnO) in surface soil (0-15 cm) and its influencing factors were studied by the methods of classical statistics and geostatistics. The soil samples were collected by the grid method based on the whole karst regional scale in northwestern Guangxi. The results show that the content differences and variance coefficients of six mineral components in limestone soil of karst area in northwestern Guangxi are large. The average content of SiO2 is up to 55.72%, while the variance coefficient is the smallest (37.50%). The sum of SiO2 and Al2O3 accounts for 85.22% of the total six mineral components. The spatial patterns of the six mineral components are quite different from each other, and fit different models of mineral components. The spatial autocorrelation of SiO2 is medium, but the autocorrelations of Al2O3 and MnO are weak, and their ranges are long in good spatial continuum. CaO, Fe2O3 and MgO are characterized by strong spatial autocorrelations with short ranges. The spatial distribution of minerals is closely related to the main nutrients and topographic characteristics. The spatial variation of Al2O3 and Fe2O3 is mainly affected by the altitude. The bare rock rate is the main topographic factor affecting the spatial variation of SiO2, MnO and MgO, and the gradient is the main factor affecting the spatial distribution of CaO. A principal component analysis show that the soil mineral is an important factor affecting the spatial variation of limestone soil, especially SiO2. On a large regional scale, various topographic factors affect the spatial variation limestone soil minerals, and hence impacting the spatial distribution of limestone soil.

  • 加载中
  • [1] 王炜明. 基于GIS 的地统计学方法在土壤科学中的应用[J]. 中国农学通报, 2007, 23(5):404-408.

    Google Scholar

    WANG Weiming. Utilization of geo-statistic with GIS in soil sciences[J]. Chinese Agricultural Science Bulletin, 2007, 23(5):404-408.

    Google Scholar

    [2] Powers J S. Changes in soil carbon and nitrogen after contrasting land-use transitions in Northeastern Costa Rica[J]. Ecosystems, 2004, 7(2):134-146.

    Google Scholar

    [3] Dunjo G, Pardini G, Gispert M. Land use change effects on abandoned terraced soils in a Mediterranean catchment, NE Spain[J]. Catena, 2003, 52(16):23-37.

    Google Scholar

    [4] Descroix L, Viramontes D, Vauclin M, Gonzalez Barrios J L, Esteves M. Influence of soil surface features and vegetation on runoff and erosion in the Western Sierra Madre (Durango, Northwest Mexico)[J]. Catena, 2001, 43(2):115-135. doi: 10.1016/S0341-8162(00)00124-7

    CrossRef Google Scholar

    [5] 黄昌勇. 土壤学[M]. 北京: 中国农业出版社, 2000 .

    Google Scholar

    [6] 李莎莎, 范夫静, 宋同清, 黄国勤, 曾馥平, 彭晚霞, 杜虎. 西南峡谷型喀斯特区坡地土壤矿物质的空间分布特征[J]. 生态学报, 2014, 34(18):5320-5327.

    Google Scholar

    LI Shasha, FAN Fujing, SONG Tongqing, HUANG Guoqin, ZENG Fuping, PENG Wanxia, DU Hu. Spatial variation of soil minerals in the gorge karst region, Southwest China[J]. Acta Ecologica Sinica, 2014, 34(18):5320-5327.

    Google Scholar

    [7] 朱祖祥. 土壤学[M]. 北京: 农业出版社, 1983.

    Google Scholar

    [8] 王世杰, 卢红梅, 周运超, 谢丽萍, 肖德安. 茂兰喀斯特原始森林土壤有机碳的空间变异性与代表性土样采集方法[J]. 土壤学报, 2007, 44(3):475-483.

    Google Scholar

    WANG Shijie, LU Hongmei, ZHOU Yunchao, XIE Liping, XIAO De'an. Spatial variability of soil organic carbon and representative soil sampling method in Maolan karst virgin forest[J]. Acta Pedologica Sinica, 2007, 44(3):475-483.

    Google Scholar

    [9] 张伟, 陈洪松, 王克林, 张继光, 侯娅. 典型喀斯特峰丛洼地坡面土壤养分空间变异性研究[J]. 农业工程学报, 2008, 24(1):68-73.

    Google Scholar

    ZHANG Wei, CHEN Hongsong, WANG Kelin, ZHANG Jiguang, HOU Ya. Spatial variability of soil nutrients on hillslope in typical karst peak-cluster depression areas[J]. Transactions of the Chinese Society of Agricultural Engineering, 2008, 24(1):68-73.

    Google Scholar

    [10] 张信宝, 王克林. 西南碳酸盐岩石质山地土壤-植被系统中矿质养分不足问题的思考[J]. 地球与环境, 2009, 37(4):337-341.

    Google Scholar

    ZHANG Xinbao, WANG Kelin. Ponderation on the shortage of mineral nutrients in the soilvege tation ecosystem in carbonate rock-distributed mountain regions in Southwest China[J]. Earth and Environment, 2009, 37(4):337-341.

    Google Scholar

    [11] 喻阳华, 杨丹丽, 钟欣平. 黔中喀斯特区典型土地利用类型的土壤亲合性元素特征[J]. 地球与环境, 2019, 47(4):429-435.

    Google Scholar

    YU Yanghua, YANG Danli, ZHONG Xinping. Characteristics of soil affinity elements of typical land use types in the rocky desertification area of central Guizhou[J]. Earth and Environment, 2019, 47(4):429-435.

    Google Scholar

    [12] 韩美荣, 宋同清, 彭晚霞, 黄国勤, 杜 虎, 鹿士杨, 时伟伟. 喀斯特峰丛洼地土壤矿物质的组成特征与作用[J]. 应用生态学报, 2012, 23(3):685-693.

    Google Scholar

    HAN Meirong, SONG Tongqing, PENG Wanxia, HUANG Guoqin, DU Hu, LU Shiyang, SHI Weiwei. Compositional characteristics and roles of soil mineral substances in depressions between hills in karst region[J]. Chinese Journal of Applied Ecology, 2012, 23(3):685-693.

    Google Scholar

    [13] 杜虎, 宋同清, 彭晚霞, 王克林, 刘璐, 鹿士杨, 曾馥平. 木论喀斯特自然保护区表层土壤矿物质的空间异质性[J]. 农业工程学报, 2011, 27(6):79-84, 400.

    Google Scholar

    DU Hu, SONG Tongqing, PENG Wanxia, WANG Kelin, LIU Lu, LU Shiyang, ZENG Fuping. Spatial heterogeneity of mineral compositions in surface soil in Mulun National Natural Reserve karst areas[J]. Transactions of the Chinese Society of Agricultural Engineering, 2011, 27(6):79-84, 400.

    Google Scholar

    [14] 李龙, 姚云峰, 秦富仓, 高玉寒, 张美丽. 黄花甸子流域土壤全氮含量空间分布及其影响因素[J]. 应用生态学报, 2015, 26(5):1306-1312.

    Google Scholar

    LI Long, YAO Yunfeng, QIN Fucang, GAO Yuhan, ZHANG Meili. Spatial distribution pattern of soil nitrogen in Huanghuadianzi watershed and related affecting factors[J]. Chinese Journal of Applied Ecology, 2015, 26(5):1306-1312.

    Google Scholar

    [15] 俞月凤, 何铁光, 宋同清, 李丽娟, 韦彩会, 蒙炎成, 唐红琴, 李忠义, 李婷婷, 胡芳. 桂西北喀斯特地区石灰土养分空间变异特征[J]. 生态学报, 2018, 38(8):2906-2914.

    Google Scholar

    YU Yuefeng, HE Tieguang, SONG Tongqing, LI Lijuan, WEI Caihui, MENG Yancheng, TANG Hongqin, LI Zhongyi, LI Tingting, HU Fang. Spatial variability of limestone soil nutrients in a karst area of northwestern Guangxi[J]. Acta Ecologica Sinica, 2018, 38(8):2906-2914.

    Google Scholar

    [16] 刘光崧. 土壤理化分析与剖面描述[M]. 北京: 中国标准出版社, 1996.

    Google Scholar

    LIU Guangsong. Soil physical and chemical analysis and description of soil profile[M]. Beijing: China Standards Press, 1996.

    Google Scholar

    [17] 王强, 戴九兰, 付合才, 申天琳, 吴大千, 王仁卿. 空间分析方法在微生物生态学研究中的应用[J]. 生态学报, 2010, 30(2):439-446.

    Google Scholar

    WANG Qiang, DAI Jiulan, FU Hecai, SHEN Tianlin, WU Daqian, WANG Renqing. The application of spatial analysis methods to microbial ecology[J]. Acta Ecologica Sinica, 2010, 30(2):439-446.

    Google Scholar

    [18] Cambardella C A, Moorman T B, Parkin T B, Karlen D L, Novak J M, Turco R F, Konopka A E. Field-scale variability of soil properties in central Iowa soils[J]. Soil Science Society of America Journal, 1994, 58(5):1501-1511. doi: 10.2136/sssaj1994.03615995005800050033x

    CrossRef Google Scholar

    [19] 王改改, 傅瓦利, 魏朝富, 袁红. 消落带土壤铁的形态变化及其对有效磷的影响[J]. 土壤通报, 2008, 39(1):66-70.

    Google Scholar

    WANG Gaigai, FU Wali, WEI Chaofu, YUAN Hong. Iron transformation and phosphorus availability in a drawdown area of Three Gorges Reservoir[J]. Chinese Journal of Soil Science, 2008, 39(1):66-70.

    Google Scholar

    [20] 金发会, 李世清, 卢红玲, 李生秀. 石灰性土壤微生物量碳、氮与土壤颗粒组成和氮矿化势的关系[J]. 应用生态学报, 2007, 18(12):2739-2746.

    Google Scholar

    JIN Fahui, LI Shiqing, LU Hongling, LI Shengxiu. Relationships of microbial biomass carbon and nitrogen with particle composition and nitrogen mineralization potential in calcareous soil[J]. Chinese Journal of Applied Ecology, 2007, 18(12):2739-2746.

    Google Scholar

    [21] 郭杏妹, 吴宏海, 罗媚, 何广平. 红壤酸化过程中铁铝氧化物矿物形态变化及其环境意义[J]. 岩石矿物学杂志, 2007, 26(6):515-521.

    Google Scholar

    GUO Xingmei, WU Honghai, LUO Mei, HE Guangping. The morphological change of Fe/Al-oxide minerals in red soils in the process of acidification and its environmental significance[J]. Acta Petrologica Et Mineralogica, 2007, 26(6):515-521.

    Google Scholar

    [22] 中国科学院南京土壤研究所. 中国土壤系统分类土壤物理和化学分析方法[M]. 北京: 中国农业科技出版社, 1992.

    Google Scholar

    [23] Enoki T, Kawaguchi H, Iwatsubo G. Topographic variations of soil properties and stand structure in a Pinus thunbergii plantation[J]. Ecological Research, 1996, 11(3):299-309. doi: 10.1007/BF02347787

    CrossRef Google Scholar

    [24] Tateno R, Takeda H. Forest structure and tree species distribution in relation to topography-mediated heterogeneity of soil nitrogen and light at the forest floor[J]. Ecological Research, 2003, 18(5):559-571. doi: 10.1046/j.1440-1703.2003.00578.x

    CrossRef Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(2)

Tables(3)

Article Metrics

Article views(352) PDF downloads(9) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint