China Aero Geophysical Survey and Remote Sensing Center for Natural ResourcesHost
地质出版社Publish
2024 Vol. 48, No. 4
Article Contents

ZHANG Min, XU Yi-Zhuo, YI Ji-Dong. 2024. A method for seismic data denoising based on the neural network with a retractable attention mechanism. Geophysical and Geochemical Exploration, 48(4): 1065-1075. doi: 10.11720/wtyht.2024.1380
Citation: ZHANG Min, XU Yi-Zhuo, YI Ji-Dong. 2024. A method for seismic data denoising based on the neural network with a retractable attention mechanism. Geophysical and Geochemical Exploration, 48(4): 1065-1075. doi: 10.11720/wtyht.2024.1380

A method for seismic data denoising based on the neural network with a retractable attention mechanism

  • Random noise in seismic data impairs the quality of the data, thus affecting the accuracy of subsequent processing and interpretation.Conventional denoising methods, constrained by prior conditions, exhibit low efficiency.Neural networks possess a strong feature extraction ability, which can make up for these shortcomings.However, the limitations of convolution kernels in conventional neural networks may lead to the loss of global information.Hence, this study introduced a retractable attention mechanism to the convolutional neural network (CNN).This mechanism presents both dense and sparse self-attention modules in the CNN.The alternate use of the two self-attention modules can significantly enhance the performance of the CNN and expand the receptive field.The shallow and deep features of seismic data were extracted using the convolutional layer and self-attention modules.Combined with CNN's local modeling ability and Transformer's global modeling ability, they contributed to enhancing CNN's global interaction and ability to reduce noise and deal with details.As indicated by the experimental results of synthetic and field data, the method used in this study can more effectively suppress noise and retain effective information of seismic data compared to Unet and DnCNN, significantly improving the signal-to-noise ratio and thus assisting in the processing and interpretation of seismic data.
  • 加载中
  • [1] Li J, Wu X, Hu Z.Deep learning for simultaneous seismic image super-resolution and denoising[J].IEEE Transactions on Geoscience and Remote Sensing, 2022, 60(1):1-11.

    Google Scholar

    [2] 曹静杰, 杨志权, 杨勇, 等.一种基于曲波变换的自适应地震随机噪声消除方法[J].石油物探, 2018, 57(1):72-78.

    Google Scholar

    Cao J J, Yang Z Q, Yang Y, et al.An adaptive seismic random noise elimination method based on Curvelet transform[J].Geophysical Prospecting for Petroleum, 2018, 57(1):72-78.

    Google Scholar

    [3] 吴招才, 刘天佑.地震数据去噪中的小波方法[J].地球物理学进展, 2008, 23(2):493-499.

    Google Scholar

    Wu Z C, Liu T Y.Wavelet method in seismic data attenuation[J].Progress in Geophysics, 2008, 23(2):493-499.

    Google Scholar

    [4] 张恒磊, 张云翠, 宋双, 等.基于Curvelet域的叠前地震资料去噪方法[J].石油地球物理勘探, 2008, 43(5):508-513.

    Google Scholar

    Zhang H L, Zhang Y C, Song S, et al.Curvelet domain-based prestack seismic data denoise method[J].Oil Geophysical Prospecting, 2008, 43(5):508-513.

    Google Scholar

    [5] 孙苗苗, 李振春, 曲英铭, 等.基于曲波域稀疏约束的OVT域地震数据去噪方法研究[J].石油物探, 2019, 58(2):208-218.

    Google Scholar

    Sun M M, Li Z C, Qu Y M, et al.A seismic denoising method based on Curvelet transform with constraint in OVT domain[J].Geophysical Prospecting for Petroleum, 2019, 58(2):208-218.

    Google Scholar

    [6] 薛昭, 董良国, 单联瑜.Radon变换去噪方法的保幅性理论分析[J].石油地球物理勘探, 2012, 47(6):858-867.

    Google Scholar

    Xue Z, Dong L G, Shang L Y.Amplitude preservation theoretical analysis of Radon transforms denoising method[J].Oil Geophysical Prospecting, 2012, 47(6):858-867.

    Google Scholar

    [7] Liu C, Liu Y, Yang B J, et al. A 2D multistage median filter to reduce random seismic noise[J].Geophysics, 2006, 71(5):V105-V110.

    Google Scholar

    [8] 国胧予, 刘财, 刘洋, 等.基于f-x域流式预测滤波器的地震随机噪声衰减方法[J].地球物理学报, 2020, 63(1):329-338.

    Google Scholar

    Guo L Y, Liu C, Liu Y, et al.Seismic random noise attenuation based on streaming prediction filter in the f-x domain[J].Chinese Journal of Geophysics, 2020, 63(1):329-338.

    Google Scholar

    [9] Naghizadeh M, Sacchi M.Multicomponent f-x seismic random noise attenuation via vector autoregressive operators[J].Geophysics, 2012, 77(2):V91-V99.

    Google Scholar

    [10] Witten B, Shragge J.Extended wave-equation imaging conditions for passive seismic data[J].Geophysics, 2015, 80(6):WC61-WC72.

    Google Scholar

    [11] 张良, 韩立国, 方金伟, 等.双稀疏字典和FISTA的地震数据去噪[J].地球物理学报, 2019, 62(7):2071-2683.

    Google Scholar

    Zhang L, Han L G, Fang J W, et al.Seismic data denoising via double sparsity dictionary and fast iterative shrinkage-thresholding algorithm[J].Chinese Journal of Geophysics, 2019, 62(7):2071-2683.

    Google Scholar

    [12] 唐杰, 孟涛, 张文征, 等.利用基于深度学习的过完备字典信号稀疏表示算法压制地震随机噪声[J].石油地球物理勘探, 2020, 55(6):1202-1209, 1160.

    Google Scholar

    Tang J, Meng T, Zhang W Z, et al.Suppression of seismic random noise with overcomplete dictionary signal sparse representation algorithm based on deep learning[J].Oil Geophysical Prospecting, 2020, 55(6):1202-1209, 1160.

    Google Scholar

    [13] 宋辉, 高洋, 陈伟, 等.基于卷积降噪自编码器的地震数据去噪[J].石油地球物理勘探, 2020, 55(6):1210-1219, 1160-1161.

    Google Scholar

    Song H, Gao Y, Chen W, et al.Seismic noise suppression based on convolutional denoising autoencoder [J].Oil Geophysical Prospecting, 2020, 55(6):1210-1219, 1160-1161.

    Google Scholar

    [14] Wang Y Q, Lu W K, Liu J L, et al.Random seismic noise attenuation bas ed on data augmentation and CNN [J].Chinese Journal of Geophysics, 2019, 62(1):421-433.

    Google Scholar

    [15] 高好天, 孙宁娜, 孙可奕, 等.DnCNN和U-Net对地震随机噪声压制的对比分析[J].地球物理学进展, 2021, 36(6):2441-2453.

    Google Scholar

    Gao H T, Sun N N, Sun K Y, et al. Comparative analysis of DnCNN and U-Net on suppression of seismic random doise[J].The Journal of China Universities of Posts and Telecommunications, 2021, 36(6):2441-2453.

    Google Scholar

    [16] Wang F, Chen S.Residual learning of deep convolutional neural network for seismic random noise attenuation[J].IEEE Geoscience and Remote Sensing Letters, 2019, 16(8):1314-1318.

    Google Scholar

    [17] 陈天, 易远元.基于深度卷积神经网络的地震数据随机噪声压制[J].地震学报, 2021, 43(4):474-482, 533.

    Google Scholar

    Chen T, Yi Y Y.Random noise suppression of seismic data based on deep convolutional neural network [J].Acta Seismologica Sinica, 2021, 43(4):474-482, 533.

    Google Scholar

    [18] Si X, Yuan Y, Si T, et al.Attenuation of Random noise using denoising convolutional neural networks[J].Interpretation, 2019, 7(3):SE269-SE280.

    Google Scholar

    [19] 王钰清, 陆文凯, 刘金林, 等.基于数据增广和CNN的地震随机噪声压制[J].地球物理学报, 2019, 62(1):421-433.

    Google Scholar

    Wang Y Q, Lu W K, Liu J L, et al. Random seismic noise attention based on data augmentation and CNN [J].Chinese Journal of Geophysics, 2019, 62(1):421-433.

    Google Scholar

    [20] 罗仁泽, 李阳阳.一种基于RUnet卷积神经网络的地震资料随机噪声压制方法[J].石油物探, 2020, 59(1):51-59.

    Google Scholar

    Luo R Z, Li Y Y.Random seismic noise attenuation based on RUnet convolutional neural network [J].Geophysical Prospecting for Petroleum, 2020, 59(1):51-59.

    Google Scholar

    [21] Yang L, Chen W, Wang H, et al.Deep learning seismic random noise attenuation via improved residual convolutional neural network[J].IEEE Transactions on Geoscience and Remote Sensing, 2021, 59(9):7968-7981.

    Google Scholar

    [22] 杨翠倩, 周亚同, 何昊, 等.基于全局上下文和注意力机制深度卷积神经网络的地震数据去噪[J].石油物探, 2021, 60(5):751-762, 855.

    Google Scholar

    Yang C Q, Zhou Y T, He H, et al.Global context and attention-based deep convolutional neural network for seismic data denoising [J].Geophysical Prospecting for Petroleum, 2021, 60(5):751-762, 855.

    Google Scholar

    [23] 周文辉, 石敏, 朱登明, 等.基于残差注意力网络的地震数据超分辨率方法[J].计算机科学, 2021, 48(8):24-31.

    Google Scholar

    Zhou W H, Shi M, Zhu D M, et al.Seismic data super-resolution method based on residual attention network [J].Computer Science, 2021, 48(8):24-31.

    Google Scholar

    [24] Liu Z, Lin Y T, Cao Y, et al.Swin transformer:Hierarchical vision transformer using shifted windows [C]//Montreal:2021 IEEE/CVF International Conference on Computer Vision(ICCV), 2021:9992-10002.

    Google Scholar

    [25] Cao H, Wang Y Y, Chen J, et al.Swin-Unet:Unet-like pure transformer for medical image segmentation[J].Image and Video Processing, 2021.

    Google Scholar

    [26] Fan C M, Liu T J, Liu K H.SUNet:Swin transformer UNet for image denoising[C]//Austin:2022 IEEE International Symposium on Circuits and Systems(ISCAS), 2022:2333-2337.

    Google Scholar

    [27] Zhang K, Li Y, Liang J, et al.Practical blind image denoising via swin-conv-UNet and data synthesis[J].Machine Inteligence Research, 2023, 20(6):822-836.

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Article Metrics

Article views(141) PDF downloads(37) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint