| [1] | Chen Y K, Chen H M, Xiang K, et al.Geological structure guided well log interpolation for high-fidelity full waveform inversion[J].Geophysical Journal International, 2016, 207(2):1313-1331. 						Google Scholar
						 | 
					
								| [2] | 王华忠, 王雄文, 王西文.地震波反演的基本问题分析[J].岩性油气藏, 2012, 24(6):1-9. 						Google Scholar
						Wang H Z, Wang X W, Wang X W.Analysis of the basic problems of seismic wave inversion[J].Lithologic Reservoirs, 2012, 24(6):1-9. 						Google Scholar
						 | 
					
								| [3] | 蒋星达, 张伟, 杨辉.地球物理反演问题中的贝叶斯方法研究[J].地球与行星物理论评, 2022, 53(2):159-171. 						Google Scholar
						Jiang X D, Zhang W, Yang H.The research on Bayesian inference for geophysical inversion[J].Reviews of Geophysics and Planetary Physics, 2022, 53(2):159-171. 						Google Scholar
						 | 
					
								| [4] | 邢文军, 曹思远, 陈思远, 等.基于谱反演方法的叠后纵波阻抗反演[J].物探与化探, 2023, 47(2):429-437. 						Google Scholar
						Xing W J, Cao S Y, Chen S Y, et al.Post-stack P-wave impedance inversion based on spectral inversion[J].Geophysical and Geochemical Exploration, 2023, 47(2):429-437. 						Google Scholar
						 | 
					
								| [5] | 凡友华, 刘雪峰, 陈晓非.面波频散反演地下层状结构的拟牛顿法[J].物探与化探, 2006, 30(5):456-459. 						Google Scholar
						Fan Y H, Liu X F, Chen X F.The quasi Newton method in the inversion of the dispersion curve of Rayleigh wave in multilayered media[J].Geophysical and Geochemical Exploration, 2006, 30(5):456-459. 						Google Scholar
						 | 
					
								| [6] | Reichstein M, Camps-Valls G, Stevens B, et al.Deep learning and process understanding for data-driven Earth system science[J].Nature, 2019, 566:195-204. 						Google Scholar
						 | 
					
								| [7] | Yu S W, Ma J W.Deep learning for geophysics:Current and future trends[J].Reviews of Geophysics, 2021, 59(3):1-36. 						Google Scholar
						 | 
					
								| [8] | 肖立志.机器学习数据驱动与机理模型融合及可解释性问题[J].石油物探, 2022, 61(2):205-212. 						Google Scholar
						Xiao L Z.The fusion of data-driven machine learning with mechanism models and interpretability issues[J].Geophysical Prospecting for Petroleum, 2022, 61(2):205-212. 						Google Scholar
						 | 
					
								| [9] | Das V, Pollack A, Wollner U, et al.Convolutional neural network for seismic impedance inversion[J].Geophysics, 2019, 84(6):R869-R880. 						Google Scholar
						 | 
					
								| [10] | Alfarraj M, AlRegib G.Semisupervised sequence modeling for elastic impedance inversion[J].Interpretation, 2019, 7(3):SE237-SE249. 						Google Scholar
						 | 
					
								| [11] | Biswas R, Sen M K, Das V, et al.Prestack and poststack inversion using a physics-guided convolutional neural network[J].Interpretation, 2019, 7(3):SE161-SE174. 						Google Scholar
						 | 
					
								| [12] | Luo R, Chen H Z, Wang B F.Semisupervised seismic impedance inversion with data augmentation and uncertainty analysis[J].Geophysics, 2023, 88(4):M213-M224. 						Google Scholar
						 | 
					
								| [13] | Su Y Q, Cao D P, Liu S Y, et al.Seismic impedance inversion based on deep learning with geophysical constraints[J].Geoenergy Science and Engineering, 2023, 225:211671. 						Google Scholar
						 | 
					
								| [14] | 王蓉, 熊杰, 刘倩, 等.基于深度神经网络的重力异常反演[J].物探与化探, 2022, 46(2):451-458. 						Google Scholar
						Wang R, Xiong J, Liu Q, et al.Inversion of gravity anomalies based on a deep neural network[J].Geophysical and Geochemical Exploration, 2022, 46(2):451-458. 						Google Scholar
						 | 
					
								| [15] | 吴嵩, 宁晓斌, 杨庭伟, 等.基于神经网络的探地雷达数据去噪[J].物探与化探, 2023, 47(5):1298-1306. 						Google Scholar
						Wu S, Ning X B, Yang T W, et al.Neural network-based denoising for ground-penetrating radar data[J].Geophysical and Geochemical Exploration, 2023, 47(5):1298-1306. 						Google Scholar
						 | 
					
								| [16] | 卞保力.基于高密度三维地震河道砂体储层预测方法研究与应用[D].成都:成都理工大学, 2019.Bian B L.Research and application of reservoir prediction method of channel sands based on high density three-dimensional seismic data[D].Chengdu:Chengdu University of Technology, 2019. 						Google Scholar
						 |