China Aero Geophysical Survey and Remote Sensing Center for Natural ResourcesHost
地质出版社Publish
2024 Vol. 48, No. 4
Article Contents

YU Lin-Song, HU Lei, WANG Dong-Ping, LIU Hui, CHEN Zi-Wan, LI Hua-Yong, DENG Huan-Guang. 2024. Assessment and trend prediction of the environmental capacity of heavy metals in surface sediments of the Dongping Lake, North China. Geophysical and Geochemical Exploration, 48(4): 1146-1156. doi: 10.11720/wtyht.2024.1347
Citation: YU Lin-Song, HU Lei, WANG Dong-Ping, LIU Hui, CHEN Zi-Wan, LI Hua-Yong, DENG Huan-Guang. 2024. Assessment and trend prediction of the environmental capacity of heavy metals in surface sediments of the Dongping Lake, North China. Geophysical and Geochemical Exploration, 48(4): 1146-1156. doi: 10.11720/wtyht.2024.1347

Assessment and trend prediction of the environmental capacity of heavy metals in surface sediments of the Dongping Lake, North China

More Information
  • Corresponding author: CHEN Zi-Wan  
  • The environmental capacity of lake sediments serves as a significant indicator for assessing the environmental carrying capacity of lake systems, effectively reflecting the stability and sustainability of lake systems.This study investigated the Dongping Lake in the lower reaches of the Yellow River basin by determining 11 heavy metal elements, including As, Cd, Cr, Co, Cu, Hg, Mn, Ni, Pb, Tl, and Zn, in the sampled surface sediments. It delved into the spatial distributions of heavy metal contents and environmental carrying capacity using statistical analysis and geographical information system (GIS) technology. Moreover, it predicted the trend of environmental capacity changes of heavy metals at a centennial scale. The results indicate that: (1) The maximum content of As in the surface sediments of the study area exceededits risk screening value (allowable limit) for soil contamination, whereas those of other elements were below corresponding allowable limits; (2) The average single environmental capacity index (Pi) values of heavy metal elements decreased in the order of Hg, Pb, Cr, Ni, Zn, Cd, Cu, Co, Mn, Tl, and As. Among these heavy metal elements, As displayed overload level and warning level points, whereas Mn and Tl manifested warning level points. The composite capacity index (Pi) was calculated to be between medium and high capacity levels. The composite capacity level measured based on the inferior level of Pi suggests a medium capacity to overload level distribution in the study area; (3) The static annual capacity limits of heavy metal elements decreased in the order of Mn, Zn, Cr, Ni, Cu, Pb, As, Co, Tl, Cd, and Hg, whereas the dynamic annual capacity limits decreased in the order of Mn, Zn, Cr, Ni, Pb, Cu, Co, As, Hg, Cd, and Tl. The static and dynamic capacity limits will show a steeply to gently decreasing trend in the 5~40 years and 5~15 years, respectively, followed by a gentle and stable trend. Regardless of the number of years, the average dynamic annual capacity limit is higher than the average static one, suggesting a high environmental carrying capacity.This study reveals the current status and future trends of environmental capacity in the Dongping Lake, providing a scientific basis for the environmental quality assessment and ecological conservation and restoration of the lake.
  • 加载中
  • [1] Andjelkovic A, Ristic R, Janic M, et al.Genesis of sediments and siltation of the accumulation 'duboki potok' of the barajevska river basin, Serbia[J].Journal of Environmental Protection & Ecology, 2017, 18 (4):1735-1745.

    Google Scholar

    [2] Yu L, Liu H, Wan F, et al.Geochemical records of the sediments and their significance in Dongping Lake Area, the lower reach of Yellow River, North China[J].Journal of Groundwater Science and Engineering, 2021(2):140-151.

    Google Scholar

    [3] 中国科学院南京地理与湖泊研究所.中国湖泊调查报告[M].北京:科学出版社, 2019.Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences.Report of lake survey in China[M].Beijing:Science Press, 2019.

    Google Scholar

    [4] Li Y Y, Gao B, Xu D Y, et al.Hydrodynamic impact on trace metals in sediments in the cascade reservoirs, North China[J].Science of the Total Environment, 2020, 716:136914.

    Google Scholar

    [5] Liu M X, Yang Y Y, Yun X Y, et al.Distribution and ecological assessment of heavy metals in surface sediments of the East Lake, China[J].Ecotoxicology, 2014, 23(1):92-101.

    Google Scholar

    [6] 杨陈, 王沛芳, 刘佳佳, 等.太湖沉积物中重金属的垂向分布特征及迁移转化[J].农业环境科学学报, 2016, 35(3):548-557.

    Google Scholar

    Yang C, Wang P F, Liu J J, et al.Vertical distribution and migration of heavy metals in sediment cores of Taihu Lake[J].Journal of Agro-Environment Science, 2016, 35(3):548-557.

    Google Scholar

    [7] Superville P J, Prygiel E, Magnier A, et al.Daily variations of Zn and Pb concentrations in the River in relation to the resuspension of heavily polluted sediments[J].Science of the Total Environment, 2014, 470:600-607.

    Google Scholar

    [8] 阎琨, 庞国涛, 李伟, 等.广西茅尾海入海河口表层沉积物重金属分布及风险评价[J].物探与化探, 2022, 46(4):1030-1036.

    Google Scholar

    Yan K, Pang G T, Li W, et al.Assessing the distribution and ecological risks of heavy metals in surface sediments of the Maowei Sea Estuary, Guangxi[J].Geophysical and Geochemical Exploration, 2022, 46(4):1030-1036.

    Google Scholar

    [9] 俞慎, 历红波.沉积物再悬浮-重金属释放机制研究进展[J].生态环境学报, 2010, 19(7):1724-1731.

    Google Scholar

    Yu S, Li H B.Perspectives on the release of heavy metals via sediment resuspension[J].Ecology and Environmental Sciences, 2010, 19(7):1724-1731.

    Google Scholar

    [10] Li K Q, Wang X L.Calculation methodology of marine environmental capacity for heavy metal:A case study in Jiaozhou Bay, China[J].Chinese Science Bulletin, 2013, 58(2):282-287.

    Google Scholar

    [11] 叶嗣宗.土壤环境背景值在容量计算和环境质量评价中的应用[J].中国环境监测, 1993, 9(9):99-54.

    Google Scholar

    Ye S Z.Application of soil environmental background values in capacity calculation and environmental quality assessment [J].Environmental Monitoring in China, 1993, 9(9):99-54.

    Google Scholar

    [12] 付传城, 王文勇, 潘剑君, 等.南京市溧水区土壤重金属污染不同插值方法的对比研究[J].土壤通报, 2014, 45(6):1325-1333.

    Google Scholar

    Fu C C, Wang W Y, Pan J J, et al.A comparative study on different soil heavy metal interpolation methods in Lishui district, Nanjing[J].Chinese Journal of Soil Science, 2014, 45(6):1325-1333.

    Google Scholar

    [13] Pan Y J, Ding L, Xie S Y, et al.Spatiotemporal simulation, early warning, and policy recommendations of the soil heavy metal environmental capacity of the agricultural land in a typical industrial city in China:Case of Zhongshan City[J].Journal of Cleaner Production, 2021, 285:124849.

    Google Scholar

    [14] 陶亚, 陈宇轩, 赵喜亮, 等.基于EFDC模型的阿什河水环境容量季节性分析[J].环境工程, 2017, 35(7):65-69.

    Google Scholar

    Tao Y, Chen Y X, Zhao X L, et al.Analysis of seasonality difference on water environmental capacity of ashi river based on efdc[J].Environmental Engineering, 2017, 35(7):65-69.

    Google Scholar

    [15] 熊鸿斌, 张斯思, 匡武, 等.基于MIKE 11模型的引江济淮工程涡河段动态水环境容量研究[J].自然资源学报, 2017, 32(8):1422-1432.

    Google Scholar

    Xiong H B, Zhang S S, Kuang W, et al.Environment capacity of the guohe river in the water transfer project from Yangtze River to Huaihe River based on a MIKE 11 model[J].Journal of Natural Resources, 2017, 32(8):1422-1432.

    Google Scholar

    [16] 谭馨, 项学敏, 高范, 等.基于线性规划的大连湾海域环境容量分析[J].大连理工大学学报, 2023, 63(3):256-264.

    Google Scholar

    Tan X, Xiang X M, Gao F, et al.Marine environmental capacity analysis in Dalian Bay based on linear programming[J].Journal of Dalian University of Technology, 2023, 63(3):256-264.

    Google Scholar

    [17] Su Y, Yu Y Q.Dynamic early warning of regional atmospheric environmental carrying capacity[J].Science of the Total Environment, 2020, 714:136684.

    Google Scholar

    [18] 吴健芳, 王红梅, 李宇婷.土壤环境容量理论、核算方法及其应用进展[J].生态经济, 2023, 39(6):182-188, 227.

    Google Scholar

    Wu J F, Wang H M, Li Y T.Progress of the theory, calculation methods and application of soil environmental capacity[J].Ecological Economy, 2023, 39(6):182-188, 227.

    Google Scholar

    [19] 于光金, 成杰民, 王忠训, 等.山东省不同植被类型土壤重金属环境容量研究[J].土壤通报, 2009, 40(2):366-368.

    Google Scholar

    Yu G J, Cheng J M, Wang Z X, et al.Soil-environmental capacity in different vegetative types in Shandong Province[J].Chinese Journal of Soil Science, 2009, 40(2):366-368.

    Google Scholar

    [20] 麦尔哈巴·图尔贡, 麦麦提吐尔逊·艾则孜, 阿依努尔·麦提努日, 等.吐鲁番盆地葡萄园土壤重金属环境容量评价与预测[J].地球与环境, 2020, 48(5):584-592.

    Google Scholar

    Marhaba Turhun, Mamattursun Eziz, Aynur Matnuri, et al.Evaluation and prediction of environmental capacities of heavy metals in vineyard soils in the Turpan Basin[J].Earth and Environment, 2020, 48(5):584-592.

    Google Scholar

    [21] 陈国兵.淮北市土壤地质环境容量计算方法及评价结果研究[J].地下水, 2020, 42(3):111-112.

    Google Scholar

    Chen G B.Study on calculation method and evaluation results of soil geological environment capacity in Huaibei city[J].Ground Water, 2020, 42(3):111-112.

    Google Scholar

    [22] 吕悦风, 谢丽, 孙华, 等.县域尺度耕地土壤重金属污染评价中的标准选择研究[J].中国环境科学, 2019, 39(11):4743-4751.

    Google Scholar

    Lyu Y F, Xie L, Sun H, et al.Criterion selection in assessment of soil heavy metal pollution in farmland on county scale[J].China Environmental Science, 2019, 39(11):4743-4751.

    Google Scholar

    [23] Liang F, Pan Y J, Peng H X, et al.Time-space simulation, health risk warning and policy recommendations of environmental capacity for heavy metals in the Pearl River Basin, China[J].International Journal of Environmental Research and Public Health, 2022, 19(8):4694.

    Google Scholar

    [24] 刘海, 魏伟, 宋阳, 等.霍邱县城湖泊沉积物重金属环境容量评价与预测[J].环境科学, 2023, 44(11):6106-6115.

    Google Scholar

    Liu H, Wei W, Song Y, et al.Evaluation and prediction of environmental capacities of heavy metals in the surface sediments of lakes in Huoqiu County[J].Environmental Science, 2023, 44(11):6106-6115.

    Google Scholar

    [25] 张红武, 李琳琪, 彭昊, 等.基于流域高质量发展目标的黄河相关问题研究[J].水利水电技术, 2021, 52(12):60-68.

    Google Scholar

    Zhang H W, Li L Q, Peng H, et al.Study on related problems of the Yellow River based on the goal of high-quality development of the basin[J].Water Resources and Hydropower Engineering, 2021, 52(12):60-68.

    Google Scholar

    [26] 庞绪贵, 代杰瑞, 陈磊, 等.山东省17市土壤地球化学背景值[J].山东国土资源, 2019, 35(1):46-56.

    Google Scholar

    Pang X G, Dai J R, Chen L, et al.Soil geochemical background value of 17 cities in Shandong Province[J].Shandong Land and Resources, 2019, 35(1):46-56.

    Google Scholar

    [27] 生态环境部, 国家市场监督管理总局.GB 15618-2018土壤环境质量 农用地土壤污染风险管控标准[S].北京:中国标准出版社, 2018.Ministry of Ecology and Environment, State Administration for Market Supervision and Administration.GB 15618-2018 Soil environmental quality Risk control standard for soil contamination of agricultural land[S].Beijing:Standards Press of China, 2018.

    Google Scholar

    [28] 张菊, 何振芳, 董杰, 等.东平湖表层沉积物重金属的空间分布及污染评价[J].生态环境学报, 2016, 25(10):1699-1706.

    Google Scholar

    Zhang J, He Z F, Dong J, et al.Spatial distribution and pollution assessment of heavy metals in the surface sediments of Dongping Lake[J].Ecology and Environmental Sciences, 2016, 25(10):1699-1706.

    Google Scholar

    [29] 成杭新, 李括, 李敏, 等.中国城市土壤微量金属元素的管理目标值和整治行动值[J].地学前缘, 2015, 22(5):215-225.

    Google Scholar

    Cheng H X, Li K, Li M, et al.Management target value(MTV)and rectification action value(RAV)of trace metals in urban soil in China[J].Earth Science Frontiers, 2015, 22(5):215-225.

    Google Scholar

    [30] 胡尊芳, 孙彦伟, 程龙, 等.东平湖湖区农田土壤重金属污染评价[J].土壤与作物, 2017, 6(4):283-290.

    Google Scholar

    Hu Z F, Sun Y W, Cheng L, et al.Assessment of heavy metal pollution to farmland soil in Dongping Lake, Shangdong Province[J].Soils and Crops, 2017, 6(4):283-290.

    Google Scholar

    [31] 代杰瑞, 王增辉, 曾宪东, 等.山东土壤地球化学参数[M].北京:海洋出版社, 2021.Dai J R, Wang Z H, Zeng X D, et al.Soil geochemical parameters in Shandong Province[M].Beijing:Ocean Press, 2021.

    Google Scholar

    [32] 李敏, 成杭新, 李括.中国淡水湖泊沉积物地球化学背景与环境质量基准建立的思考[J].地学前缘, 2018, 25(4):276-284.

    Google Scholar

    Li M, Cheng H X, Li K.Geochemical background of freshwater lake sediments:A constraint on the establishment of sediment quality guidelines in China[J].Earth Science Frontiers, 2018, 25(4):276-284.

    Google Scholar

    [33] 周伟立, 麻冰涓, 程柳, 等.重金属在三门峡水库的赋存特征和风险评价[J].人民黄河, 2018, 40(4):83-87, 91.

    Google Scholar

    Zhou W L, Ma B J, Cheng L, et al.Occurrence and risk assessment of heavy metals in Sanmenxia Reservoir[J].Yellow River, 2018, 40(4):83-87, 91.

    Google Scholar

    [34] 程柳, 毛宇翔, 麻冰涓, 等.小浪底水库沉积物中重金属污染及生态风险评价[J].环境化学, 2014, 33(8):1412-1413.

    Google Scholar

    Cheng L, Mao Y X, Ma B J, et al.Heavy metal pollution and ecological risk assessment in sediments of Xiaolangdi Reservoir[J].Environmental Chemistry, 2014, 33(8):1412-1413.

    Google Scholar

    [35] 刘翔, 郭建明, 樊海龙, 等.刘家峡水库西南部水域表层沉积物重金属污染评价[J].沉积与特提斯地质, 2020, 40(4):1-10.

    Google Scholar

    Liu X, Guo J M, Fan H L, et al.Evaluation of heavy metal pollution in surface sediments of southwest Liujiaxia Reservoir, Gansu[J].Sedimentary Geology and Tethyan Geology, 2020, 40(4):1-10.

    Google Scholar

    [36] 朱嵬, 李志刚, 李健, 等.宁夏黄河流域湖泊湿地底泥重金属污染特征及生态风险评价[J].中国农学通报, 2013, 29(35):281-288.

    Google Scholar

    Zhu W, Li Z G, Li J, et al.Pollution characteristics and potential ecological risk assessment of heavy metals in the lake wetlands in the Yellow River valleys of Ningxia[J].Chinese Agricultural Science Bulletin, 2013, 29(35):281-288.

    Google Scholar

    [37] 刘良, 张祖陆.南四湖表层沉积物重金属的空间分布、来源及污染评价[J].水生态学杂志, 2013, 34(6):7-15.

    Google Scholar

    Liu L, Zhang Z L.Spatial distribution, sources and pollution assesment of heavy metals in the surface sediments of Nansihu Lake[J].Journal of Hydroecology, 2013, 34(6):7-15.

    Google Scholar

    [38] 李宝, 张智慧, 王志奇, 等.山东南四湖底泥典型重金属的形态分布、稳定度与风险评价[J].环境化学, 2022, 41(3):940-948.

    Google Scholar

    Li B, Zhang Z H, Wang Z Q, et al.Fraction distribution, stability and risk assessment of typical heavy metals in sediment of Nansi Lake, Shandong Province, China[J].Environmental Chemistry, 2022, 41(3):940-948.

    Google Scholar

    [39] 王茜, 刘永侠, 庄文, 等.南四湖表层沉积物中铍、锑、铊的地球化学特征与环境风险[J].环境科学学报, 2018, 38(5):1968-1982.

    Google Scholar

    Wang Q, Liu Y X, Zhuang W, et al.Research on geochemical characteristics and environmental risk of Be, Sb and Tl in surface sediments of the Nansihu Lake[J].Acta Scientiae Circumstantiae, 2018, 38(5):1968-1982.

    Google Scholar

    [40] Yu L S, Wan F, Fan H Y, et al.Spatial distribution, source apportionment, and ecological risk assessment of soil heavy metals in jianghugongmi producing area, Shandong Province[J].Huan Jing Ke Xue= Huanjing Kexue, 2022, 43(8):4199-4211.

    Google Scholar

    [41] 迟清华, 马生明.流域上游基岩与下游冲积平原土壤化学组成的对比[J].地质通报, 2008, 27(2):188-195.

    Google Scholar

    Chi Q H, Ma S M.Comparison between the chemical composition of bedrocks in the upper reaches and that of alluvial plain soils in the lower reaches of a drainage area[J].Geological Bulletin of China, 2008, 27(2):188-195.

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Article Metrics

Article views(128) PDF downloads(1) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint