| [1] |
郭科. 复杂地质地貌区多尺度地球化学异常识别的非线性研究[D]. 成都: 成都理工大学, 2005:12.
Google Scholar
|
| [2] |
Guo K. The study of non-linear of complex geology land form identification of the multi-dimensioned geochemistry anomaly[D]. Chengdu: Chengdu University of Technology, 2005:12.
Google Scholar
|
| [3] |
Tobler W. On the first law of geography: A reply[J]. Annals of the Association of American Geographers, 2004, 94(2): 304-310.
Google Scholar
|
| [4] |
Zuo R G, Xiong Y H, Wang J, et al. Deep learning and its application in geochemical mapping[J]. Earth-Science Reviews, 2019, 192: 1-14.
Google Scholar
|
| [5] |
Zuo R G. Machine learning of mineralization-related geochemical anomalies: A review of potential methods[J]. Natural Resources Research, 2017, 26(4): 457-464.
Google Scholar
|
| [6] |
刘艳鹏, 朱立新, 周永章. 卷积神经网络及其在矿床找矿预测中的应用——以安徽省兆吉口铅锌矿床为例[J]. 岩石学报, 2018, 34(11): 3217-3224.
Google Scholar
|
| [7] |
Liu Y P, Zhu L X, Zhou Y Z. Application of convolutional neural network in prospecting prediction of ore deposits: Taking the Zhaojikou Pb-Zn ore deposit in Anhui Province as a case[J]. Acta Petrologica Sinica, 2018, 34(11): 3217-3224.
Google Scholar
|
| [8] |
蔡惠慧, 朱伟, 李孜轩, 等. 基于深度学习的钨钼找矿靶区预测方法研究[J]. 地球信息科学学报, 2019, 21(6):928-936.
Google Scholar
|
| [9] |
Cai H H, Zhu W, Li Z X, et al. Prediction method of tungsten-molybdenum prospecting target area based on deep learning[J]. Journal of Geo-information Science, 2019, 21(6):928-936.
Google Scholar
|
| [10] |
陈丽蓉. 顾及空间约束的多元地球化学异常识别自编码神经网络方法研究[D]. 武汉: 中国地质大学(武汉), 2019:79.
Google Scholar
|
| [11] |
Chen L R. Multivariate geochemical anomaly recognition using spatial constrained autoencoders[D]. Wuhan: China University of Geosciences(Wuhan), 2019:79.
Google Scholar
|
| [12] |
Chen L R, Guan Q F, Xiong Y H, et al. A spatially constrained multi-autoencoder approach for multivariate geochemical anomaly recognition[J]. Computers & geosciences, 2019, 125:43-54.
Google Scholar
|
| [13] |
Chen L R, Guan Q F, Feng B, et al. A multi-convolutional autoencoder approach to multivariate geochemical anomaly recognition[J]. Minerals, 2019, 9(5):270.
Google Scholar
|
| [14] |
Guan Q F, Ren S L, Chen L R, et al. A spatial-compositional feature fusion convolutional autoencoder for multivariate geochemical anomaly recognition[J]. Computers and Geosciences, 2021(1):104890.
Google Scholar
|
| [15] |
高原. 闽西南铜多金属矿找矿信息挖掘与成矿预测[D]. 武汉: 中国地质大学(武汉), 2019:30.
Google Scholar
|
| [16] |
Gao Y. Mineral prospecting information mining and mapping mineral prospectivity for copper polymetallic mineralization in southwest Fujian Province[D]. Wuhan: China University of Geosciences(Wuhan), 2019:30.
Google Scholar
|
| [17] |
张翠光, 陈润生, 黄昌旗, 等. 武夷山成矿带成矿地质背景及成矿规律研究[M]. 北京: 地质出版社, 2014: 60.
Google Scholar
|
| [18] |
Zhang C G, Chen R S, Huang C Q, et al. Study on the geological background of mineralization and mineralization pattern of Wuyishan mineralization zone[M]. Beijing: Geological Publishing House, 2014: 60.
Google Scholar
|
| [19] |
刘崇民, 胡树起, 马生明, 等. 成矿元素相态对地球化学异常识别的作用[J]. 物探与化探, 2013, 37(6):1049-1055.
Google Scholar
|
| [20] |
Liu C M, Hu S Q, Ma S M, et al. The role of the phase state of metallogenic elements in the recognition of geochemical anomalies[J]. Geophysical and Geochemical Exploration, 2013, 37(6):1049-1055.
Google Scholar
|
| [21] |
郑泽宇, 赵庆英, 李湜先, 等. 地球化学异常识别的两种机器学习算法之比较[J]. 世界地质, 2018, 37(4): 1288-1294.
Google Scholar
|
| [22] |
Zheng Z Y, Zhao Q Y, Li S X, et al. Comparison of two machine learning algorithms for geochemical anomaly detection[J]. Global Geology, 2018, 37(4): 1288-1294.
Google Scholar
|
| [23] |
Rumelhart D E, Hinton G E, Williams R J. Learning representations by back propagating errors[J]. Nature, 1986, 323(6088): 533-536.
Google Scholar
|
| [24] |
邓俊锋, 张晓龙. 基于自动编码器组合的深度学习优化方法[J]. 计算机应用, 2016, 36(3): 697-702.
Google Scholar
|
| [25] |
Deng J F, Zhang X L. Deep learning algorithm optimization based on combination of auto-encoders[J]. Journal of Computer Applications, 2016, 36(3): 697-702.
Google Scholar
|
| [26] |
费艳, 缪骞云, 刘学军. 一种基于卷积自动编码器的推荐系统攻击检测方法[J]. 小型微型计算机系统, 2021, 42(5): 1088-1092.
Google Scholar
|
| [27] |
Fei Y, Miao Q Y, Liu X J. Recommendation system attack detection method based on convolutional autoencoder[J]. Journal of Chinese Computer Systems, 2021, 42(5): 1088-1092.
Google Scholar
|
| [28] |
宋晓霞. 基于栈式自动编码器的高分辨率遥感影像分类[J]. 测绘与空间地理信息, 2021, 44(5):128-131.
Google Scholar
|
| [29] |
Song X X. High resolution remote sensing image classification based on stacked autoencoder[J]. Geomatics & Spatial Information Technology, 2021, 44(5):128-131.
Google Scholar
|
| [30] |
张扬. 基于卷积自编码器的异常事件检测研究[D]. 杭州: 浙江大学, 2018:10.
Google Scholar
|
| [31] |
Zhang Y. Anomaly detection based on convolutional autoencoder[D]. Hangzhou: Zhejiang University, 2018:10.
Google Scholar
|
| [32] |
Chen K, Seuret M, Liwicki M, et al. Page segmentation of historical document images with convolutional autoencoders[C]// 2015 13th International Conference on Document Analysis and Recognition (ICDAR), IEEE, 2015: 1011-1015.
Google Scholar
|
| [33] |
宋辉, 高洋, 陈伟, 等. 基于卷积降噪自编码器的地震数据去噪[J]. 石油地球物理勘探, 2020, 55(6): 1210-1219.
Google Scholar
|
| [34] |
Song H, Gao Y, Chen W, et al. Seismic noise suppression based on convolutional denoising autoencoders[J]. Oil Geophysical Prospecting, 2020, 55(6): 1210-1219.
Google Scholar
|
| [35] |
江金生, 任浩然, 李瀚野. 基于卷积自编码器的地震数据处理[J]. 浙江大学学报:工学版, 2020, 54(5): 978-984.
Google Scholar
|
| [36] |
Jiang J S, Ren H R, Li H Y. Seismic data processing based on convolutional autoencoder[J]. Journal of Zhejiang University:Engineering Science, 2020, 54(5): 978-984.
Google Scholar
|
| [37] |
An J, Cho S. Variational autoencoder based anomaly detection using reconstruction probability[J]. Special Lecture on IE, 2015, 2(1): 1-18.
Google Scholar
|
| [38] |
Xiong Y H, Zuo R G. Recognition of geochemical anomalies using a deep autoencoder network[J]. Computers and Geosciences, 2016, 86: 75-82.
Google Scholar
|
| [39] |
Valentine A P, Trampert J. Data space reduction, quality assessment and searching of seismograms: Autoencoder networks for waveform data[J]. Geophysical Journal International, 2012, 189(2): 1183-1202.
Google Scholar
|
| [40] |
Fawcett T. An introduction to ROC analysis[J]. Pattern recognition letters, 2006, 27(8): 861-874.
Google Scholar
|
| [41] |
Benesty J, Chen J, Huang Y, et al. Pearson correlation coefficient [G]// Noise reduction in speech processing. Berlin, Heidelberg: Springer, 2009: 1-4.
Google Scholar
|
| [42] |
Chen Y L, Lu L J, Li X B. Application of continuous restricted Boltzmann machine to identify multivariate geochemical anomaly[J]. Journal of Geochemical Exploration, 2014, 140: 56-63.
Google Scholar
|
| [43] |
Zhou J, Cui G Q, Hu S D, et al. Graph neural networks: A review of methods and applications[J]. AI Open, 2020, 1∶ 57-81.
Google Scholar
|
| [44] |
陈志军, 成秋明, 陈建国. 利用样本排序方法比较化探异常识别模型的效果[J]. 地球科学:中国地质大学学报, 2009, 34(2):353-364.
Google Scholar
|
| [45] |
Chen Z J, Cheng Q M, Chen J G. Comparison of different models for anomaly recognition of geochemical data by using sample ranking method[J]. Earth Science:Journal of China University of Geosciences, 2009, 34(2):353-364.
Google Scholar
|