China Aero Geophysical Survey and Remote Sensing Center for Natural ResourcesHost
地质出版社Publish
2023 Vol. 47, No. 1
Article Contents

LI Mu-Si, CHEN Li-Rong, XIE Fei, GU Lan-Ding, WU Xiao-Dong, MA Fen, YIN Zhao-Feng. 2023. Comparison of deep learning algorithms for geochemical anomaly identification. Geophysical and Geochemical Exploration, 47(1): 179-189. doi: 10.11720/wtyht.2023.2667
Citation: LI Mu-Si, CHEN Li-Rong, XIE Fei, GU Lan-Ding, WU Xiao-Dong, MA Fen, YIN Zhao-Feng. 2023. Comparison of deep learning algorithms for geochemical anomaly identification. Geophysical and Geochemical Exploration, 47(1): 179-189. doi: 10.11720/wtyht.2023.2667

Comparison of deep learning algorithms for geochemical anomaly identification

  • There is a lack of selection bases in the geochemical anomaly identification and the reconstruction of the geochemical background conforming to the metallogenic distribution using deep learning algorithms with different network structures. Given this, based on the 1∶200 000 stream sediment data of the copper-zinc-silver metallogenic area in southwestern Fujian Province, this study extracted the combined structural characteristics, spatial distribution characteristics, and mixed characteristics of multiple elements in the samples using three unsupervised deep learning models, i.e., AE, MCAE, and FCAE. Then, these characteristics were used to reconstruct the geochemical background and simulate the metallogenic distribution. The results show that the anomaly areas delineated by the FCAE model were the most consistent with the known copper ore occurrences, followed by the MCAE and AE models. The FCAE, MCAE, and AE models had an area under the curve (AUC) score of 0.80, 0.78, and 0.61, respectively. Moreover, the FCAE and AE models were not sensitive to the change in the convolution window size. These results indicate that when deep learning algorithms are constructed for geochemical anomaly identification, the algorithms based on the extraction of spatial distribution characteristics or mixed characteristics perform well, and those based on the extraction of combined structural characteristics or mixed characteristics have a strong anti-interference ability for the noise caused by the change or inconsistency of the spatial observation scale. This study provides some effective selection bases for constructing geochemical anomaly identification models based on deep learning algorithms.
  • 加载中
  • [1] 郭科. 复杂地质地貌区多尺度地球化学异常识别的非线性研究[D]. 成都: 成都理工大学, 2005:12.

    Google Scholar

    [2] Guo K. The study of non-linear of complex geology land form identification of the multi-dimensioned geochemistry anomaly[D]. Chengdu: Chengdu University of Technology, 2005:12.

    Google Scholar

    [3] Tobler W. On the first law of geography: A reply[J]. Annals of the Association of American Geographers, 2004, 94(2): 304-310.

    Google Scholar

    [4] Zuo R G, Xiong Y H, Wang J, et al. Deep learning and its application in geochemical mapping[J]. Earth-Science Reviews, 2019, 192: 1-14.

    Google Scholar

    [5] Zuo R G. Machine learning of mineralization-related geochemical anomalies: A review of potential methods[J]. Natural Resources Research, 2017, 26(4): 457-464.

    Google Scholar

    [6] 刘艳鹏, 朱立新, 周永章. 卷积神经网络及其在矿床找矿预测中的应用——以安徽省兆吉口铅锌矿床为例[J]. 岩石学报, 2018, 34(11): 3217-3224.

    Google Scholar

    [7] Liu Y P, Zhu L X, Zhou Y Z. Application of convolutional neural network in prospecting prediction of ore deposits: Taking the Zhaojikou Pb-Zn ore deposit in Anhui Province as a case[J]. Acta Petrologica Sinica, 2018, 34(11): 3217-3224.

    Google Scholar

    [8] 蔡惠慧, 朱伟, 李孜轩, 等. 基于深度学习的钨钼找矿靶区预测方法研究[J]. 地球信息科学学报, 2019, 21(6):928-936.

    Google Scholar

    [9] Cai H H, Zhu W, Li Z X, et al. Prediction method of tungsten-molybdenum prospecting target area based on deep learning[J]. Journal of Geo-information Science, 2019, 21(6):928-936.

    Google Scholar

    [10] 陈丽蓉. 顾及空间约束的多元地球化学异常识别自编码神经网络方法研究[D]. 武汉: 中国地质大学(武汉), 2019:79.

    Google Scholar

    [11] Chen L R. Multivariate geochemical anomaly recognition using spatial constrained autoencoders[D]. Wuhan: China University of Geosciences(Wuhan), 2019:79.

    Google Scholar

    [12] Chen L R, Guan Q F, Xiong Y H, et al. A spatially constrained multi-autoencoder approach for multivariate geochemical anomaly recognition[J]. Computers & geosciences, 2019, 125:43-54.

    Google Scholar

    [13] Chen L R, Guan Q F, Feng B, et al. A multi-convolutional autoencoder approach to multivariate geochemical anomaly recognition[J]. Minerals, 2019, 9(5):270.

    Google Scholar

    [14] Guan Q F, Ren S L, Chen L R, et al. A spatial-compositional feature fusion convolutional autoencoder for multivariate geochemical anomaly recognition[J]. Computers and Geosciences, 2021(1):104890.

    Google Scholar

    [15] 高原. 闽西南铜多金属矿找矿信息挖掘与成矿预测[D]. 武汉: 中国地质大学(武汉), 2019:30.

    Google Scholar

    [16] Gao Y. Mineral prospecting information mining and mapping mineral prospectivity for copper polymetallic mineralization in southwest Fujian Province[D]. Wuhan: China University of Geosciences(Wuhan), 2019:30.

    Google Scholar

    [17] 张翠光, 陈润生, 黄昌旗, 等. 武夷山成矿带成矿地质背景及成矿规律研究[M]. 北京: 地质出版社, 2014: 60.

    Google Scholar

    [18] Zhang C G, Chen R S, Huang C Q, et al. Study on the geological background of mineralization and mineralization pattern of Wuyishan mineralization zone[M]. Beijing: Geological Publishing House, 2014: 60.

    Google Scholar

    [19] 刘崇民, 胡树起, 马生明, 等. 成矿元素相态对地球化学异常识别的作用[J]. 物探与化探, 2013, 37(6):1049-1055.

    Google Scholar

    [20] Liu C M, Hu S Q, Ma S M, et al. The role of the phase state of metallogenic elements in the recognition of geochemical anomalies[J]. Geophysical and Geochemical Exploration, 2013, 37(6):1049-1055.

    Google Scholar

    [21] 郑泽宇, 赵庆英, 李湜先, 等. 地球化学异常识别的两种机器学习算法之比较[J]. 世界地质, 2018, 37(4): 1288-1294.

    Google Scholar

    [22] Zheng Z Y, Zhao Q Y, Li S X, et al. Comparison of two machine learning algorithms for geochemical anomaly detection[J]. Global Geology, 2018, 37(4): 1288-1294.

    Google Scholar

    [23] Rumelhart D E, Hinton G E, Williams R J. Learning representations by back propagating errors[J]. Nature, 1986, 323(6088): 533-536.

    Google Scholar

    [24] 邓俊锋, 张晓龙. 基于自动编码器组合的深度学习优化方法[J]. 计算机应用, 2016, 36(3): 697-702.

    Google Scholar

    [25] Deng J F, Zhang X L. Deep learning algorithm optimization based on combination of auto-encoders[J]. Journal of Computer Applications, 2016, 36(3): 697-702.

    Google Scholar

    [26] 费艳, 缪骞云, 刘学军. 一种基于卷积自动编码器的推荐系统攻击检测方法[J]. 小型微型计算机系统, 2021, 42(5): 1088-1092.

    Google Scholar

    [27] Fei Y, Miao Q Y, Liu X J. Recommendation system attack detection method based on convolutional autoencoder[J]. Journal of Chinese Computer Systems, 2021, 42(5): 1088-1092.

    Google Scholar

    [28] 宋晓霞. 基于栈式自动编码器的高分辨率遥感影像分类[J]. 测绘与空间地理信息, 2021, 44(5):128-131.

    Google Scholar

    [29] Song X X. High resolution remote sensing image classification based on stacked autoencoder[J]. Geomatics & Spatial Information Technology, 2021, 44(5):128-131.

    Google Scholar

    [30] 张扬. 基于卷积自编码器的异常事件检测研究[D]. 杭州: 浙江大学, 2018:10.

    Google Scholar

    [31] Zhang Y. Anomaly detection based on convolutional autoencoder[D]. Hangzhou: Zhejiang University, 2018:10.

    Google Scholar

    [32] Chen K, Seuret M, Liwicki M, et al. Page segmentation of historical document images with convolutional autoencoders[C]// 2015 13th International Conference on Document Analysis and Recognition (ICDAR), IEEE, 2015: 1011-1015.

    Google Scholar

    [33] 宋辉, 高洋, 陈伟, 等. 基于卷积降噪自编码器的地震数据去噪[J]. 石油地球物理勘探, 2020, 55(6): 1210-1219.

    Google Scholar

    [34] Song H, Gao Y, Chen W, et al. Seismic noise suppression based on convolutional denoising autoencoders[J]. Oil Geophysical Prospecting, 2020, 55(6): 1210-1219.

    Google Scholar

    [35] 江金生, 任浩然, 李瀚野. 基于卷积自编码器的地震数据处理[J]. 浙江大学学报:工学版, 2020, 54(5): 978-984.

    Google Scholar

    [36] Jiang J S, Ren H R, Li H Y. Seismic data processing based on convolutional autoencoder[J]. Journal of Zhejiang University:Engineering Science, 2020, 54(5): 978-984.

    Google Scholar

    [37] An J, Cho S. Variational autoencoder based anomaly detection using reconstruction probability[J]. Special Lecture on IE, 2015, 2(1): 1-18.

    Google Scholar

    [38] Xiong Y H, Zuo R G. Recognition of geochemical anomalies using a deep autoencoder network[J]. Computers and Geosciences, 2016, 86: 75-82.

    Google Scholar

    [39] Valentine A P, Trampert J. Data space reduction, quality assessment and searching of seismograms: Autoencoder networks for waveform data[J]. Geophysical Journal International, 2012, 189(2): 1183-1202.

    Google Scholar

    [40] Fawcett T. An introduction to ROC analysis[J]. Pattern recognition letters, 2006, 27(8): 861-874.

    Google Scholar

    [41] Benesty J, Chen J, Huang Y, et al. Pearson correlation coefficient [G]// Noise reduction in speech processing. Berlin, Heidelberg: Springer, 2009: 1-4.

    Google Scholar

    [42] Chen Y L, Lu L J, Li X B. Application of continuous restricted Boltzmann machine to identify multivariate geochemical anomaly[J]. Journal of Geochemical Exploration, 2014, 140: 56-63.

    Google Scholar

    [43] Zhou J, Cui G Q, Hu S D, et al. Graph neural networks: A review of methods and applications[J]. AI Open, 2020, 1∶ 57-81.

    Google Scholar

    [44] 陈志军, 成秋明, 陈建国. 利用样本排序方法比较化探异常识别模型的效果[J]. 地球科学:中国地质大学学报, 2009, 34(2):353-364.

    Google Scholar

    [45] Chen Z J, Cheng Q M, Chen J G. Comparison of different models for anomaly recognition of geochemical data by using sample ranking method[J]. Earth Science:Journal of China University of Geosciences, 2009, 34(2):353-364.

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Article Metrics

Article views(1594) PDF downloads(127) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint