China Aero Geophysical Survey and Remote Sensing Center for Natural ResourcesHost
地质出版社Publish
2023 Vol. 47, No. 1
Article Contents

AI Neng-Ping, SONG Peng, LI Wei, WU Yun-Peng, LI Hu. 2023. Genetic mechanisms and prediction of the deep abnormal high pressure in the Ledong area,Yinggehai Basin. Geophysical and Geochemical Exploration, 47(1): 190-198. doi: 10.11720/wtyht.2023.1007
Citation: AI Neng-Ping, SONG Peng, LI Wei, WU Yun-Peng, LI Hu. 2023. Genetic mechanisms and prediction of the deep abnormal high pressure in the Ledong area,Yinggehai Basin. Geophysical and Geochemical Exploration, 47(1): 190-198. doi: 10.11720/wtyht.2023.1007

Genetic mechanisms and prediction of the deep abnormal high pressure in the Ledong area,Yinggehai Basin

  • The deep strata in the Ledong area of the Yinggehai Basin have a complex pressure structure.As indicated by the surveyed pressure data,strata at different depths and horizons have greatly different pore pressure.Especially in the Huangliu Formation,the pore pressure shows a large transverse span.Moreover,it tends to reduce at the top but rises rapidly at the bottom,with a pressure coefficient of up to 2.3,indicating the presence of significant pressure mutation.Pressure prediction using only the undercompaction model yields large errors and thus is prone to induce engineering accidents.To effectively predict the formation pressure,it is necessary to determine the genetic mechanisms of overpressure.This study effectively identified the genetic mechanisms of the overpressure using the cross plots of vertical effective stress vs logging response.The identification results show that the genetic mechanisms of the deep overpressure in the Ledong area mainly include mechanical unbalanced compaction,chemical compaction,vertical pressure transmission along faults,and hydrocarbon-generating pressurization.A proper pressure prediction method was established based on the defined genetic mechanisms,thus improving the prediction precision and ensuring the smooth construction of drilling engineering.
  • 加载中
  • [1] 郭令智, 钟志红, 王良书, 等. 莺歌海盆地周边区域构造演化[J]. 高校地质学报, 2001, 7(1):1-12

    Google Scholar

    . ;Guo L Z, Zhong Z H, Wang L S, et al. Regional tectonic evolution around Yinggehai basin of south China sea[J]. Geological Journal of China Universities, 2001, 7(1):1-12

    Google Scholar

    [2] 张启明. 莺—琼盆地的演化与构造—热体制[J]. 天然气工业, 1999, 19(1):12-17.

    Google Scholar

    [3] Zhang Q M. Evolution of Ying-qiong basin and its tectonic thermal system[J]. Natural Gas Industry, 1999, 19(1):12-17.

    Google Scholar

    [4] 范彩伟. 莺歌海大型走滑盆地构造变形特征及其地质意义[J]. 石油勘探与开发, 2018, 45(2):190-199.

    Google Scholar

    [5] Fan C W. Tectonic deformation features and petroleum geological significance in Yinggehai Large Strike-Slip Basin,south China sea[J]. Petroleum Exploration and Development, 2018, 45(2):190-199.

    Google Scholar

    [6] 解习农, 刘晓峰. 超压盆地流体动力系统与油气运聚关系[J]. 矿物岩石地球化学通报, 2000, 19(2):103-108.

    Google Scholar

    [7] Xie X N, Liu X F. Related to black shale seriesfluid dynamic system and relationship with accumulation of hydrocarbon in overpressured basin[J]. Bulletin of Mineralogy Petrology and Geochemisty, 2000, 19(2):103-108

    Google Scholar

    [8] 万志峰, 夏斌, 林舸, 等. 超压盆地油气地质条件与成藏模式——以莺歌海盆地为例[J]. 海洋地质与第四纪地质, 2010, 30(6):91-97.

    Google Scholar

    [9] Wan Z F, Xia B, Ling G, et al. Hydrocarbon accumulation model for overpressure basin:An example from the Yinghehai basin[J]. Marine Geology & Quaternary Geology, 2010, 30(6):91-97.

    Google Scholar

    [10] 张启明, 刘福宁, 杨计海. 莺歌海盆地超压体系与油气聚集[J]. 中国海上油气:地质, 1996, 10(2):65-75.

    Google Scholar

    [11] Zhang Q M, Liu F N, Yang J H. Overpressure system and hydrocarbon accumulation in the Yinggehai basin[J]. China Offshore Oil and Gas:Geology, 1996, 10(2):65-75.

    Google Scholar

    [12] 刘爱群, 范彩伟, 吴云鹏, 等. 南海高温高压领域基于传递模式的它源压力预测方法研究[J]. 中国海上油气, 2021, 33(1):50-55.

    Google Scholar

    [13] Liu A Q, Fan C W, Wu Y P, et al. Study on prediction method of allochthonous pressure based on transfer mode in high temperature and high pressure field of south China sea[J]. China Offshore Oil and Gas, 2021, 33(1):50-55.

    Google Scholar

    [14] 胡益涛, 刘挺, 陈现军, 等. 随钻地层压力综合评价技术在莺歌海盆地超压井中的应用[J]. 长江大学学报:自然科学版, 2019, 16(10):29-33.

    Google Scholar

    [15] Hu Y T, Liu T, Chen X J, et al. Application of comprehensive evaluation technology of formation pressure while drilling in ultra-high pressure wells in Yinggehai basin[J]. Journal of Yangtze University:Natural Science Edition, 2019, 16(10):29-33.

    Google Scholar

    [16] 赵靖舟, 李军, 徐泽阳. 沉积盆地超压成因研究进展[J]. 石油学报, 2017, 38(9):973-998.

    Google Scholar

    [17] Zhao J Z, Li J, Xu Z Y. Advances in the origin of overpressures in sedimentary basins[J]. Acta Petrolei Sinica, 2017, 38(9):973-998.

    Google Scholar

    [18] Bowers G L. Pore pressure estimation from velocity data:Accounting for overpressure mechanisms besides under compaction[C]// IADC/SPE27488,IADC/SPE Drilling Conference, 1994:515-530

    Google Scholar

    [19] Ramdhanam, Goulty N R. Overpressure-generating mechanisms in the peciko field,lower kutai basin,indonesia[J]. Petroleum Geoscience, 2010, 16(4):367-376.

    Google Scholar

    [20] Goulty N R, Sargent C, Andras P, et al. Compaction of diagenetically altered mudstones Part 1:Mechanical and chemical contributions[J]. Marine and Petroleum Geology, 2016, 77:703-713.

    Google Scholar

    [21] Tingay M R P, Morley C K, Laird A, et al. Evidence for overpressure generation by kerogen to gas maturation in the Northern malay basin[J]. AAPG Bulletin, 2013, 97(4):639-672.

    Google Scholar

    [22] Van Ruth P, Hillis R, Tingate P. The origin of overpressure in the carnarvon basin,western australia:Implications for pore pressure prediction[J]. Petroleum Geoscience, 2004, 10(3):247-257.

    Google Scholar

    [23] Fertl W H. Abnormal formation pressure:Implication to exploration,drilling,and production of oil and gas resources[M]. Amsterdam:Elsevier, 1976:382.

    Google Scholar

    [24] Magara K. Compaction and fluid migration,practical petroleum geology[M]. Amsterdam:Elsevier, 1978:319.

    Google Scholar

    [25] Luo X R, Vasseur G. Contributions of compaction and aquathermal pressuring to geopressure and the influence of environmental conditions[J]. AAPG Bulletin, 1992, 76(10):1550-1559.

    Google Scholar

    [26] Osborne M J, Swarbrick R E. Mechanisms for generating overpressure in sedimentary basins:A reevaluation[J]. AAPG Bulletin, 1997, 81(6):1023-1041.

    Google Scholar

    [27] Audet D M. Mathematical modeling of gravitational compaction and clay dehydration in thick sediment layers[J]. Geophysical Journal International, 1995, 122:283-98.

    Google Scholar

    [28] 李超, 罗晓容, 范彩伟, 等. 莺歌海盆地乐东斜坡区乐东A构造储层超压形成机制及其对天然气成藏的启示[J]. 地质科学, 2021, 56(4):1034-1051.

    Google Scholar

    [29] Li C, Luo X R, Fan C W, et al. Generation mechanism of overpressure and its implication for natural gas accumulation in Miocene reservoir in Ledong A structrure,Ledong slope,Yinggehai Basin[J]. Chinese Journal of Geology, 2011, 56(4):1034-1051.

    Google Scholar

    [30] Lahann R W, Swarbrick R E. Overpressure generation by load transfer following shale framework weakening due to smectite diagenesis[J]. Geofluids, 2011, 11(4):362-375.

    Google Scholar

    [31] Goulty N R, Ramdhan A M, Jones S J. Chemical compaction of mudrocks in the presence of overpressure[J]. Petroleum Geoscience, 2012, 18(4):471-479.

    Google Scholar

    [32] 李超, 罗晓容, 张立宽. 泥岩化学压实作用的超压响应与孔隙压力预测[J]. 中国矿业大学学报, 2020, 49(5):851-968.

    Google Scholar

    [33] Li C, Luo X R, Zhang L K. Overpressure responses for chemical compaction of mudstones and the pore pressure prediction[J]. Journal of China University of Mining & Technology, 2020, 49(5):851-968.

    Google Scholar

    [34] 罗晓容. 数值盆地模拟方法在地质研究中的应用[J]. 石油勘探与开发, 2000, 27(2):6-10.

    Google Scholar

    [35] Luo X R. The application of numerical basin modeling in geological studies[J]. Petroleum Exploration and Development, 2000, 27(2):6-10.

    Google Scholar

    [36] 罗晓容. 断裂成因他源高压及其地质特征[J]. 地质学报, 2004, 78(5):641-648.

    Google Scholar

    [37] Luo X R. Allogenic overpressuring associated with faulting and geological consequences[J]. Acta Geologica Sinica, 2004, 78(5):641-648.

    Google Scholar

    [38] 刘晓峰, 解习农. 储层超压流体系统的成因机制述评[J]. 地质科技情报, 2003, 22(3):55-60.

    Google Scholar

    [39] Liu X F, Xie X N. Review on formation mechanism of the reservoir overpressure fluid system[J]. Geological Science and Technology Information, 2003, 22(3):55-60.

    Google Scholar

    [40] Luo X R, Vasseur G. Geopressuring mechanism of organic matter cracking:Numerical modeling[J]. AAPG Bulletin, 1996, 80(6):856-874.

    Google Scholar

    [41] 谢玉洪. 莺歌海高温超压盆地压力预测模式及成藏新认识[J]. 天然气工业, 2011, 31(1):21-25.

    Google Scholar

    [42] Xie Y H. Models of pressure prediction and new understandings of hydrocarbon accumulation in the Yinggehai Basin with high temperature and super-high pressure[J]. Natural Gas Industry, 2011, 31(12):21-25.

    Google Scholar

    [43] Bowers G L. Pore pressure estimation from velocity data:Accounting for overpressure mechanisms besides undercompaction[J]. SPE Drilling and Complection, 1995, 10(2):89-95.

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Article Metrics

Article views(760) PDF downloads(168) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint