[1] |
陈可洋. 各向异性弹性介质方向行波波场分离正演数值模拟[J]. 岩性油气藏, 2014, 26(5):91-96.
Google Scholar
|
[2] |
Cheng K Y. Numerical simulation of forward modeling of wavefield separation of directional traveling waves in anisotropic elastic media[J]. Lithologic Reservoirs, 2014, 26(5):91-96.
Google Scholar
|
[3] |
苏巍. 河流相砂岩储层地震响应特征与识别技术研究[D]. 长春: 吉林大学, 2007.;Su W. A study on seismic response characteristic and identification technology of fluvial sandstone reservoir[D]. Changchun: Jilin University, 2007.
Google Scholar
|
[4] |
Lysmer J, Drake L A. A finite element method for seismology[J]. Methods in Computational Physics:Advances in Research and Applications, 1972, 11:181-216.
Google Scholar
|
[5] |
Shin C S. Nonlinear elastic wave Inversion by Blocky Parameterization[D]. Tulsa: University of Tulsa, 1988.
Google Scholar
|
[6] |
Jo C, Shin C, Suh J. An optimal 9-point finite-difference frequency space 2-D scalar wave extrapolator[J]. Geophysics, 1996, 61(2):529-537.
Google Scholar
|
[7] |
Min J, Shin C, Kwon B, et al. Improved frequency-domain elastic wave modeing using weighted-averaging difference operators[J]. Geophysics, 2000, 65(3):884-895.
Google Scholar
|
[8] |
Stekl I, Pratt K G. Frequency-domain finite accurate difference visco-elastic modeing by using rotated operators[J]. Geophysics, 1998, 63(5):1779-1794.
Google Scholar
|
[9] |
Hustedt B, Opert S, Virieux J. Mixed-grid and staggered grid finite-difference methods for frequency-domain acoustic wave modeling[J]. Geophysics, 2004, 157(3):1269-1296.
Google Scholar
|
[10] |
Paige C C, Saunders M A. LSQR:An algorithm for sparse liner equation and sparse least squares[J]. ACM Transaction Mathematical Software, 1982, 8(1):43-71.
Google Scholar
|
[11] |
Bjorck A, Duff I S. A direct method for the solution of sparse liner least squares problems[J]. Linear Algebra and its Applications, 1980, 34(1):43-67.
Google Scholar
|
[12] |
张京思, 揣媛媛, 边立恩. 正演模拟技术在渤海油田 X 井区砂体连通性研究中的应用[J]. 岩性油气藏, 2016, 28(3):127-132.
Google Scholar
|
[13] |
Zhang J S, Tuan Y Y, Bian L E. Application of forward modeling to study of sand body connectivityin X well field of Bohai Oilfield[J]. Lithologic Reservoirs, 2016, 28(3):127-132.
Google Scholar
|
[14] |
冯德山, 王向宇. 基于卷积完全匹配层的旋转交错网格高阶差分法模拟弹性波传播[J]. 物探与化探, 2018, 42(4):766-776.
Google Scholar
|
[15] |
Feng D S, Wang X Y. Elastic wave propagation simulation in anisotropic media and random media using high-order difference method of rotation staggered grids based on convolutional perfectly matched layer[J]. Geophysical and Geochemical Exploration, 2018, 42( 4) :766-776.
Google Scholar
|
[16] |
袁茂林, 蒋福友, 杨鸿飞, 等. 高斯束线性正演模拟方法研究[J]. 物探与化探, 2017, 41(5):881-889.
Google Scholar
|
[17] |
Yuan M L, Jiang F Y, Yang H F, et al. Gaussian-beam linear forward modeling[J]. Geophysical and Geochemical Exploration, 2017, 41(5):881-889.
Google Scholar
|
[18] |
李胜军, 刘伟方, 高建虎. 正演模拟技术在碳酸盐岩溶洞响应特征研究中的应用[J]. 岩性油气藏, 2011, 23(4):106-109.
Google Scholar
|
[19] |
Li S J, Liu W F, Gao J H. Application of forward modeling to research of carbonate cave response[J]. Lithologic Reservoirs, 2011, 23(4):106-109.
Google Scholar
|
[20] |
王光文, 王海燕, 李洪强, 等. 地震正演技术在深反射地震剖面探测中的应用[J]. 物探与化探, 2021, 45(4):970-980.
Google Scholar
|
[21] |
Wang G W, Wang H Y, Li H Q, et al. Application of seismic forward simulation technology in deep reflection seismic profile detection[J]. Geophysical and Geochemical Exploration, 2021, 45( 4) :970-980.
Google Scholar
|
[22] |
董良国, 李培明. 地震波传播数值模拟中的频散问题[J]. 天然气工业, 2004, 24(6):53-56.
Google Scholar
|
[23] |
Dong L G, Li P M. Dispersion problem in numerical simulation of seismic wave propagation[J]. Natural Gas Industry, 2004, 24(6):53-56.
Google Scholar
|
[24] |
曹书红, 陈景波. 声波方程频率域高精度正演的17点格式及数值实现[J]. 地球物理学报, 2012, 55(10):3440-3449.
Google Scholar
|
[25] |
Cao S H, Chen J B. A 17-point Scheme and its numerical implementation for high-accuracy modeling of frequency-domain acoustic equation[J]. Chinese Journal of Geophysics, 2012, 55(10):3440-3449.
Google Scholar
|