China Aero Geophysical Survey and Remote Sensing Center for Natural ResourcesHost
地质出版社Publish
2022 Vol. 46, No. 2
Article Contents

ZHANG Qin-Rui, LI Huan, DENG Yu-Fei, HUANG Yong, ZHANG Bo, XU Yi-bo. 2022. Distribution of heavy metal elements in soil of the Southeastern suburbs of Beijing and their enrichment characteristics in surface soil. Geophysical and Geochemical Exploration, 46(2): 490-501. doi: 10.11720/wtyht.2022.1417
Citation: ZHANG Qin-Rui, LI Huan, DENG Yu-Fei, HUANG Yong, ZHANG Bo, XU Yi-bo. 2022. Distribution of heavy metal elements in soil of the Southeastern suburbs of Beijing and their enrichment characteristics in surface soil. Geophysical and Geochemical Exploration, 46(2): 490-501. doi: 10.11720/wtyht.2022.1417

Distribution of heavy metal elements in soil of the Southeastern suburbs of Beijing and their enrichment characteristics in surface soil

  • By collecting and analyzing the heavy metal elements insurface (0~20 cm) and deep (160~200 cm) soil samples in southeastern suburbs of Beijing, the distribution characteristics of elements in soil in this area were ascertained.The spatial autonomy of heavy metal elementswas explored by establishing a semivariogram model. The enrichment characteristics of elements in surface soil were discussed,as well as the correlation of the enrichment coefficient. On this basis of the research, the significant enrichment areas of heavy metal elements are divided, and the reasons for the enrichment are explained and analyzed in depth.The results show that:The content levels of Cd, Cu, Hg, Pb, and Zn in surface soil of the study area are significantly higher than those in the deep layer, with a gap of 1.2 to 3.9 times. Compared with soil’s heavy metal content in Beijing and China,, the soils in the study area is relatively rich in Cd and Hg. As it was affected by many factors such as the source of soil-forming parent material and human activities, the spatial autocorrelation of As and Cr in surface soil is strong, and the spatial autocorrelation of Cr in the deep soil is weak. The spatial autocorrelation of other elements in the surface and deep layers is medium. As, Ni, and Cr in the surface soil are weakly enriched.But Cu, Pb, Zn, Cd, Hg are strongly enriched, and Hg is the most enriched. Based on the enrichment coefficient, five significant enrichment areas of heavy metal elements are delineated.The division of this area clearly reflects that human life, agricultural planting, and industrial production are important factors that cause the accumulation of heavy metal elements in surface soil.Therefore, it is necessary to pay close attention to the distribution of soil elements in human settlements, agricultural planting areas, and industrial enterprise distribution areas. The purpose is to prevent the deterioration of the soil environment and ensure the safety of the ecological environment.
  • 加载中
  • [1] 陈怀满. 环境土壤学[M]. 北京: 科学出版社, 2006.

    Google Scholar

    [2] Chen H M. Environmental soil science[M]. Beijing: Science Press, 2006.

    Google Scholar

    [3] 杨忠芳, 朱立, 陈岳龙. 现代环境地球化学[M]. 北京: 地质出版社, 1996.

    Google Scholar

    [4] Yang Z F, Zhu L, Chen Y L. Modern environmental geochemistry[M]. Beijing: Geological Publishing House, 1996.

    Google Scholar

    [5] 魏赢, 刘阳生. 汞污染农田土壤的化学稳定化修复[J]. 环境工程学报, 2017, 11(3):1878-1884.

    Google Scholar

    [6] Wei Y, Liu Y S. Remediation on mercury polluted farmland soil by chemical stabilization[J]. Chinese Journal of Environmental Engineering, 2017, 11(3):1878-1884.

    Google Scholar

    [7] 卢光华, 岳昌盛, 彭犇, 等. 汞污染土壤修复技术的研究进展[J]. 工程科学学报, 2017, 39(1):1-12.

    Google Scholar

    [8] Lu G H, Yue C S, Peng B, et al. Review of research progress on the remediation technology of mercury contaminated soil[J]. Chinese Journal of Engineering, 2017, 39(1): 1-12.

    Google Scholar

    [9] 王彬武, 李红, 蒋红群, 等. 北京市耕地土壤重金属时空变化特征初步研究[J]. 农业环境科学学报, 2014, 33(7):1335-1344.

    Google Scholar

    [10] Wang B W, Li H, Jiang H Q, et al. Spatio-temporal variation of soil heavy metals in agricultural land in Beijing, China[J]. Journal of Agro-Environment Science, 2014, 33(7): 1335-1344.

    Google Scholar

    [11] 赵秀芳, 张永帅, 冯爱平, 等. 山东省安丘地区农业土壤重金属元素地球化学特征及环境评价[J]. 物探与化探, 2020, 44(6):1446-1454.

    Google Scholar

    [12] Zhao X F, Zhang Y S, Feng A P, et al. Geochemical characteristics and environmental assessment of heavy metal elements in agricultural soil of Anqiu area, Shandong Province[J]. Geophysical and Geochemical Exploration, 2020, 44(6): 1446-1454.

    Google Scholar

    [13] 李括, 彭敏, 赵传冬, 等. 全国土地质量地球化学调查二十年[J]. 地学前缘, 2019, 26(6):128-158.

    Google Scholar

    [14] Li K, Peng M, Zhao C D, et al. Vicennial implementation of geochemical survey of land quality in China[J]. Earth Science Frontiers, 2019, 26(6): 128-158.

    Google Scholar

    [15] 王茜, 张光辉, 田言亮, 等. 农田表层土壤中重金属潜在生态风险效应研究[J]. 水文地质工程地质, 2017, 44(4):165-172.

    Google Scholar

    [16] Wang Q, Zhang G H, Tian Y L, et al. Research on the potential ecological risk of farmland top-soil of heavy metals[J]. Hydrogeology & Engineering Geology, 2017, 44(4): 165-172.

    Google Scholar

    [17] 刘伟, 郜允兵, 周艳兵, 等. 农田土壤重金属空间变异多尺度分析——以北京顺义土壤Cd为例[J]. 农业环境科学学报, 2019, 38(1):87-94.

    Google Scholar

    [18] Liu W, Gao Y B, Zhou Y B, et al. Multi scale analysis of spatial variability of heavy metals in farmland soils: Case study of soil Cd in Shunyi District of Beijing, China[J]. Journal of Agro-Environment Science, 2019, 38(1): 87-94.

    Google Scholar

    [19] 吴文勇, 尹世洋, 刘洪禄, 等. 污灌区土壤重金属空间结构与分布特征[J]. 农业工程学报, 2013, 29(4):165-173.

    Google Scholar

    [20] Wu W Y, Yin S Y, Liu H L, et al. Spatial structure and distribution characteristics of soil heavy metals in wastewater irrigation district[J]. Transactions of the Chinese Society of Agricultural Engineering, 2013, 29(4): 165-173.

    Google Scholar

    [21] 霍霄妮, 李红, 孙丹峰, 等. 北京耕作土壤重金属含量的空间自相关分析[J]. 环境科学学报, 2009, 29(6):1339-1344.

    Google Scholar

    [22] Huo X N, Li H, Sun D F, et al. Spatial autocorrelation analysis of heavy metals in cultivated soils in Beijing[J]. Acta Scientiae Circumstantiae, 2009, 29(6): 1339-1344.

    Google Scholar

    [23] 郑袁明, 陈煌, 陈同斌, 等. 北京市土壤中Cr,Ni含量的空间结构与分布特征[J]. 第四纪研究, 2003(4):436-445.

    Google Scholar

    [24] Zheng Y M, Chen H, Chen T B, et al. Spatial distribution patterns of Cr and Ni in soils of Beijing[J]. Quaternary Sciences, 2003(4): 436-445.

    Google Scholar

    [25] 张妍, 李玉嵩, 盛奇, 等. 河南省商丘地区土壤地球化学特征[J]. 现代地质, 2019, 33(2):305-314.

    Google Scholar

    [26] Zhang Y, Li Y S, Sheng Q, et al. Soil geochemical characteristics of Shangqiu area in Henan Province[J]. Geoscience, 2019, 33(2): 305-314.

    Google Scholar

    [27] 陈兴仁, 陈富荣, 贾十军, 等. 安徽省江淮流域土壤地球化学基准值与背景值研究[J]. 中国地质, 2012, 39(2):302-310.

    Google Scholar

    [28] Chen X R, Chen F R, Jia S J, et al. Soil geochemical baseline and background in Yangtze River—Huaihe River basin of Anhui Province[J]. Geology in China, 2012, 39(2): 302-310.

    Google Scholar

    [29] 廖启林, 刘聪, 许艳, 等. 江苏省土壤元素地球化学基准值[J]. 中国地质, 2011, 38(5):1363-1378.

    Google Scholar

    [30] Liao Q L, Liu C, Xu Y, et al. Geochemical baseline values of elements in soil of Jiangsu Province[J]. Geology in China, 2011, 38(5): 1363-1378.

    Google Scholar

    [31] 曹峰, 李瑞敏, 王轶, 等. 海河平原北部地区土壤地球化学基准值与环境背景值[J]. 地质通报, 2010, 29(8):1215-1219.

    Google Scholar

    [32] Cao F, Li R M, Wang Y, et al. Soil geochemical baseline and environmental background values in northern Haihe Plain, China[J]. Geological Bulletin of China, 2010, 29(8): 1215-1219.

    Google Scholar

    [33] 陈国光, 奚小环, 梁晓红, 等. 长江三角洲地区土壤地球化学基准值及其应用探讨[J]. 现代地质, 2008, 22(6):1041-1048.

    Google Scholar

    [34] Chen G G, Xi X H, Liang X H, et al. Soil geochemical baselines of the Yangtze River Delta and their significances[J]. Geoscience, 2008, 22(6): 1041-1048.

    Google Scholar

    [35] 郭海全, 马忠社, 郝俊杰, 等. 冀东土壤地球化学基准值特征及研究意义[J]. 岩矿测试, 2007, 26(4):281-286.

    Google Scholar

    [36] Guo H Q, Ma Z S, Hao J J, et al. Characteristics and significance of reference values of the geochemical elements in soil samples from eastern Hebei Province[J]. Rock and Mineral Analysis, 2007, 26(4): 281-286.

    Google Scholar

    [37] 汪庆华, 董岩翔, 郑文, 等. 浙江土壤地球化学基准值与环境背景值[J]. 地质通报, 2007, 26(5):590-597.

    Google Scholar

    [38] Wang Q H, Dong Y X, Zheng W, et al. Soil geochemical baseline values and environmental background values in Zhejiang, China[J]. Geological Bulletin of China, 2007, 26(5): 590-597.

    Google Scholar

    [39] 蔡向民, 张磊, 郭高轩, 等. 北京平原地区第四纪地质研究新进展[J]. 中国地质, 2016, 43(3):1055-1066.

    Google Scholar

    [40] Cai X M, Zhang L, Guo G X, et al. New progress in the study of Quaternary geology in Beijing Plain[J]. Geology in China, 2016, 43(3): 1055-1066.

    Google Scholar

    [41] 蔡向民, 栾英波, 郭高轩, 等. 北京平原第四系的三维结构[J]. 中国地质, 2009, 36(5):1021-1029.

    Google Scholar

    [42] Cai X M, Luan Y B, Guo G X, et al. 3D Quaternary geological structure of Beijing plain[J]. Geology in China, 2009, 36(5): 1021-1029.

    Google Scholar

    [43] 李廷芳. 影响北京土壤元素背景值的成土因素[J]. 中国环境监测, 1992, 13(1):81-86.

    Google Scholar

    [44] Li T F. Soil forming factors affecting soil background contents of metal elements in Beijing area[J]. Environmental Monitoring in China, 1992, 13(1): 81-86.

    Google Scholar

    [45] 邓勃, 秦建侯, 李廷芳. 影响北京地区土壤元素背景值的因素分析[J]. 环境科学学报, 1986, 6(4):446-454.

    Google Scholar

    [46] Deng B, Qin J H, Li T F. Analysis of factors affecting soil background contents of metal elements in Beijing area[J]. Acta Scientiae Circumstantiae, 1986, 6(4): 446-454.

    Google Scholar

    [47] 奚小环, 陈国光, 张德存, 等. DZ/T 0258—2014 多目标区域地球化学调查规范(1:250 000)[S].

    Google Scholar

    [48] Xi X H, Chen G G, Zhang D C, et al. DZ/T 0258—2014 Specification of multi-purpose regional geochemical survey (1:250 000)[S].

    Google Scholar

    [49] DD2005—03 生态地球化学评价样品分析技术要求[S].

    Google Scholar

    [50] DD2005—03 Technical requirements for analysis of ecological geochemical evalution samples[S].

    Google Scholar

    [51] 刘永红, 倪中应, 谢国雄, 等. 浙西北丘陵区农田土壤微量元素空间变异特征及影响因子[J]. 植物营养与肥料学报, 2016, 22(6):1710-1718.

    Google Scholar

    [52] Liu Y H, Ni Z Y, Xie G X, et al. Spatial variability and impacting factors of trace elements in hilly region of cropland in northwestern Zhejiang Province[J]. Journal of Plant Nutrition and Fertilizer, 2016, 22(6): 1710-1718.

    Google Scholar

    [53] 祝修高, 李小梅, 沙晋明. 福州市土壤Zn、Pb元素空间变异特征及影响因子分析[J]. 福建师范大学学报:自然科学版, 2016, 32(4): 99-104.

    Google Scholar

    [54] Zhu X G, Li X M, Sha J M. Spatial variability and influencing factors of Zn and Pb in soil in Fuzhou City[J]. Journal of Fujian Teachers University:Natural Science, 2016, 32(4): 99-104.

    Google Scholar

    [55] 王雪梅, 柴仲平, 毛东雷, 等. 库车县土壤微量元素空间变异特征分析[J]. 西南农业学报, 2015, 28(4):1746-1751.

    Google Scholar

    [56] Wang X P, Chai Z P, Mao D L, et al. Analysis of spatial variability characteristics of soil trace elements in Kuqa County[J]. Southwest China Journal of Agricultural Sciences, 2015, 28(4): 1746-1751.

    Google Scholar

    [57] 郭安廷, 崔锦霞, 许鑫, 等. 基于GIS与地统计的土壤养分空间变异研究[J]. 中国农学通报, 2018, 34(23):72-79.

    Google Scholar

    [58] Guo A T, Cui J X, Xu X, et al. Spatial distribution of soil nutrients based on GIS and geostatistics[J]. Chinese Agricultural Science Bulletin, 2018, 34(23): 72-79.

    Google Scholar

    [59] 郭鹏, 徐丽萍, 常存. 北疆小尺度滴灌棉田土壤全氮半变异函数建模及空间变异特征[J]. 西北农业学报, 2013, 22(6):79-84.

    Google Scholar

    [60] Guo P, Xu L P, Chang C. Semivariogram modeling and spatial variation of drip irrigation soil total nitrogen at small scale cotton field in North Xinjiang[J]. Acta Agriculturae Boreali-Occidentalis Sinica, 2013, 22(6): 79-84.

    Google Scholar

    [61] 胡以铿. 地球化学中的多元分析[M]. 北京: 中国地质大学出版社, 1991.

    Google Scholar

    [62] Hu Y K. Multivariate analysis in geochemistry[M]. Beijing: China University of Geosciences Press, 1991.

    Google Scholar

    [63] 杨全合, 安永龙. 基于地统计学和GIS的通州区于家务乡土壤肥力综合评价[J]. 西南农业学报, 2019, 32(4):882-891.

    Google Scholar

    [64] Yang Q H, An Y L. Comprehensive evaluation of soil fertility in Yujiawu Town of Tongzhou District using geostatistics and GIS[J]. Southwest China Journal of Agricultural Sciences, 2019, 32(4): 882-891.

    Google Scholar

    [65] 安永龙, 杜子图, 黄勇. 基于地统计学和GIS技术的北京市大兴区礼贤镇土壤养分空间变异性研究[J]. 现代地质, 2018, 32(6):1311-1321.

    Google Scholar

    [66] An Y L, Du Z T, Huang Y. Spatial variation analysis of soil nutrients in Lixian Town of Daxing District in Beijing based on geostatistics and GIS[J]. Geoscience, 2018, 32(6): 1311-1321.

    Google Scholar

    [67] 李洪芬, 胡光道, 李江风. 基于地质统计学方法的土地利用空间变异尺度分析[J]. 地理与地理信息科学, 2008, 24(5):6-10.

    Google Scholar

    [68] Li H F, Hu G D, Li J F. Grain analysis of land use spatial pattern based on geo-statistic method[J]. Geography and Geo-Information Science, 2008, 24(5): 6-10.

    Google Scholar

    [69] 刘伟, 郜允兵, 潘瑜春. 农田土壤重金属空间变异多尺度研究[J]. 江苏农业科学, 2018, 46(23):357-361.

    Google Scholar

    [70] Liu W, Gao Y B, Pan Y C. Multi-scale study on spatial variation of heavy metals in farmland soils[J]. Jiangsu Agricultural Sciences, 2018, 46(23): 357-361.

    Google Scholar

    [71] 杨之江, 陈效民, 景峰, 等. 基于GIS和地统计学的稻田土壤养分与重金属空间变异[J]. 应用生态学报, 2018, 29(6):1893-1901.

    Google Scholar

    [36] Yang Z J, Chen X M, Jing F, et al. Spatial variability of nutrients and heavy metals in paddy field soils based on GIS and Geostatistics[J]. Chinese Journal of Applied Ecology, 2018, 29(6): 1893-1901.

    Google Scholar

    [72] 张瑞, 戴伟, 庞欢, 等. 北京市北运河流域耕地土壤性质空间变异性[J]. 生态学杂志, 2014, 33(12):3368-3373.

    Google Scholar

    [73] Zhang R, Dai W, Pang H, et al. Spatial variations in soil properties of cropland in North Canal basin in Beijing[J]. Chinese Journal of Ecology, 2014, 33(12): 3368-3373.

    Google Scholar

    [74] 舒彦军, 张立亭. 求解半变异函数的常用方法与新方法研究[J]. 测绘与空间地理信息, 2012, 35(5):24-27.

    Google Scholar

    [75] Shu Y J, Zhang L T. Study of the commonly used methods and new methods of solving semi-variogram[J]. Geomatics & Spatial Information Technology, 2012, 35(5): 24-27.

    Google Scholar

    [76] Pardo-Iguzquiza E, Chica-Olmo M. Geostatistics with the Matern semivariogram model: A library of computer programs for inference, kriging and simulation[J]. Computers and Geosciences, 2007, 34(9):1073-1079.

    Google Scholar

    [77] Obroslak R, Dorozhynskyy O. Selection of a semivariogram model in the study of spatial distribution of soil moisture[J]. Journal of Water and Land Development, 2017, 35(1):161-166.

    Google Scholar

    [78] 谢团辉, 郭京霞, 陈炎辉, 等. 福建省某矿区周边土壤—农作物重金属空间变异特征与健康风险评价[J]. 农业环境科学学报, 2019, 38(3):544-554.

    Google Scholar

    [79] Xie T H, Guo J X, Chen Y H, et al. Spatial variability and health risk assessment of heavy metals in soils and crops around the mining area in Fujian Province, China[J]. Journal of Agro-Environment Science, 2019, 38(3): 544-554.

    Google Scholar

    [80] 代杰瑞, 庞绪贵, 喻超, 等. 山东省东部地区土壤地球化学基准值与背景值及元素富集特征研究[J]. 地球化学, 2011, 40(6):577-587.

    Google Scholar

    [81] Dai J R, Pang X G, Yu C, et al. Geochemical baselines and background values and element enrichment characteristics in soils in eastern Shandong Province[J]. Geochimica, 2011, 40(6): 577-587.

    Google Scholar

    [82] 廖启林, 刘聪, 金洋, 等. 江苏省域土壤元素地表富集及其与人为活动的关系研究[J]. 第四纪研究, 2013, 33(5):972-985.

    Google Scholar

    [83] Liao Q L, Liu C, Jin Y, et al. Surface environmental enrichment of some elements and its relationship between anthropogenic activity and elemental distribution in soil in Jiangsu Province[J]. Quaternary Sciences, 2013, 33(5): 972-985.

    Google Scholar

    [84] 张秀芝, 鲍征宇, 唐俊红. 富集因子在环境地球化学重金属污染评价中的应用[J]. 地质科技情报, 2006, 25(1):65-72.

    Google Scholar

    [85] Zhang X Z, Bao Z Y, Tang J H. Application of the enrichment factor in evaluating of heavy metals contamination in the environmental geochemistry[J]. Geological Science and Technology Information, 2006, 25(1): 65-72.

    Google Scholar

    [86] 侯青叶, 杨忠芳, 余涛, 等. 中国土壤地球化学参数[M]. 北京: 地质出版社, 2020.

    Google Scholar

    [45] Hou Q Y, Yang Z F, Yu T, et al. Soil geochemical parameters in China[M]. Beijing: Geological Publishing House, 2020.

    Google Scholar

    [87] 陈志凡, 赵烨, 郭廷忠, 等. 污灌条件下重金属在耕作土壤中的积累与形态分布特征——以北京市通州区凤港减河污灌区农用地为例[J]. 地理科学, 2013, 33(8):1014-1021.

    Google Scholar

    [88] Chen Z F, Zhao Y, Guo T Z, et al. Impacts of sewage irrigation on heavy metal distribution and chemical fractions in arable soils: A case study about sewage-irrigated farmlands of the Fenggangjian River in Tongzhou District of Beijing, China[J]. Scientia Geographica Sinica, 2013, 33(8): 1014-1021.

    Google Scholar

    [89] 朱宇恩, 赵烨, 李强, 等. 北京市郊污灌区镉、铜在小麦中的富集特征[J]. 安全与环境学报, 2011, 11(2):15-20.

    Google Scholar

    [90] Zhu Y E, Zhao Y, Li Q, et al. Translocation and enrichment characteristics of cadmium and copper in Triticum aestivum in sewage-irrigated suburb area of Beijing[J]. Journal of Safety and Environment, 2011, 11(2): 15-20.

    Google Scholar

    [91] 胡文, 王海燕, 查同刚, 等. 北京市凉水河污灌区土壤重金属累积和形态分析[J]. 生态环境, 2008, 17(4):1491-1497.

    Google Scholar

    [92] Hu W, Wang H Y, Zha T G, et al. Soil heavy metal accumulation and speciation in a sewage-irrigated areaalong the Liangshui River, Beijing[J]. Ecology and Environmental Sciences, 2008, 17(4): 1491-1497.

    Google Scholar

    [93] 李艳玲, 卢一富, 陈卫平, 等. 工业城市农田土壤重金属时空变异及来源解析[J]. 环境科学, 2020, 41(3):1432-1439.

    Google Scholar

    [94] Li Y L, Lu Y F, Chen W P, et al. Spatial-temporal variation and source change of heavy metals in the cropland soil in the industrial city[J]. Environmental Science, 2020, 41(3): 1432-1439.

    Google Scholar

    [95] 崔邢涛, 秦振宇, 栾文楼, 等. 河北省保定市平原区土壤重金属污染及潜在生态危害评价[J]. 现代地质, 2014, 28(3):523-530.

    Google Scholar

    [96] Cui X T, Qin Z Y, Luan W L, et al. Assessment of the heavy metal pollution and the potential ecological hazard in soil of plain area of Baoding City of Hebei Province[J]. Geoscience, 2014, 28(3): 523-530.

    Google Scholar

    [97] 成杭新, 李括, 李敏, 等. 中国城市土壤化学元素的背景值与基准值[J]. 地学前缘, 2014, 21(3):265-306.

    Google Scholar

    [98] Cheng H X, Li K, Li M, et al. Geochemical background and baseline value of chemical elements in urban soil in China[J]. Earth Science Frontiers, 2014, 21(3): 265-306.

    Google Scholar

    [99] 蔡阳阳, 杨复沫, 贺克斌, 等. 北京城区大气干沉降的水溶性离子特征[J]. 中国环境科学, 2011, 31(7):1071-1076.

    Google Scholar

    [100] Cai Y Y, Yang F M, He K B, et al. Characteristics of water-soluble ions in dry deposition in urban Beijing[J]. China Environmental Science, 2011, 31(7): 1071-1076.

    Google Scholar

    [101] 倪琳, 崔小峰, 徐立家, 等. 燃料煤重金属元素在飞灰及炉渣中的分布与富集研究[J]. 煤炭科学技术, 2020, 48(5):203-208.

    Google Scholar

    [102] Ni L, Cui X F, Xu L J, et al. Study on distribution and enrichment of heavy metal elements in fly ash and slag from fuel coal[J]. Coal Science and Technology, 2020, 48(5): 203-208.

    Google Scholar

    [103] 惠淑荣, 徐棚, 刘惠, 等. 造纸废水灌溉对辽河口湿地土壤重金属污染的评价研究[J]. 沈阳农业大学学报, 2016, 47(6):695-702.

    Google Scholar

    [104] Hui S R, Xu P, Liu H, et al. Assessment of heavy metal pollution in Liaohe estuary wetland irrigated by papermaking wastewater[J]. Journal of Shenyang Agricultural University, 2016, 47(6): 695-702.

    Google Scholar

    [105] 李丽锋, 苏芳莉, 关驰, 等. 造纸废水灌溉对湿地土壤重金属累积影响及趋势评价[J]. 环境科学学报, 2015, 35(9):2964-2970.

    Google Scholar

    [106] Li L F, Su F L, Guan C, et al. The effect of irrigation with paper-making wastewater on the accumulation of heavy metals and their fate assessment in wetland soil[J]. Acta Scientiae Circumstantiae, 2015, 35(9): 2964-2970.

    Google Scholar

    [107] 李欢, 黄勇, 张沁瑞, 等. 北京平原区土壤地球化学特征及影响因素分析[J]. 物探与化探, 2021, 45(2):502-516.

    Google Scholar

    [108] Li H, Huang Y, Zhang Q R, et al. Soil geochemical characteristics and influencing factors in Beijing Plain[J]. Geophysical and Geochemical Exploration, 2021, 45(2): 502-516.

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Article Metrics

Article views(1241) PDF downloads(238) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint