| [1] |
Huang X Y, Deng J Z, Chen X, et al. Magnetotelluric extremum boundary inversion based on different stabilizers and its application in a high radioactive waste repository site selection[J]. Applied Geophysics, 2019, 16(3) : 367-377.
Google Scholar
|
| [2] |
李磊. 湘南骑田岭锡铅锌多金属矿区岩矿石电性研究[J]. 物探与化探, 2007(S1) : 77-80,93.
Google Scholar
|
| [3] |
Li L. Researchs on rock electrical properties in the Qittianling,lead and zinc polymetallic ore deposit,southern HuNan[J]. Geophysical and Geochemical Exploration, 2007(S1) : 77-80,93.
Google Scholar
|
| [4] |
熊彬, 罗天涯, 蔡红柱, 等. 起伏地形大地电磁二维反演[J]. 物探与化探, 2016, 40(3):587-593.
Google Scholar
|
| [5] |
Xiong B, Luo T Y, Cai H Z, et al. Two-dimensional magnetotelluric inversion of undulating terrain[J]. Geophysical and Geochemical Exploration, 2016, 40(3): 587-593.
Google Scholar
|
| [6] |
Alan G J. Distortion decomposition of the magnetotelluric impedance tensors from a one-dimensional anisotropic Earth[J]. Geophysical Journal International, 2012, 189(1): 268-284.
Google Scholar
|
| [7] |
Juanjo L, Pilar Q, Jaume P. Effects of galvanic distortion on magnetotelluric data over a three-dimensional regional structure[J]. Geophysical Journal International, 1998(2) : 295-301.
Google Scholar
|
| [8] |
Franke A, Borner R, Spitzer K, et al. Adaptive unstructured grid finite element simulation of two-dimensional magnetotelluric fields for arbitrary surface and seafloor topography[J]. Geophysical Journal International, 2007, 171(1) : 71-86.
Google Scholar
|
| [9] |
Shewchuk J R. Delaunay refinement algorithms for triangular mesh generation[J]. Computational Geometry Theory & Applications, 2002, 47(1-3) : 741-778.
Google Scholar
|
| [10] |
Cao X Y, Yin C C, Zhang B, et al. 3D magnetotelluric inversions with unstructured finite-element and limited-memory quasi-Newton methods[J]. Chinese Geophysical Society, 2018, 15(3) : 556-565.
Google Scholar
|
| [11] |
惠哲剑, 殷长春, 刘云鹤, 等. 基于非结构有限元的时间域海洋电磁三维反演[J]. 地球物理学报, 2020, 63(8) : 3167-3179.
Google Scholar
|
| [12] |
Hui Z J, Yin C C, Liu Y H, et al. 3D inversion of time-domain marine CSEM based on unstructured finite element method[J]. Chinese Journal of Geophysics, 2020, 63(8) : 3167-3179.
Google Scholar
|
| [13] |
Kerry K, Chester W. Adaptive finite-element modeling using unstructured grids: The 2D magnetotelluric example[J]. Society of Exploration Geophysicists, 2006, 71(6) : G291-G299.
Google Scholar
|
| [14] |
Li Y G, Key K. 2D marine controlled-source electromagnetic modeling: Part 1 — An adaptive finite-element algorithm[J]. Geophysics, 2007, 72(2) : WA51.
Google Scholar
|
| [15] |
Li Y G, Josef P, et al. Adaptive finite element modelling of two-dimensional magnetotelluric fields in general anisotropic media[J]. Geophysical Journal International, 2008, 175(3) : 942-954.
Google Scholar
|
| [16] |
刘颖, 李予国, 韩波. 可控源电磁场三维自适应矢量有限元正演模拟[J]. 地球物理学报, 2017, 60(12) : 4874-4886.
Google Scholar
|
| [17] |
Liu Y, Li Y G, Han B. Adaptive edge finite element modeling of the 3D CSEM field on unstructured grids[J]. Chinese Journal of Geophysics, 2017, 60(12) : 4874-4886.
Google Scholar
|
| [18] |
Ovall J S. Asymptotically exact functional error estimators based on superconvergent gradient recovery[J]. Numerische Mathematik, 2006, 102(3) : 543-558.
Google Scholar
|
| [19] |
Key K, Ovall J. A parallel goal-oriented adaptive finite element method for 2.5D electromagnetic modelling[J]. Geophysical Journal International, 2011. 186(1) : 137-154.
Google Scholar
|
| [20] |
韩骑, 胡祥云, 程正璞, 等. 自适应非结构有限元MT二维起伏地形正反演研究[J]. 地球物理学报, 2015, 58(12) : 4675-4684.
Google Scholar
|
| [21] |
Han Q, Hu X Y, Chen Z P, et al. A study of two dimensional MT inversion with steep topography using the adaptive unstructured finite element method[J]. Chinese Journal of Geophysics, 2015, 58(12) : 4675-4684.
Google Scholar
|
| [22] |
Key K. MARE2DEM: A 2D inversion code for controlled-source electromagnetic and magnetotelluric data[J]. Geophysical Journal International, 2016, 207(1) : 571-588.
Google Scholar
|
| [23] |
Constable S C, Parker R L, Constable C G. Occam's inversion:A practical algorithm for generating smooth models from electromagnetic sounding data[J]. Geophysics, 1987, 52(3) : 289-300.
Google Scholar
|
| [24] |
何梅兴, 胡祥云, 叶益信, 等. 2.5维可控源音频大地电磁法Occam反演理论及应用[J]. 地球物理学进展, 2011, 26(6) : 2163-2170.
Google Scholar
|
| [25] |
He M X, Hu X Y, Ye Y X, et al. 2.5D controlled source audio-frequency magnetotellurics occam inversion[J]. Progress in Geophysics, 2011, 26(6) : 2163-2170.
Google Scholar
|
| [26] |
熊彬, 罗延钟, 强建科. 瞬变电磁2.5维反演中灵敏度矩阵计算方法(Ⅰ)[J]. 地球物理学进展, 2004, 19(3) : 616-620.
Google Scholar
|
| [27] |
Xiong B, Luo Y Z, Qiang J K. Methods for calculating sensitivities for 2.5D transient electromagnetic inversion[J]. Progress in Geophysics, 2004, 19(3) : 616-620.
Google Scholar
|
| [28] |
Farquharson C G, Oldenburg D W. Approximate sensitivities for the electromagnetic inverse problem[J]. Geophysical Journal International, 1996, 126(1) : 235-252.
Google Scholar
|
| [29] |
Mcgillivray P R, Oldenburg D W, Ellis R G, et al. Calculation of sensitivities for the frequency-domain electromagnetic problem[J]. Geophysical Journal International, 1994, 116(1) : 1-4.
Google Scholar
|
| [30] |
Parker R L. Geophysical inverse theory[M]. Princeton: Princeton University Press, 1994.
Google Scholar
|
| [31] |
Zhdanov M S. Inverse theory and applications in geophysics[M]. New York: Elsevier, 2002.
Google Scholar
|